Introduction to Data Mining and Business Intelligence Lecture 1/DMBI/IKI83403T/MTI/UI
|
|
|
- Bennett Wade
- 10 years ago
- Views:
Transcription
1 Introduction to Data Mining and Business Intelligence Lecture 1/DMBI/IKI83403T/MTI/UI Yudho Giri Sucahyo, Ph.D, CISA Faculty of Computer Science, University of Indonesia
2 Objectives Motivation: Why data mining? What is data mining? Understand the drivers for BI initiatives in modern organizations Understand the structure, components, and process of BI 2
3 Motivation: Why data mining? Data explosion problem: Automated data collection tools and mature database technology lead to tremendous amounts of data stored in databases, data warehouses and other information repositories. We are drowning in data, but starving for knowledge! Data Mining: Extraction of interesting knowledge (rules, regularities, patterns, constraints) from data in large databases [JH]. Analysis of the large quantities of data that are stored in computers [DO], Alternative names KDD, knowledge extraction, data archeology, information harvesting, business intelligence, etc. 3
4 Data Rich but Information Poor Databases are too big Data Mining can help discover knowledge 4
5 Evolution of Database Technology Data Collection, database creation, network DBMS Relational data model, relational DBMS implementation RDBMS, advanced data models (extended-relational, OO, etc.) and application-oriented DBMS (spatial, scientific, engineering, etc.) Data mining and data warehousing, multimedia databases, and Web technology 5
6 Potential Applications See TSBD lecture notes Data Mining See Chapter 1 of DO Retailing Banking Credit Card Management Insurance Telecommunications Telemarketing Human Resource Management 6
7 Data Mining Should Not be Used Blindly Data mining find regularities from history, but history is not the same as the future. Association does not dictate trend nor causality. Some abnormal data could be caused by human. 7
8 Another view of BI BI is a broad field and it is viewed differently by different people. Common agreement on major components: A centralized repository of data data warehouse An end-user set of tools to create reports and queries from data and information and to analyze the data, information, and reports business analytics To find non-obvious relationship among large amounts of data data mining, for text text mining, for web web mining Business Performance Management (BPM) to set goals as metrics and standards and monitoring and measuring performance by using the BI methodology. 8
9 Drivers of BI Organizations are being compelled to capture, understand, and harness their data to support decision making in order to improve business operations Business cycle times are now extremely compressed; faster, more informed, and better decision making is therefore a competitive imperative Managers need the right information at the right time and in the right place Case Study 1: BI success story at Toyota Motor Company (Chapter 1 ET pg. 4-6). 9
10 Business Value of BI 10
11 Data Mining Functionality Association 11 From association, correlation, to causality Finding rules like A -> B Classification and Prediction Classify data based on the values ina classifying attribute Predict some unknown or missing attribute values based on other information Cluster analysis Group data to form new classes, e.g., cluster houses to find distribution patterns Outlier and exception data analysis Time series analysis (trend and deviation) Trend and deviation analysis: regression, sequential pattern, similiar sequences e.g. Stock analysis
12 Sarbanes-Oxley Act of 2002 (extracted from Gartner, Inc., 2004) The Sarbanes-Oxley Act of 2002 mandates drove one firm to implement a new financial performance management system, capable of meeting the new requirements to: Perform flawless analysis and compilation of thousands of transactions and journal entries. Balance more access to data with the need to control access to sensitive insider information. Deliver reports to the SEC in less time. 12
13 Sarbanes-Oxley Act of 2002 (extracted from Gartner, Inc., 2004)... continued Within the overarching goal of achieving financial-reporting compliance, these objectives included the following: Get more eyes on the data and KPI and build in strict security controls Provide live reports that allow people to drill down to the lowest level of transaction detail Proactively scour the financial databases for anomalies, using variance triggers Gather all financial data into a cohesive database Complement accounting and budgeting applications for flexible reporting, free-form investigation, and automated data analysis. BI can proactively alert specific individuals whenever an anomay is detected. 13
14 14 Now let us see some screenshots...
15 Dashboard 15
16 And another dashboard... 16
17 And another dashboard... 17
18 Financial Reporting 18
19 19 Back to theory...
