DATA MINING TECHNOLOGY. Keywords: data mining, data warehouse, knowledge discovery, OLAP, OLAM.
|
|
|
- Tiffany Davidson
- 10 years ago
- Views:
Transcription
1 DATA MINING TECHNOLOGY Georgiana Marin 1 Abstract In terms of data processing, classical statistical models are restrictive; it requires hypotheses, the knowledge and experience of specialists, equations, effective knowledge of probabilities distribution and the data must have a high quality, being subject to prior processing and transformations. Because of these disadvantages the concept of data mining has emerged, implementing knowledge extraction algorithms from the large data collections. Data mining is a process consisting in collecting knowledge from databases or data warehouses and the information collected that had never been known before, it is valid and operational. Nowadays data mining is a modern and powerful IT&C tool, automatizing the process of discovering relationships and combinations in raw data and using the results in an automatic decision support. Keywords: data mining, data warehouse, knowledge discovery, OLAP, OLAM. 1. What is data mining? Knowledge discovery and data mining have emerged as an interdisciplinary domain with a fast evolution and merging with databases, statistics, data warehouses and willing to extract a big amount of valuable knowledge and information. The purpose of data mining is to discover unknown new information and due to this fact the results are truly useful. The knowledge discovered through data mining must be valid. Appling the data mining techniques on large amounts of varied data could lead also to false information therefore is essential to check the data validity. We could also refer to the data mining process as a step in discovering the information through a set of algorithms and patterns meaningful in the data structures and showing market trends. Data mining discovers patterns within data, using predictive techniques. These patterns play a very important role in the decision making because they emphasize areas where business processes require improvement. Using the data mining solutions, organizations can increase their profitability, can detect fraud, or may enhance the risk management activities. The models discovered by using data mining solutions are helping organizations to make better decisions in a shorter amount of time. 1 PhD Student, Academy of Economic Studies; Teaching assistant, Romanian American University, [email protected]
2 Reports and charts through SQL queries Multidimensional analysis Database Statistical data analysis Data mining Figure 1 - Differences between traditional data analysis and data mining 2 Data mining methods derived from statistical calculation, database administration and artificial intelligence, SQL queries, analysis in multidimensional databases using OLAP systems. They don t replace the traditional methods of statistics, but are considered to be extensions of graphic and statistical techniques. Typical data structure suitable for data mining contains the observations placed on lines and the variables placed on columns. Domains or range values for each variable must be precisely defined, avoiding as much as possible vague expressions. Line and column format, similar to the spreadsheet file is required for data mining. Data mining software is separated into two groups: 1. Data mining tools are providing techniques that can be applied to any business problems. 2. Data mining applications incorporate techniques inside an application specially built to address business problems. Our life is influenced by data mining applications. For example, almost any financial transaction is processed by a data mining application to detect fraud. Increasingly more organizations are using both data mining tools and applications to develop predictive analysis. In order to apply data mining tools, data must go through the following processes: a. Preprocessing removing unnecessary data - Consistency checking (measurement units); - Detecting and removing erroneous information; - Removing extreme values (outliners). b. Data integration combining variables c. Transforming variables through standardization, or by passing to logarithmic scale d. Separating the database into three categories of data: - Training category - Validating category 2 Lungu, Ion and Bâra, Adela. Sisteme informatice executive. Bucharest : Editura ASE, 2007
3 - Testing category e. Using simple classical descriptive statistic: mean, median, range, standard deviation f. Using simple diagrams: frequency histograms, bar charts, pie chart. 2. Data mining and knowledge discovery components The main function of data mining is to extract knowledge patterns from data. Therefore, data mining uses a variety of statistic algorithms, forms recognitions, classifications, fuzzy logic, machine learning, genetic algorithms, and neural networks. The variety of algorithms can be grouped into the main components of data mining. The main components of data mining are: 1. The model which, like any other computerized model, is represented by a function in single-dimensional or multidimensional space, depending on the parameters. It may be represented either as a linear function of parameters either as a probability or fuzzy function. Different algorithms, such as classification and clustering are leading to the achievement of the model. 2. Preference criteria may have a different nature, some of them being based on ranking and others on interpolation or on the best approximation. 3. Selection algorithms are leading to the selection of three important elements that occur in data mining: the model selected from a model base, data selected from the database and setting up the parameters and the preference criteria, selected from a criteria base. 4. Setting residuals generally consist in algorithms of determination of deviation and stability; a particular category of such algorithms are the statistical ones, which are setting the deviations from the ideal model. Each commercial product uses several algorithms and in each of them we can find some or all of the above components, in different proportions. Researches who make the difference between data mining and knowledge discovery consider knowledge discovery as a complex interactive and iterative process, which includes data mining. Thus, it is considered that the knowledge discovery retrieval is accomplished in the following steps: a. Understanding the applicability domain and the formulation of the problem. This step is an essential condition in extracting relevant knowledge for choosing the most suitable method of data mining for the third stage, according to the destination of the application and the nature of data. b. Collecting and reprocessing data, including the selection of data sources, removing the outer layers, processing and data reduction. c. Step three is represented by data mining, the process of extracting models or patterns hidden in data. A model is a global representation of a structure that summarizes the systematic component, underlying the data, or which describes how data can result. A pattern is a local structure, associated with some variables and conditions. The most important data mining methods are classification and predictive regression modeling, clustering, dependences modeling with graphical models and estimation of density.