20 KDD Process Interpretation/ Knowledge Evaluation Transformation Data Mining Preprocessin g Selection Target Data Data 20
21 Steps of a KDD Process Learning the application domain: 21 relevant prior knowledge and goals of application Creating a target data set: data selection Data cleaning and preprocessing: (may take 60% of effort!) Data reduction and projection: Find useful features, dimensionality/variable reduction, invariant representation. Choosing functions of data mining summarization, classification, regression, association, clustering. Choosing the mining algorithm(s) Data mining: search for patterns of interest Interpretation: analysis of results. visualization, transformation, removing redundant patterns, etc. Use of discovered knowledge
22 Teradata Advanced Analytics Methodology (similar to CRISP-DM) 22
23 Structure and Components of BI 23
24 Structure and Components of BI... continued Data Warehouse Data flows from operational systems (e.g., CRM, ERP) to a DW, which is a special database or repository of data that has been prepared to support decision-making applications ranging from those for simple reporting and querying to complex optimization Business Analytics/OLAP Software tools that allow users to create ondemand reports and queries and to conduct analysis of data 24
25 Structure and Components of BI... continued Data Mining Data mining is a class of database information analysis that looks for hidden patterns in a group of data that can be used to predict future behavior Used to replace or enhance human intelligence by scanning through massive storehouses of data to discover meaningful new correlations, patterns, and trends, by using pattern recognition technologies and advanced statistics 25
26 Structure and Components of BI... continued Business Performance Management (BPM) Based on the balanced scorecard methodology a framework for defining, implementing, and managing an enterprise s business strategy by linking objectives with factual measures Dashboards A visual presentation of critical data for executives to view. It allows executives to see hot spots in seconds and explore the situation 26
27 BI: Today and Tomorrow Recent industry analyst reports show that in the coming years, millions of people will use BI visual tools and analytics every day BI takes advantage of already developed and installed components of IT technologies, helping companies leverage their current IT investments and use valuable data stored in legacy and transactional systems Some Issues: Mining information from heterogeneous databases and global information systems Handling relational and complex types of data Efficiency and scalability of data mining algorithms 27
Introduction to Data Mining
Bioinformatics Ying Liu, Ph.D. Laboratory for Bioinformatics University of Texas at Dallas Spring 2008 Introduction to Data Mining 1 Motivation: Why data mining? What is data mining? Data Mining: On what
Database Marketing, Business Intelligence and Knowledge Discovery
Database Marketing, Business Intelligence and Knowledge Discovery Note: Using material from Tan / Steinbach / Kumar (2005) Introduction to Data Mining,, Addison Wesley; and Cios / Pedrycz / Swiniarski
Data Mining: Concepts and Techniques
Data Mining: Concepts and Techniques Chapter 1 Introduction SURESH BABU M ASST PROF IT DEPT VJIT 1 Chapter 1. Introduction Motivation: Why data mining? What is data mining? Data Mining: On what kind of
Introduction to Data Mining
Introduction to Data Mining 1 Why Data Mining? Explosive Growth of Data Data collection and data availability Automated data collection tools, Internet, smartphones, Major sources of abundant data Business:
Information Management course
Università degli Studi di Milano Master Degree in Computer Science Information Management course Teacher: Alberto Ceselli Lecture 01 : 06/10/2015 Practical informations: Teacher: Alberto Ceselli ([email protected])
Digging for Gold: Business Usage for Data Mining Kim Foster, CoreTech Consulting Group, Inc., King of Prussia, PA
Digging for Gold: Business Usage for Data Mining Kim Foster, CoreTech Consulting Group, Inc., King of Prussia, PA ABSTRACT Current trends in data mining allow the business community to take advantage of
DATA MINING AND WAREHOUSING CONCEPTS
CHAPTER 1 DATA MINING AND WAREHOUSING CONCEPTS 1.1 INTRODUCTION The past couple of decades have seen a dramatic increase in the amount of information or data being stored in electronic format. This accumulation
ECLT 5810 E-Commerce Data Mining Techniques - Introduction. Prof. Wai Lam
ECLT 5810 E-Commerce Data Mining Techniques - Introduction Prof. Wai Lam Data Opportunities Business infrastructure have improved the ability to collect data Virtually every aspect of business is now open
Data Warehousing and Data Mining in Business Applications
133 Data Warehousing and Data Mining in Business Applications Eesha Goel CSE Deptt. GZS-PTU Campus, Bathinda. Abstract Information technology is now required in all aspect of our lives that helps in business
A Knowledge Management Framework Using Business Intelligence Solutions
www.ijcsi.org 102 A Knowledge Management Framework Using Business Intelligence Solutions Marwa Gadu 1 and Prof. Dr. Nashaat El-Khameesy 2 1 Computer and Information Systems Department, Sadat Academy For
Introduction. A. Bellaachia Page: 1
Introduction 1. Objectives... 3 2. What is Data Mining?... 4 3. Knowledge Discovery Process... 5 4. KD Process Example... 7 5. Typical Data Mining Architecture... 8 6. Database vs. Data Mining... 9 7.