4 d. The fourth step is the interpretation or post processing of knowledge found, especially the interpretation in terms of description and prediction, the two main purposes in the discovery system practice. Experience shows that patterns or data patterns are not directly used and the knowledge discovery process is repeated through the knowledge discovered. A standard manner of assessment is to divide data into two sets, working on a data set and testing on the second. We repeat the process a number of times, each time dividing the data differently. The results will be used to estimate the rules of performance. e. The final step is to put into practice the knowledge discovered. In some cases the new discovered data can be used without the need of an integrated system and, in other cases, it can be used to exploit it through specialized software. Figure 2 - Knowledge extraction process Identifying and defining the problem Obtaining and reprocessing data Data mining Data interpreting and evaluation Using the knowledge discovered 3. On-line analytical data mining systems (OLAM) Data mining and OLAP system are tools for business intelligence. OLAP queries retrieve the database information, at certain levels. OLAP analysis is a deductive process. Based on this hypothesis, data mining is different from OLAP system because it is using its data to discover new patterns. This tool examines the data and interactions between them. Data mining technology is focused on assessing the predictive power of patterns, this being possible by testing conclusions on a different set of data and by calculating the predictive accuracy. So, we can appreciate that data mining and OLAP are two technologies that complement each other. Data mining could help analyze and design the data warehouse by focusing attention on important variables, identifying exceptions and finding interactions between variables. Due to the interconnection between the two technologies, the OLAM systems have emerged. OLAM systems are also called OLAP systems for data mining. This type of system integrates OLAP multidimensional processing with extracting knowledge form data, in data mining. Lately, different architectures had been defined but OLAP systems are imposed increasingly due to their advantages: 1. Ensuring a high quality of data in the data warehouse. Most data mining tools require consistent and complete data and therefore expensive processing.
5 2. Exploiting the data processing infrastructure, available in data warehouses. Processing facilities provided by the data warehouse includes accessing, integration, consolidation and transformation of the heterogeneous databases, multiple Web access, report generating facilities and online analysis. 3. Analyzing data based on the facilities offered by OLAP processing. Data mining techniques require a data analysis, navigating through the database, selecting relevant data, analyzing data in various levels and presenting the results in different forms. 4. Selecting online the processing functions for data mining. Integrating into an OLAP system different data mining functions, the user has greater flexibility in selecting these functions and a faster switch between different types of processing is possible. An OLAM system must retrieve knowledge in multidimensional data in the same way OLAP systems carries out the data processing. Since the data mining processing in OLAM systems is specific, it requires additional modules that are not found in a basic OLAP system. 4. Conclusion Data mining tools and applications are helpful in business management, business intelligence, selective marketing, and decision analysis. Data mining is a technology that uses complex and elaborate algorithms in order to analyze and reveal interesting information useful in the analysis made by decision makers. OLAP organizes data into a pattern suitable for the analysts to operate while data mining carries out data analyses and provides the results to the decision makers. Thus, OLAP enables a model oriented analysis while data mining makes the oriented data analysis easier. Bibliography 1. Lungu, Ion and Bâra, Adela. Sisteme informatice executive. Bucharest : Editura ASE, Velicanu, Manole, et al., et al. Sisteme de baze de date evoluate. Bucharest : Editura ASE, Chmelar, Petr and Stryka, Lukas. Iterative, Interactive and Intuitive Analytical Data Mining. [Online] Gorunescu, Florin. Data Mining Concepts, Models and Techniques. : Springer, Ullman, Jeffrey D. Data Mining Lecture Notes Han, Jiawei and Kamber, Micheline. Data mining: concepts and techniques. : Morgan Kaufmann Publishers, 2006.
Data Mining Solutions for the Business Environment
Database Systems Journal vol. IV, no. 4/2013 21 Data Mining Solutions for the Business Environment Ruxandra PETRE University of Economic Studies, Bucharest, Romania [email protected] Over
Course 803401 DSS. Business Intelligence: Data Warehousing, Data Acquisition, Data Mining, Business Analytics, and Visualization
Oman College of Management and Technology Course 803401 DSS Business Intelligence: Data Warehousing, Data Acquisition, Data Mining, Business Analytics, and Visualization CS/MIS Department Information Sharing
Chapter 5 Business Intelligence: Data Warehousing, Data Acquisition, Data Mining, Business Analytics, and Visualization
Turban, Aronson, and Liang Decision Support Systems and Intelligent Systems, Seventh Edition Chapter 5 Business Intelligence: Data Warehousing, Data Acquisition, Data Mining, Business Analytics, and Visualization
DATA MINING TECHNIQUES AND APPLICATIONS
DATA MINING TECHNIQUES AND APPLICATIONS Mrs. Bharati M. Ramageri, Lecturer Modern Institute of Information Technology and Research, Department of Computer Application, Yamunanagar, Nigdi Pune, Maharashtra,
Data Mining Algorithms and Techniques Research in CRM Systems
Data Mining Algorithms and Techniques Research in CRM Systems ADELA TUDOR, ADELA BARA, IULIANA BOTHA The Bucharest Academy of Economic Studies Bucharest ROMANIA {Adela_Lungu}@yahoo.com {Bara.Adela, Iuliana.Botha}@ie.ase.ro
Dynamic Data in terms of Data Mining Streams
International Journal of Computer Science and Software Engineering Volume 2, Number 1 (2015), pp. 1-6 International Research Publication House http://www.irphouse.com Dynamic Data in terms of Data Mining
Chapter 5. Warehousing, Data Acquisition, Data. Visualization
Decision Support Systems and Intelligent Systems, Seventh Edition Chapter 5 Business Intelligence: Data Warehousing, Data Acquisition, Data Mining, Business Analytics, and Visualization 5-1 Learning Objectives
Introduction to Data Mining
Introduction to Data Mining Jay Urbain Credits: Nazli Goharian & David Grossman @ IIT Outline Introduction Data Pre-processing Data Mining Algorithms Naïve Bayes Decision Tree Neural Network Association
5.5 Copyright 2011 Pearson Education, Inc. publishing as Prentice Hall. Figure 5-2
Class Announcements TIM 50 - Business Information Systems Lecture 15 Database Assignment 2 posted Due Tuesday 5/26 UC Santa Cruz May 19, 2015 Database: Collection of related files containing records on
Chapter ML:XI. XI. Cluster Analysis
Chapter ML:XI XI. Cluster Analysis Data Mining Overview Cluster Analysis Basics Hierarchical Cluster Analysis Iterative Cluster Analysis Density-Based Cluster Analysis Cluster Evaluation Constrained Cluster
Database Marketing, Business Intelligence and Knowledge Discovery
Database Marketing, Business Intelligence and Knowledge Discovery Note: Using material from Tan / Steinbach / Kumar (2005) Introduction to Data Mining,, Addison Wesley; and Cios / Pedrycz / Swiniarski
Business Intelligence Systems
12 Business Intelligence Systems Business Intelligence Systems Bogdan NEDELCU University of Economic Studies, Bucharest, Romania [email protected] The aim of this article is to show the importance
A Review of Data Mining Techniques
Available Online at www.ijcsmc.com International Journal of Computer Science and Mobile Computing A Monthly Journal of Computer Science and Information Technology IJCSMC, Vol. 3, Issue. 4, April 2014,
DMDSS: Data Mining Based Decision Support System to Integrate Data Mining and Decision Support
DMDSS: Data Mining Based Decision Support System to Integrate Data Mining and Decision Support Rok Rupnik, Matjaž Kukar, Marko Bajec, Marjan Krisper University of Ljubljana, Faculty of Computer and Information
Data Warehousing and Data Mining in Business Applications
133 Data Warehousing and Data Mining in Business Applications Eesha Goel CSE Deptt. GZS-PTU Campus, Bathinda. Abstract Information technology is now required in all aspect of our lives that helps in business
Using reporting and data mining techniques to improve knowledge of subscribers; applications to customer profiling and fraud management
Using reporting and data mining techniques to improve knowledge of subscribers; applications to customer profiling and fraud management Paper Jean-Louis Amat Abstract One of the main issues of operators
Search and Data Mining: Techniques. Applications Anya Yarygina Boris Novikov
Search and Data Mining: Techniques Applications Anya Yarygina Boris Novikov Introduction Data mining applications Data mining system products and research prototypes Additional themes on data mining Social
A collaborative approach of Business Intelligence systems
A collaborative approach of Business Intelligence systems Gheorghe MATEI, PhD Romanian Commercial Bank, Bucharest, Romania [email protected] Abstract: To succeed in the context of a global and dynamic
Use of Data Mining in the field of Library and Information Science : An Overview
512 Use of Data Mining in the field of Library and Information Science : An Overview Roopesh K Dwivedi R P Bajpai Abstract Data Mining refers to the extraction or Mining knowledge from large amount of
not possible or was possible at a high cost for collecting the data.