www.ducenit.com Analance Data Integration Technical Whitepaper
Analance Data Integration Technical Whitepaper Executive Summary Business Intelligence is a thriving discipline in the marvelous era of computing in which we live. It s the process of analyzing and exploring
DATA ANALYSIS USING BUSINESS INTELLIGENCE TOOL. A Thesis. Presented to the. Faculty of. San Diego State University. In Partial Fulfillment
DATA ANALYSIS USING BUSINESS INTELLIGENCE TOOL A Thesis Presented to the Faculty of San Diego State University In Partial Fulfillment of the Requirements for the Degree Master of Science in Computer Science
Cis330. Mostafa Z. Ali
Fall 2009 Lecture 1 Cis330 Decision Support Systems and Business Intelligence Mostafa Z. Ali [email protected] Lecture 2: Slide 1 Changing Business Environments and Computerized Decision Support The business
Loss Prevention Data Mining Using big data, predictive and prescriptive analytics to enpower loss prevention
White paper Loss Prevention Data Mining Using big data, predictive and prescriptive analytics to enpower loss prevention Abstract In the current economy where growth is stumpy and margins reduced, retailers
DATA MINING TECHNIQUES SUPPORT TO KNOWLEGDE OF BUSINESS INTELLIGENT SYSTEM
INTERNATIONAL JOURNAL OF RESEARCH IN COMPUTER APPLICATIONS AND ROBOTICS ISSN 2320-7345 DATA MINING TECHNIQUES SUPPORT TO KNOWLEGDE OF BUSINESS INTELLIGENT SYSTEM M. Mayilvaganan 1, S. Aparna 2 1 Associate
www.sryas.com Analance Data Integration Technical Whitepaper
Analance Data Integration Technical Whitepaper Executive Summary Business Intelligence is a thriving discipline in the marvelous era of computing in which we live. It s the process of analyzing and exploring
SPATIAL DATA CLASSIFICATION AND DATA MINING
, pp.-40-44. Available online at http://www. bioinfo. in/contents. php?id=42 SPATIAL DATA CLASSIFICATION AND DATA MINING RATHI J.B. * AND PATIL A.D. Department of Computer Science & Engineering, Jawaharlal
How To Turn Big Data Into An Insight
mwd a d v i s o r s Turning Big Data into Big Insights Helena Schwenk A special report prepared for Actuate May 2013 This report is the fourth in a series and focuses principally on explaining what s needed
Introduction to Data Mining
Introduction to Data Mining Jay Urbain Credits: Nazli Goharian & David Grossman @ IIT Outline Introduction Data Pre-processing Data Mining Algorithms Naïve Bayes Decision Tree Neural Network Association
Introduction to Data Mining and Machine Learning Techniques. Iza Moise, Evangelos Pournaras, Dirk Helbing
Introduction to Data Mining and Machine Learning Techniques Iza Moise, Evangelos Pournaras, Dirk Helbing Iza Moise, Evangelos Pournaras, Dirk Helbing 1 Overview Main principles of data mining Definition
A Review of Data Mining Techniques
Available Online at www.ijcsmc.com International Journal of Computer Science and Mobile Computing A Monthly Journal of Computer Science and Information Technology IJCSMC, Vol. 3, Issue. 4, April 2014,
Business Intelligence Meets Business Process Management. Powerful technologies can work in tandem to drive successful operations
Business Intelligence Meets Business Process Management Powerful technologies can work in tandem to drive successful operations Content The Corporate Challenge.3 Separation Inhibits Decision-Making..3
Technical Management Strategic Capabilities Statement. Business Solutions for the Future
Technical Management Strategic Capabilities Statement Business Solutions for the Future When your business survival is at stake, you can t afford chances. So Don t. Think partnership think MTT Associates.