Data Mining and Knowledge Discovery Generating knowledge from data Knowledge Discovery Data Mining White Paper Organizations collect a vast amount of data in the process of carrying out their day-to-day
Healthcare Measurement Analysis Using Data mining Techniques
www.ijecs.in International Journal Of Engineering And Computer Science ISSN:2319-7242 Volume 03 Issue 07 July, 2014 Page No. 7058-7064 Healthcare Measurement Analysis Using Data mining Techniques 1 Dr.A.Shaik
Data Warehousing and OLAP Technology for Knowledge Discovery
542 Data Warehousing and OLAP Technology for Knowledge Discovery Aparajita Suman Abstract Since time immemorial, libraries have been generating services using the knowledge stored in various repositories
Data Mining: Concepts and Techniques. Jiawei Han. Micheline Kamber. Simon Fräser University К MORGAN KAUFMANN PUBLISHERS. AN IMPRINT OF Elsevier
Data Mining: Concepts and Techniques Jiawei Han Micheline Kamber Simon Fräser University К MORGAN KAUFMANN PUBLISHERS AN IMPRINT OF Elsevier Contents Foreword Preface xix vii Chapter I Introduction I I.
International Journal of Computer Science Trends and Technology (IJCST) Volume 2 Issue 3, May-Jun 2014
RESEARCH ARTICLE OPEN ACCESS A Survey of Data Mining: Concepts with Applications and its Future Scope Dr. Zubair Khan 1, Ashish Kumar 2, Sunny Kumar 3 M.Tech Research Scholar 2. Department of Computer
Prediction of Heart Disease Using Naïve Bayes Algorithm
Prediction of Heart Disease Using Naïve Bayes Algorithm R.Karthiyayini 1, S.Chithaara 2 Assistant Professor, Department of computer Applications, Anna University, BIT campus, Tiruchirapalli, Tamilnadu,
Data Mining Analytics for Business Intelligence and Decision Support
Data Mining Analytics for Business Intelligence and Decision Support Chid Apte, T.J. Watson Research Center, IBM Research Division Knowledge Discovery and Data Mining (KDD) techniques are used for analyzing
Fluency With Information Technology CSE100/IMT100
Fluency With Information Technology CSE100/IMT100 ),7 Larry Snyder & Mel Oyler, Instructors Ariel Kemp, Isaac Kunen, Gerome Miklau & Sean Squires, Teaching Assistants University of Washington, Autumn 1999
DATA WAREHOUSE AND DATA MINING NECCESSITY OR USELESS INVESTMENT
Scientific Bulletin Economic Sciences, Vol. 9 (15) - Information technology - DATA WAREHOUSE AND DATA MINING NECCESSITY OR USELESS INVESTMENT Associate Professor, Ph.D. Emil BURTESCU University of Pitesti,
A New Approach for Evaluation of Data Mining Techniques
181 A New Approach for Evaluation of Data Mining s Moawia Elfaki Yahia 1, Murtada El-mukashfi El-taher 2 1 College of Computer Science and IT King Faisal University Saudi Arabia, Alhasa 31982 2 Faculty
Federico Rajola. Customer Relationship. Management in the. Financial Industry. Organizational Processes and. Technology Innovation.