Data Mining Analytics for Business Intelligence and Decision Support
Data Mining Analytics for Business Intelligence and Decision Support Chid Apte, T.J. Watson Research Center, IBM Research Division Knowledge Discovery and Data Mining (KDD) techniques are used for analyzing
Decision Support and Business Intelligence Systems. Chapter 1: Decision Support Systems and Business Intelligence
Decision Support and Business Intelligence Systems Chapter 1: Decision Support Systems and Business Intelligence Types of DSS Two major types: Model-oriented DSS Data-oriented DSS Evolution of DSS into
Chapter 5. Warehousing, Data Acquisition, Data. Visualization
Decision Support Systems and Intelligent Systems, Seventh Edition Chapter 5 Business Intelligence: Data Warehousing, Data Acquisition, Data Mining, Business Analytics, and Visualization 5-1 Learning Objectives
III JORNADAS DE DATA MINING
III JORNADAS DE DATA MINING EN EL MARCO DE LA MAESTRÍA EN DATA MINING DE LA UNIVERSIDAD AUSTRAL PRESENTACIÓN TECNOLÓGICA IBM Alan Schcolnik, Cognos Technical Sales Team Leader, IBM Software Group. IAE
TRENDS IN DATA WAREHOUSING
TRENDS IN DATA WAREHOUSING Chapter #3 Imran Khan Agenda Continued Growth in DW DW has become Mainstream Industries using DW Vendor Solution & Products Status of DW market Significant Trends Web Enabled
Chapter 4 Getting Started with Business Intelligence
Chapter 4 Getting Started with Business Intelligence Learning Objectives and Learning Outcomes Learning Objectives Getting started on Business Intelligence 1. Understanding Business Intelligence 2. The
International Journal of Computer Science Trends and Technology (IJCST) Volume 2 Issue 3, May-Jun 2014
RESEARCH ARTICLE OPEN ACCESS A Survey of Data Mining: Concepts with Applications and its Future Scope Dr. Zubair Khan 1, Ashish Kumar 2, Sunny Kumar 3 M.Tech Research Scholar 2. Department of Computer
PUSH INTELLIGENCE. Bridging the Last Mile to Business Intelligence & Big Data. 2013 Copyright Metric Insights, Inc.
PUSH INTELLIGENCE Bridging the Last Mile to Business Intelligence & Big Data 2013 Copyright Metric Insights, Inc. INTRODUCTION... 3 CHALLENGES WITH BI... 4 The Dashboard Dilemma... 4 Architectural Limitations
Data Mining System, Functionalities and Applications: A Radical Review
Data Mining System, Functionalities and Applications: A Radical Review Dr. Poonam Chaudhary System Programmer, Kurukshetra University, Kurukshetra Abstract: Data Mining is the process of locating potentially
Data Warehousing and Data Mining
Data Warehousing and Data Mining Winter Semester 2010/2011 Free University of Bozen, Bolzano DW Lecturer: Johann Gamper [email protected] DM Lecturer: Mouna Kacimi [email protected] http://www.inf.unibz.it/dis/teaching/dwdm/index.html
Business Analytics and Data Visualization. Decision Support Systems Chattrakul Sombattheera
Business Analytics and Data Visualization Decision Support Systems Chattrakul Sombattheera Agenda Business Analytics (BA): Overview Online Analytical Processing (OLAP) Reports and Queries Multidimensionality
CONCEPTUALIZING BUSINESS INTELLIGENCE ARCHITECTURE MOHAMMAD SHARIAT, Florida A&M University ROSCOE HIGHTOWER, JR., Florida A&M University
CONCEPTUALIZING BUSINESS INTELLIGENCE ARCHITECTURE MOHAMMAD SHARIAT, Florida A&M University ROSCOE HIGHTOWER, JR., Florida A&M University Given today s business environment, at times a corporate executive
Outline. BI and Enterprise-wide decisions BI in different Business Areas BI Strategy, Architecture, and Perspectives
1. Introduction Outline BI and Enterprise-wide decisions BI in different Business Areas BI Strategy, Architecture, and Perspectives 2 Case study: Netflix and House of Cards Source: Andrew Stephen 3 Case
Next Generation Business Performance Management Solution
Next Generation Business Performance Management Solution Why Existing Business Intelligence (BI) Products are Inadequate Changing Business Environment In the face of increased competition, complex customer
DATA MINING TECHNOLOGY. Keywords: data mining, data warehouse, knowledge discovery, OLAP, OLAM.