Federico Rajola Customer Relationship Management in the Financial Industry Organizational Processes and Technology Innovation Second edition ^ Springer Contents 1 Introduction 1 1.1 Identification and
Comparison of K-means and Backpropagation Data Mining Algorithms
Comparison of K-means and Backpropagation Data Mining Algorithms Nitu Mathuriya, Dr. Ashish Bansal Abstract Data mining has got more and more mature as a field of basic research in computer science and
Digging for Gold: Business Usage for Data Mining Kim Foster, CoreTech Consulting Group, Inc., King of Prussia, PA
Digging for Gold: Business Usage for Data Mining Kim Foster, CoreTech Consulting Group, Inc., King of Prussia, PA ABSTRACT Current trends in data mining allow the business community to take advantage of
Application of Data Mining Techniques in Intrusion Detection
Application of Data Mining Techniques in Intrusion Detection LI Min An Yang Institute of Technology [email protected] Abstract: The article introduced the importance of intrusion detection, as well as
An Overview of Knowledge Discovery Database and Data mining Techniques
An Overview of Knowledge Discovery Database and Data mining Techniques Priyadharsini.C 1, Dr. Antony Selvadoss Thanamani 2 M.Phil, Department of Computer Science, NGM College, Pollachi, Coimbatore, Tamilnadu,
SPATIAL DATA CLASSIFICATION AND DATA MINING
, pp.-40-44. Available online at http://www. bioinfo. in/contents. php?id=42 SPATIAL DATA CLASSIFICATION AND DATA MINING RATHI J.B. * AND PATIL A.D. Department of Computer Science & Engineering, Jawaharlal
Statistics for BIG data
Statistics for BIG data Statistics for Big Data: Are Statisticians Ready? Dennis Lin Department of Statistics The Pennsylvania State University John Jordan and Dennis K.J. Lin (ICSA-Bulletine 2014) Before
Knowledge Discovery from Data Bases Proposal for a MAP-I UC
Knowledge Discovery from Data Bases Proposal for a MAP-I UC P. Brazdil 1, João Gama 1, P. Azevedo 2 1 Universidade do Porto; 2 Universidade do Minho; 1 Knowledge Discovery from Data Bases We are deluged
Index Contents Page No. Introduction . Data Mining & Knowledge Discovery
Index Contents Page No. 1. Introduction 1 1.1 Related Research 2 1.2 Objective of Research Work 3 1.3 Why Data Mining is Important 3 1.4 Research Methodology 4 1.5 Research Hypothesis 4 1.6 Scope 5 2.
Business Intelligence and Decision Support Systems
Chapter 12 Business Intelligence and Decision Support Systems Information Technology For Management 7 th Edition Turban & Volonino Based on lecture slides by L. Beaubien, Providence College John Wiley
Distance Learning and Examining Systems
Lodz University of Technology Distance Learning and Examining Systems - Theory and Applications edited by Sławomir Wiak Konrad Szumigaj HUMAN CAPITAL - THE BEST INVESTMENT The project is part-financed
Decision Support and Business Intelligence Systems. Chapter 1: Decision Support Systems and Business Intelligence
Decision Support and Business Intelligence Systems Chapter 1: Decision Support Systems and Business Intelligence Types of DSS Two major types: Model-oriented DSS Data-oriented DSS Evolution of DSS into
Business Intelligence. A Presentation of the Current Lead Solutions and a Comparative Analysis of the Main Providers
60 Business Intelligence. A Presentation of the Current Lead Solutions and a Comparative Analysis of the Main Providers Business Intelligence. A Presentation of the Current Lead Solutions and a Comparative
Data Mining and Soft Computing. Francisco Herrera
Francisco Herrera Research Group on Soft Computing and Information Intelligent Systems (SCI 2 S) Dept. of Computer Science and A.I. University of Granada, Spain Email: [email protected] http://sci2s.ugr.es
Web Data Mining: A Case Study. Abstract. Introduction
Web Data Mining: A Case Study Samia Jones Galveston College, Galveston, TX 77550 Omprakash K. Gupta Prairie View A&M, Prairie View, TX 77446 [email protected] Abstract With an enormous amount of data stored
A Knowledge Management Framework Using Business Intelligence Solutions
www.ijcsi.org 102 A Knowledge Management Framework Using Business Intelligence Solutions Marwa Gadu 1 and Prof. Dr. Nashaat El-Khameesy 2 1 Computer and Information Systems Department, Sadat Academy For
The University of Jordan
The University of Jordan Master in Web Intelligence Non Thesis Department of Business Information Technology King Abdullah II School for Information Technology The University of Jordan 1 STUDY PLAN MASTER'S
EFFICIENT DATA PRE-PROCESSING FOR DATA MINING
EFFICIENT DATA PRE-PROCESSING FOR DATA MINING USING NEURAL NETWORKS JothiKumar.R 1, Sivabalan.R.V 2 1 Research scholar, Noorul Islam University, Nagercoil, India Assistant Professor, Adhiparasakthi College
Foundations of Business Intelligence: Databases and Information Management
Chapter 5 Foundations of Business Intelligence: Databases and Information Management 5.1 Copyright 2011 Pearson Education, Inc. Student Learning Objectives How does a relational database organize data,
THE INTELLIGENT BUSINESS INTELLIGENCE SOLUTIONS
THE INTELLIGENT BUSINESS INTELLIGENCE SOLUTIONS ADRIAN COJOCARIU, CRISTINA OFELIA STANCIU TIBISCUS UNIVERSITY OF TIMIŞOARA, FACULTY OF ECONOMIC SCIENCE, DALIEI STR, 1/A, TIMIŞOARA, 300558, ROMANIA [email protected],
How To Use Data Mining For Knowledge Management In Technology Enhanced Learning
Proceedings of the 6th WSEAS International Conference on Applications of Electrical Engineering, Istanbul, Turkey, May 27-29, 2007 115 Data Mining for Knowledge Management in Technology Enhanced Learning
D A T A M I N I N G C L A S S I F I C A T I O N
D A T A M I N I N G C L A S S I F I C A T I O N FABRICIO VOZNIKA LEO NARDO VIA NA INTRODUCTION Nowadays there is huge amount of data being collected and stored in databases everywhere across the globe.
Hybrid Support Systems: a Business Intelligence Approach
Journal of Applied Business Information Systems, 2(2), 2011 57 Journal of Applied Business Information Systems http://www.jabis.ro Hybrid Support Systems: a Business Intelligence Approach Claudiu Brandas
Subject Description Form
Subject Description Form Subject Code Subject Title COMP417 Data Warehousing and Data Mining Techniques in Business and Commerce Credit Value 3 Level 4 Pre-requisite / Co-requisite/ Exclusion Objectives
CHAPTER 1 INTRODUCTION
1 CHAPTER 1 INTRODUCTION Exploration is a process of discovery. In the database exploration process, an analyst executes a sequence of transformations over a collection of data structures to discover useful
Introduction to Data Mining and Machine Learning Techniques. Iza Moise, Evangelos Pournaras, Dirk Helbing
Introduction to Data Mining and Machine Learning Techniques Iza Moise, Evangelos Pournaras, Dirk Helbing Iza Moise, Evangelos Pournaras, Dirk Helbing 1 Overview Main principles of data mining Definition
Data Mining and Neural Networks in Stata
Data Mining and Neural Networks in Stata 2 nd Italian Stata Users Group Meeting Milano, 10 October 2005 Mario Lucchini e Maurizo Pisati Università di Milano-Bicocca [email protected] [email protected]
Data Mining Applications in Higher Education
Executive report Data Mining Applications in Higher Education Jing Luan, PhD Chief Planning and Research Officer, Cabrillo College Founder, Knowledge Discovery Laboratories Table of contents Introduction..............................................................2
Data Mining: A Preprocessing Engine
Journal of Computer Science 2 (9): 735-739, 2006 ISSN 1549-3636 2005 Science Publications Data Mining: A Preprocessing Engine Luai Al Shalabi, Zyad Shaaban and Basel Kasasbeh Applied Science University,
Predicting the Risk of Heart Attacks using Neural Network and Decision Tree
Predicting the Risk of Heart Attacks using Neural Network and Decision Tree S.Florence 1, N.G.Bhuvaneswari Amma 2, G.Annapoorani 3, K.Malathi 4 PG Scholar, Indian Institute of Information Technology, Srirangam,
OLAP and Data Mining. Data Warehousing and End-User Access Tools. Introducing OLAP. Introducing OLAP
Data Warehousing and End-User Access Tools OLAP and Data Mining Accompanying growth in data warehouses is increasing demands for more powerful access tools providing advanced analytical capabilities. Key
Introduction to Data Mining and Business Intelligence Lecture 1/DMBI/IKI83403T/MTI/UI
Introduction to Data Mining and Business Intelligence Lecture 1/DMBI/IKI83403T/MTI/UI Yudho Giri Sucahyo, Ph.D, CISA ([email protected]) Faculty of Computer Science, University of Indonesia Objectives
Foundations of Business Intelligence: Databases and Information Management