DATA MINING TECHNOLOGY Georgiana Marin 1 Abstract In terms of data processing, classical statistical models are restrictive; it requires hypotheses, the knowledge and experience of specialists, equations,
Class 2. Learning Objectives
Class 2 BUSINESS INTELLIGENCE Learning Objectives Describe the business intelligence (BI) methodology and concepts and relate them to DSS Understand the major issues in implementing computerized support
International Journal of Scientific & Engineering Research, Volume 5, Issue 4, April-2014 442 ISSN 2229-5518
International Journal of Scientific & Engineering Research, Volume 5, Issue 4, April-2014 442 Over viewing issues of data mining with highlights of data warehousing Rushabh H. Baldaniya, Prof H.J.Baldaniya,
Data Mining Introduction
Data Mining Introduction Organization Lectures Mondays and Thursdays from 10:30 to 12:30 Lecturer: Mouna Kacimi Office hours: appointment by email Labs Thursdays from 14:00 to 16:00 Teaching Assistant:
Data Warehouse: Introduction
Base and Mining Group of Base and Mining Group of Base and Mining Group of Base and Mining Group of Base and Mining Group of Base and Mining Group of Base and Mining Group of base and data mining group,
TRENDS IN THE DEVELOPMENT OF BUSINESS INTELLIGENCE SYSTEMS
9 8 TRENDS IN THE DEVELOPMENT OF BUSINESS INTELLIGENCE SYSTEMS Assist. Prof. Latinka Todoranova Econ Lit C 810 Information technology is a highly dynamic field of research. As part of it, business intelligence
Chapter 1 DECISION SUPPORT SYSTEMS AND BUSINESS INTELLIGENCE
Chapter 1 DECISION SUPPORT SYSTEMS AND BUSINESS INTELLIGENCE Learning Objectives Understand today s turbulent business environment and describe how organizations survive and even excel in such an environment
CHAPTER SIX DATA. Business Intelligence. 2011 The McGraw-Hill Companies, All Rights Reserved
CHAPTER SIX DATA Business Intelligence 2011 The McGraw-Hill Companies, All Rights Reserved 2 CHAPTER OVERVIEW SECTION 6.1 Data, Information, Databases The Business Benefits of High-Quality Information
Dashboards PRESENTED BY: Quaid Saifee Director, WIT Inc.
Dashboards PRESENTED BY: Quaid Saifee Director, WIT Inc. Presentation Outline 1. EPM (Enterprise Performance Management) Balanced Scorecard Dashboards 2. Dashboarding Process (Best Practices) 3. Case Studies
Pentaho Data Mining Last Modified on January 22, 2007
Pentaho Data Mining Copyright 2007 Pentaho Corporation. Redistribution permitted. All trademarks are the property of their respective owners. For the latest information, please visit our web site at www.pentaho.org
MDM for the Enterprise: Complementing and extending your Active Data Warehousing strategy. Satish Krishnaswamy VP MDM Solutions - Teradata
MDM for the Enterprise: Complementing and extending your Active Data Warehousing strategy Satish Krishnaswamy VP MDM Solutions - Teradata 2 Agenda MDM and its importance Linking to the Active Data Warehousing
DATA MANAGEMENT FOR THE INTERNET OF THINGS
DATA MANAGEMENT FOR THE INTERNET OF THINGS February, 2015 Peter Krensky, Research Analyst, Analytics & Business Intelligence Report Highlights p2 p4 p6 p7 Data challenges Managing data at the edge Time
Data Mining for Successful Healthcare Organizations
Data Mining for Successful Healthcare Organizations For successful healthcare organizations, it is important to empower the management and staff with data warehousing-based critical thinking and knowledge
Data Mining Solutions for the Business Environment
Database Systems Journal vol. IV, no. 4/2013 21 Data Mining Solutions for the Business Environment Ruxandra PETRE University of Economic Studies, Bucharest, Romania [email protected] Over
Demonstration of SAP Predictive Analysis 1.0, consumption from SAP BI clients and best practices
September 10-13, 2012 Orlando, Florida Demonstration of SAP Predictive Analysis 1.0, consumption from SAP BI clients and best practices Vishwanath Belur, Product Manager, SAP Predictive Analysis Learning
Class 10. Data Mining and Artificial Intelligence. Data Mining. We are in the 21 st century So where are the robots?