Foundations of Business Intelligence: Databases and Information Management Problem: HP s numerous systems unable to deliver the information needed for a complete picture of business operations, lack of
131-1. Adding New Level in KDD to Make the Web Usage Mining More Efficient. Abstract. 1. Introduction [1]. 1/10
1/10 131-1 Adding New Level in KDD to Make the Web Usage Mining More Efficient Mohammad Ala a AL_Hamami PHD Student, Lecturer m_ah_1@yahoocom Soukaena Hassan Hashem PHD Student, Lecturer soukaena_hassan@yahoocom
Principles of Data Mining by Hand&Mannila&Smyth
Principles of Data Mining by Hand&Mannila&Smyth Slides for Textbook Ari Visa,, Institute of Signal Processing Tampere University of Technology October 4, 2010 Data Mining: Concepts and Techniques 1 Differences
Course Syllabus For Operations Management. Management Information Systems
For Operations Management and Management Information Systems Department School Year First Year First Year First Year Second year Second year Second year Third year Third year Third year Third year Third
The Role of Data Warehousing Concept for Improved Organizations Performance and Decision Making
Available Online at www.ijcsmc.com International Journal of Computer Science and Mobile Computing A Monthly Journal of Computer Science and Information Technology IJCSMC, Vol. 3, Issue. 10, October 2014,
Customer Classification And Prediction Based On Data Mining Technique
Customer Classification And Prediction Based On Data Mining Technique Ms. Neethu Baby 1, Mrs. Priyanka L.T 2 1 M.E CSE, Sri Shakthi Institute of Engineering and Technology, Coimbatore 2 Assistant Professor
Using Data Mining for Mobile Communication Clustering and Characterization
Using Data Mining for Mobile Communication Clustering and Characterization A. Bascacov *, C. Cernazanu ** and M. Marcu ** * Lasting Software, Timisoara, Romania ** Politehnica University of Timisoara/Computer
International Journal of Scientific & Engineering Research, Volume 5, Issue 4, April-2014 442 ISSN 2229-5518
International Journal of Scientific & Engineering Research, Volume 5, Issue 4, April-2014 442 Over viewing issues of data mining with highlights of data warehousing Rushabh H. Baldaniya, Prof H.J.Baldaniya,
Quality Control of National Genetic Evaluation Results Using Data-Mining Techniques; A Progress Report
Quality Control of National Genetic Evaluation Results Using Data-Mining Techniques; A Progress Report G. Banos 1, P.A. Mitkas 2, Z. Abas 3, A.L. Symeonidis 2, G. Milis 2 and U. Emanuelson 4 1 Faculty
Information Management course
Università degli Studi di Milano Master Degree in Computer Science Information Management course Teacher: Alberto Ceselli Lecture 01 : 06/10/2015 Practical informations: Teacher: Alberto Ceselli ([email protected])
DATA WAREHOUSING AND OLAP TECHNOLOGY
DATA WAREHOUSING AND OLAP TECHNOLOGY Manya Sethi MCA Final Year Amity University, Uttar Pradesh Under Guidance of Ms. Shruti Nagpal Abstract DATA WAREHOUSING and Online Analytical Processing (OLAP) are
A STUDY ON DATA MINING INVESTIGATING ITS METHODS, APPROACHES AND APPLICATIONS
A STUDY ON DATA MINING INVESTIGATING ITS METHODS, APPROACHES AND APPLICATIONS Mrs. Jyoti Nawade 1, Dr. Balaji D 2, Mr. Pravin Nawade 3 1 Lecturer, JSPM S Bhivrabai Sawant Polytechnic, Pune (India) 2 Assistant
B.Sc (Computer Science) Database Management Systems UNIT-V
1 B.Sc (Computer Science) Database Management Systems UNIT-V Business Intelligence? Business intelligence is a term used to describe a comprehensive cohesive and integrated set of tools and process used
Single Level Drill Down Interactive Visualization Technique for Descriptive Data Mining Results
, pp.33-40 http://dx.doi.org/10.14257/ijgdc.2014.7.4.04 Single Level Drill Down Interactive Visualization Technique for Descriptive Data Mining Results Muzammil Khan, Fida Hussain and Imran Khan Department
Data mining in the e-learning domain
Data mining in the e-learning domain The author is Education Liaison Officer for e-learning, Knowsley Council and University of Liverpool, Wigan, UK. Keywords Higher education, Classification, Data encapsulation,
Introduction. A. Bellaachia Page: 1
Introduction 1. Objectives... 3 2. What is Data Mining?... 4 3. Knowledge Discovery Process... 5 4. KD Process Example... 7 5. Typical Data Mining Architecture... 8 6. Database vs. Data Mining... 9 7.