Class 1 Data Mining Data Mining and Artificial Intelligence We are in the 21 st century So where are the robots? Data mining is the one really successful application of artificial intelligence technology.
Chapter 5 Business Intelligence: Data Warehousing, Data Acquisition, Data Mining, Business Analytics, and Visualization
Turban, Aronson, and Liang Decision Support Systems and Intelligent Systems, Seventh Edition Chapter 5 Business Intelligence: Data Warehousing, Data Acquisition, Data Mining, Business Analytics, and Visualization
Delivering Smart Answers!
Companion for SharePoint Topic Analyst Companion for SharePoint All Your Information Enterprise-ready Enrich SharePoint, your central place for document and workflow management, not only with an improved
Business Intelligence. A Presentation of the Current Lead Solutions and a Comparative Analysis of the Main Providers
60 Business Intelligence. A Presentation of the Current Lead Solutions and a Comparative Analysis of the Main Providers Business Intelligence. A Presentation of the Current Lead Solutions and a Comparative
IT and CRM A basic CRM model Data source & gathering system Database system Data warehouse Information delivery system Information users
1 IT and CRM A basic CRM model Data source & gathering Database Data warehouse Information delivery Information users 2 IT and CRM Markets have always recognized the importance of gathering detailed data
Data Mining is sometimes referred to as KDD and DM and KDD tend to be used as synonyms
Data Mining Techniques forcrm Data Mining The non-trivial extraction of novel, implicit, and actionable knowledge from large datasets. Extremely large datasets Discovery of the non-obvious Useful knowledge
CHAPTER 1 INTRODUCTION
1 CHAPTER 1 INTRODUCTION Exploration is a process of discovery. In the database exploration process, an analyst executes a sequence of transformations over a collection of data structures to discover useful
SAP Solution Brief SAP HANA. Transform Your Future with Better Business Insight Using Predictive Analytics
SAP Brief SAP HANA Objectives Transform Your Future with Better Business Insight Using Predictive Analytics Dealing with the new reality Dealing with the new reality Organizations like yours can identify
Dashboard Reporting Business Intelligence
Dashboard Reporting Dashboards are One of 5 Styles of BI Applications Increasing Analytics & User Interactivity Advanced Analysis & Ad Hoc OLAP Analysis Reporting Ad Hoc Analysis Predictive Analysis Data
Statistics 215b 11/20/03 D.R. Brillinger. A field in search of a definition a vague concept
Statistics 215b 11/20/03 D.R. Brillinger Data mining A field in search of a definition a vague concept D. Hand, H. Mannila and P. Smyth (2001). Principles of Data Mining. MIT Press, Cambridge. Some definitions/descriptions
Increasing the Business Performances using Business Intelligence
ANALELE UNIVERSITĂłII EFTIMIE MURGU REŞIłA ANUL XVIII, NR. 3, 2011, ISSN 1453-7397 Antoaneta Butuza, Ileana Hauer, Cornelia Muntean, Adina Popa Increasing the Business Performances using Business Intelligence
BUSINESS INTELLIGENCE. Keywords: business intelligence, architecture, concepts, dashboards, ETL, data mining
BUSINESS INTELLIGENCE Bogdan Mohor Dumitrita 1 Abstract A Business Intelligence (BI)-driven approach can be very effective in implementing business transformation programs within an enterprise framework.
Data Mining and Exploration. Data Mining and Exploration: Introduction. Relationships between courses. Overview. Course Introduction
Data Mining and Exploration Data Mining and Exploration: Introduction Amos Storkey, School of Informatics January 10, 2006 http://www.inf.ed.ac.uk/teaching/courses/dme/ Course Introduction Welcome Administration
An Overview of Database management System, Data warehousing and Data Mining
An Overview of Database management System, Data warehousing and Data Mining Ramandeep Kaur 1, Amanpreet Kaur 2, Sarabjeet Kaur 3, Amandeep Kaur 4, Ranbir Kaur 5 Assistant Prof., Deptt. Of Computer Science,
SAP Manufacturing Intelligence By John Kong 26 June 2015
SAP Manufacturing Intelligence By John Kong 26 June 2015 Agenda Registration Next Generation of SAP Solution for Manufacturing Tea Break SAP Business Analytics Solutions for Manufacturing - Dashboard Design
Web Data Mining: A Case Study. Abstract. Introduction
Web Data Mining: A Case Study Samia Jones Galveston College, Galveston, TX 77550 Omprakash K. Gupta Prairie View A&M, Prairie View, TX 77446 [email protected] Abstract With an enormous amount of data stored
A TECHNICAL WHITE PAPER ATTUNITY VISIBILITY
A TECHNICAL WHITE PAPER ATTUNITY VISIBILITY Analytics for Enterprise Data Warehouse Management and Optimization Executive Summary Successful enterprise data management is an important initiative for growing
Data Warehouse Overview. Srini Rengarajan
Data Warehouse Overview Srini Rengarajan Please mute Your cell! Agenda Data Warehouse Architecture Approaches to build a Data Warehouse Top Down Approach Bottom Up Approach Best Practices Case Example
Explore the Possibilities
Explore the Possibilities 2013 HR Service Delivery Forum Best Practices in Data Management: Creating a Sustainable and Robust Repository for Reporting and Insights 2013 Towers Watson. All rights reserved.
Index Contents Page No. Introduction . Data Mining & Knowledge Discovery
Index Contents Page No. 1. Introduction 1 1.1 Related Research 2 1.2 Objective of Research Work 3 1.3 Why Data Mining is Important 3 1.4 Research Methodology 4 1.5 Research Hypothesis 4 1.6 Scope 5 2.
Big Data Analytics. Copyright 2011 EMC Corporation. All rights reserved.
Big Data Analytics 1 Priority Discussion Topics What are the most compelling business drivers behind big data analytics? Do you have or expect to have data scientists on your staff, and what will be their
MDM and Data Warehousing Complement Each Other
Master Management MDM and Warehousing Complement Each Other Greater business value from both 2011 IBM Corporation Executive Summary Master Management (MDM) and Warehousing (DW) complement each other There
Using Tableau Software with Hortonworks Data Platform
Using Tableau Software with Hortonworks Data Platform September 2013 2013 Hortonworks Inc. http:// Modern businesses need to manage vast amounts of data, and in many cases they have accumulated this data
[callout: no organization can afford to deny itself the power of business intelligence ]
Publication: Telephony Author: Douglas Hackney Headline: Applied Business Intelligence [callout: no organization can afford to deny itself the power of business intelligence ] [begin copy] 1 Business Intelligence
IMPROVING DATA INTEGRATION FOR DATA WAREHOUSE: A DATA MINING APPROACH
IMPROVING DATA INTEGRATION FOR DATA WAREHOUSE: A DATA MINING APPROACH Kalinka Mihaylova Kaloyanova St. Kliment Ohridski University of Sofia, Faculty of Mathematics and Informatics Sofia 1164, Bulgaria
Data Management Practices for Intelligent Asset Management in a Public Water Utility
Data Management Practices for Intelligent Asset Management in a Public Water Utility Author: Rod van Buskirk, Ph.D. Introduction Concerned about potential failure of aging infrastructure, water and wastewater
CUSTOMER RELATIONSHIP MANAGEMENT (CRM) CII Institute of Logistics
CUSTOMER RELATIONSHIP MANAGEMENT (CRM) CII Institute of Logistics Session map Session1 Session 2 Introduction The new focus on customer loyalty CRM and Business Intelligence CRM Marketing initiatives Session
Big Data Strategies Creating Customer Value In Utilities