Graph Mining and Social Network Analysis
Graph Mining and Social Network Analysis Data Mining and Text Mining (UIC 583 @ Politecnico di Milano) References Jiawei Han and Micheline Kamber, "Data Mining: Concepts and Techniques", The Morgan Kaufmann
A Statistical Text Mining Method for Patent Analysis
A Statistical Text Mining Method for Patent Analysis Department of Statistics Cheongju University, [email protected] Abstract Most text data from diverse document databases are unsuitable for analytical
An Overview of Database management System, Data warehousing and Data Mining
An Overview of Database management System, Data warehousing and Data Mining Ramandeep Kaur 1, Amanpreet Kaur 2, Sarabjeet Kaur 3, Amandeep Kaur 4, Ranbir Kaur 5 Assistant Prof., Deptt. Of Computer Science,
Data warehousing and data mining an overview
Data warehousing and data mining an overview Abstract Dr. Suman Bhusan Bhattacharyya MBBS, ADHA, MBA With continuous advances in technology, increasing number of clinicians are using electronic medical
TIM 50 - Business Information Systems
TIM 50 - Business Information Systems Lecture 15 UC Santa Cruz March 1, 2015 The Database Approach to Data Management Database: Collection of related files containing records on people, places, or things.
IT and CRM A basic CRM model Data source & gathering system Database system Data warehouse Information delivery system Information users
1 IT and CRM A basic CRM model Data source & gathering Database Data warehouse Information delivery Information users 2 IT and CRM Markets have always recognized the importance of gathering detailed data
Statistics 215b 11/20/03 D.R. Brillinger. A field in search of a definition a vague concept
Statistics 215b 11/20/03 D.R. Brillinger Data mining A field in search of a definition a vague concept D. Hand, H. Mannila and P. Smyth (2001). Principles of Data Mining. MIT Press, Cambridge. Some definitions/descriptions
A model for Business Intelligence Systems Development
Informatica Economică vol. 13, no. 4/2009 99 A model for Business Intelligence Systems Development Adela BARA, Iuliana BOTHA, Vlad DIACONIŢA, Ion LUNGU, Anda VELICANU, Manole VELICANU Academy of Economic
Dataset Preparation and Indexing for Data Mining Analysis Using Horizontal Aggregations
Dataset Preparation and Indexing for Data Mining Analysis Using Horizontal Aggregations Binomol George, Ambily Balaram Abstract To analyze data efficiently, data mining systems are widely using datasets
ISSN: 2321-7782 (Online) Volume 3, Issue 7, July 2015 International Journal of Advance Research in Computer Science and Management Studies
ISSN: 2321-7782 (Online) Volume 3, Issue 7, July 2015 International Journal of Advance Research in Computer Science and Management Studies Research Article / Survey Paper / Case Study Available online
The Impact Of Organization Changes On Business Intelligence Projects
Proceedings of the 7th WSEAS International Conference on Simulation, Modelling and Optimization, Beijing, China, September 15-17, 2007 414 The Impact Of Organization Changes On Business Intelligence Projects
GEO-VISUALIZATION SUPPORT FOR MULTIDIMENSIONAL CLUSTERING
Geoinformatics 2004 Proc. 12th Int. Conf. on Geoinformatics Geospatial Information Research: Bridging the Pacific and Atlantic University of Gävle, Sweden, 7-9 June 2004 GEO-VISUALIZATION SUPPORT FOR MULTIDIMENSIONAL
Data Mining for Successful Healthcare Organizations
Data Mining for Successful Healthcare Organizations For successful healthcare organizations, it is important to empower the management and staff with data warehousing-based critical thinking and knowledge
A Design and implementation of a data warehouse for research administration universities
A Design and implementation of a data warehouse for research administration universities André Flory 1, Pierre Soupirot 2, and Anne Tchounikine 3 1 CRI : Centre de Ressources Informatiques INSA de Lyon
Adobe Insight, powered by Omniture
Adobe Insight, powered by Omniture Accelerating government intelligence to the speed of thought 1 Challenges that analysts face 2 Analysis tools and functionality 3 Adobe Insight 4 Summary Never before