Big Data Strategies Creating Customer Value In Utilities National Conference ICT For Energy And Utilities Sofia, October 2013 Valery Peykov Country CIO Bulgaria Veolia Environnement 17.10.2013 г. One Core
The Business Value of Predictive Analytics
The Business Value of Predictive Analytics Alys Woodward Program Manager, European Business Analytics, Collaboration and Social Solutions, IDC London, UK 15 November 2011 Copyright IDC. Reproduction is
Course 803401 DSS. Business Intelligence: Data Warehousing, Data Acquisition, Data Mining, Business Analytics, and Visualization
Oman College of Management and Technology Course 803401 DSS Business Intelligence: Data Warehousing, Data Acquisition, Data Mining, Business Analytics, and Visualization CS/MIS Department Information Sharing
Enterprise Data Quality
Enterprise Data Quality An Approach to Improve the Trust Factor of Operational Data Sivaprakasam S.R. Given the poor quality of data, Communication Service Providers (CSPs) face challenges of order fallout,
Data Warehouse (DW) Maturity Assessment Questionnaire
Data Warehouse (DW) Maturity Assessment Questionnaire Catalina Sacu - [email protected] Marco Spruit [email protected] Frank Habers [email protected] September, 2010 Technical Report UU-CS-2010-021
OLAP and Data Mining. Data Warehousing and End-User Access Tools. Introducing OLAP. Introducing OLAP
Data Warehousing and End-User Access Tools OLAP and Data Mining Accompanying growth in data warehouses is increasing demands for more powerful access tools providing advanced analytical capabilities. Key
Data Warehouse design
Data Warehouse design Design of Enterprise Systems University of Pavia 21/11/2013-1- Data Warehouse design DATA PRESENTATION - 2- BI Reporting Success Factors BI platform success factors include: Performance
ORACLE TAX ANALYTICS. The Solution. Oracle Tax Data Model KEY FEATURES
ORACLE TAX ANALYTICS KEY FEATURES A set of comprehensive and compatible BI Applications. Advanced insight into tax performance Built on World Class Oracle s Database and BI Technology Design after the
Big Data for Investment Research Management
IDT Partners www.idtpartners.com Big Data for Investment Research Management Discover how IDT Partners helps Financial Services, Market Research, and Investment Management firms turn big data into actionable
Business Intelligence, Analytics & Reporting: Glossary of Terms
Business Intelligence, Analytics & Reporting: Glossary of Terms A B C D E F G H I J K L M N O P Q R S T U V W X Y Z Ad-hoc analytics Ad-hoc analytics is the process by which a user can create a new report
Search and Data Mining: Techniques. Applications Anya Yarygina Boris Novikov
Search and Data Mining: Techniques Applications Anya Yarygina Boris Novikov Introduction Data mining applications Data mining system products and research prototypes Additional themes on data mining Social
Global Headquarters: 5 Speen Street Framingham, MA 01701 USA P.508.872.8200 F.508.935.4015 www.idc.com
Global Headquarters: 5 Speen Street Framingham, MA 01701 USA P.508.872.8200 F.508.935.4015 www.idc.com INDUSTRY DEVELOPMENTS AND MODELS Predictive Analytics and ROI: Lessons from IDC's Financial Impact
AMIS 7640 Data Mining for Business Intelligence
The Ohio State University The Max M. Fisher College of Business Department of Accounting and Management Information Systems AMIS 7640 Data Mining for Business Intelligence Autumn Semester 2013, Session
ISSN: 2321-7782 (Online) Volume 3, Issue 4, April 2015 International Journal of Advance Research in Computer Science and Management Studies
ISSN: 2321-7782 (Online) Volume 3, Issue 4, April 2015 International Journal of Advance Research in Computer Science and Management Studies Research Article / Survey Paper / Case Study Available online
Infor10 Corporate Performance Management (PM10)
Infor10 Corporate Performance Management (PM10) Deliver better information on demand. The speed, complexity, and global nature of today s business environment present challenges for even the best-managed
THE ROLE OF BUSINESS INTELLIGENCE IN BUSINESS PERFORMANCE MANAGEMENT
THE ROLE OF BUSINESS INTELLIGENCE IN BUSINESS PERFORMANCE MANAGEMENT Pugna Irina Bogdana Bucuresti, [email protected], tel : 0742483841 Albescu Felicia Bucuresti [email protected] tel: 0723581942 Babeanu
