Data. Visualization process. Segmented, adapted, chosen data. Sampled or simulated (original) data. Display Data (geometry information)

Size: px
Start display at page:

Download "Data. Visualization process. Segmented, adapted, chosen data. Sampled or simulated (original) data. Display Data (geometry information)"

Transcription

1 Waltz{AnExploratoryVisualizationtoolforVolumeData, usingmultiformabstractdisplays ComputingLaboratory,UniversityofKent,Canterbury,Kent,England,UK JonathanC.Roberts simplifying(orabstracting)thestructureoftheviewedinformation;andlinkingobjectsandviewstogether(allowing toaidauserinterpretdatacorrectly.theseare:displayingthedataindierentforms(multiformvisualization); Although,visualizationisnowwidelyused,misinterpretationsstilloccur.Therearethreeprimarysolutionsintended ABSTRACT correspondingobjectstobejointlymanipulatedandinterrogated). andrene'visualizationcycle. endofalongvisualizationprocess.ourvisualizationsystem,basedonanadaptedvisualizationmodel,allowsa displaymethodtobeusedthroughoutthevisualizationprocess,inwhichtheuseroperatesa`display(correlate) howeverthatcurrentvisualizationsystemsdonoteectivelyutilisethedisplay,forexample,oftenplacingitatthe Thesewell-knownvisualizationtechniques,provideanemphasistowardsthevisualizationdisplay.Webelieve Keywords:Visualization,Visualizationsystem,Multiform,Manipulation,Abstraction befurtherdisplayed,manipulatedandltered. manipulated;asetof`portionsofinterest'canbeselectedtogenerateaspecializeddataset.thismaysubsequently Thisdisplayintegrationprovidesausefulexplorationenvironment,whereobjectsandviewsmaybedirectly ifthepictureisincorrect:byalgorithmicerrors,accumulatedduringtransformations,orinherentinthealgorithm atacertainresolution?then,theusermaymisinterpretormisunderstandtheunderlyinginformation. Theadage\apictureisworthathousandwords"providesapowerfulincentiveforvisualizingdata.However,what 1.INTRODUCTION scientistwantingtodiscoverfacts,auserinvestigatingandclarifyingthescientistsworkoraresearcherpresenting results,theaimsarethesame:toperceiveandgaininsightoftheunderlyingdatabyinvestigatingrelationships, dependenciesandproportionsintheinformation. Understandingphenomenafromtheunderlyingdataisthemainreasonfordoingvisualization.Whether,itisa information.westate:explorationtechniquesfocusingoninteractionmethodsandthevisualizationdisplayare thevisualrepresentationstheusergainsabetter,andhopefullymoreaccurateunderstandingoftheunderlying usefulfor`correctinformationdissemination'. Scienticinvestigationandexplorationisconsequentlyimportant:as,bymanipulatingandexperimentingwith allowtheusertoquicklydisplayarepresentationofthedata,andthenfurtherrenethevisualization. Ourvisualizationsystemprovidesa`display,rene,display'cycleasaseriesofmini-dataowpipelines,which Inreal-life,anexplorer,wishingtonavigatefromCityAtoTownB,wouldusemapsatdierentscales.First,they representationshowingtheminorroads.thelargescalemapprovidescontextinformationforthedetailedmap. wouldlookatamapshowinganoverviewofthemajorroadconnections;thentheywouldlookatadetailedmap 2.THECONCEPTS understandthedetailedinformation. details.thistwo-levelapproachprovidesstructuredinformationtotheuser,whoisthen,inabetterpositionto Likewise,inscienticexploration,itisbesttounderstandtheinformationasawholeentity,thenlookatspecic allowcomplexanddiverseoperations,butdonotprovidetoolsthatencouragetheusertousethisconcept.moreover, Fromthisexample,weproposethatvisualizationsystemsneedtoadoptthistwo-levelpolicy,currentsystemsdo Otherauthorinformation:

2 Filter Map Display Data Segmented, adapted, chosen data Display Data (geometry information) Sampled or simulated (original) data Visualization process Figure1.Thetraditionalvisualizationprocess:Filter,Map,Display toachievethisstyleofexplorationonscienticdata,asklinkermentioned,1imagingtoolsneedtoprovideinteractive mechanisms,allowingtheusertointerrogateandunderstandrelationshipsanddependencieswithintheinformation. Webelievethattherearethreeprimary(andpowerful)visualizationtechniquesthataidtheusertoexplore andgenerateacorrectinterpretationoftheunderlyinginformation.first,displaythedataindierentforms{ Multiformvisualization.Second,displaytheinformationinsimpliedAbstractviews.Third,provideahighdegree ofinteractionanddirectmanipulation. Multiformvisualizationistheprocessofdisplayingthesameinformationinmultipleways.2Thisenablestheuser tounderstandtheinformationfromdierentperspectives,helpingtoovercomeconfusionandmisinterpretation frombelievingtheresultfromasingularvisualizationmethod.thishasbeensuccessfullyusedtodisplay multivariatedata,asexempliedbythexmdvtool,3andwe,likeyageletal,4advocatetechniquesthat utilisedierentrenderingschemestouncoverdierentaspectsinthedata. Abstractviewsrepresentsimplied,augmentedorstructuralrealizationsoftheinformation.5Thistechnique generatesmultiformviews,asabove.however,theseviewsaregeneratedbythesamealgorithmwithdierent simplicationcriteria.forexample,asurfacealgorithmmaybegeneratedatahighresolutionwithmany surface-trianglesoralowresolutionwithfewertriangle-elements,thelatterwouldberenderedfasterand providesasimpliedversionoftheinformation.thissimplicationisusefulfor`fastinteractive'navigation, asusedbythevolvissystem,6forexample. Infacttheabstractionmayoccurateitherthedataortheimagelevel.Atthedatalevel,theinformationcontent maybereduced(simplied)bysamplingorgroupinglikeobjectstogether;forexample,silver7segmentsthe dataintogroupsnamedobjects,thatmaybetrackedastheyevolveandmovethroughoutthedata.8at theimagelevel,thevariableorattributesbeingmappedontothedisplaymaybealtered.forexample,the trianglesmakinguptheisosurfacemaybeexchangedtolinesorpoints;thiswouldallowotherwiseoccluded objectstobeseen.alternatively,thepositionoftheobjectsmaybeaugmentedtofacilitatetheunderstanding ofthedata.forexample,sheelaghetal9usethistechniquetoprovidea`clearlineofsight'toobscuredan concealedsectionsofthedata. Theabstractviewsmayallowobjectsthatarenormallyoccludedtobeseen,orgenerateastructuralviewof thewholedata.theyprovidetheuserwithadditionalinformationaboutthestructureofthedata:usefulfor a`correctdissemination'oftheinformation. DirectManipulationallowsobjectswithinthedisplaytobedirectlyinterrogated,scaledandpositioned.This interrogationisalsopropagatedtorelatedviewsofthesamedata,toprovidejointinteractivedataprobing andobjectmanipulation.thisissimilartothebrushingtechniqueofward,3thatallowselementsinoneview tobebrushedbythemouse,coincidentallyhighlightingcorrespondingelementsinrelatedviews;andsimilar tothemanipulationlinkingtechniqueusedintelecollaboration1orbyothersystems.10{12 3.THEWALTZEXPLORATIONMETHOD TheMultiform,AbstractandManipulationmethodsarewell-knownvisualizationtechniquesandtheiremphasisis towardsthedisplayedimage.userswishingtoexplorethevisualizationneedtoconcentrateonthevisualoutput andnotthevisualizationprocess.however,webelievethatcurrentvisualizationsystemsdonoteectivelyintegrate

3 Traditional connected dataflow pipeline A Data Filter Map Display Filter Map Display Dataflow connected using the display filter method B Data Filter Map Display Filter Map Display thedisplayintothevisualizationprocess,oftenplacingitattheendofalongsequenceofcommands.thislong visualizationprocessisverypowerful,comprehensiveandextensible,andisoftendescribedbythedataowmodel. Figure2.Thedisplayactingasalter,thatmaybefurtherdisplayedandltered data display filter an additional filter specialization operation included visualizationsystemsarebasedonthismodel.14{18 displayed,figure1.thisworkisoftenaccreditedtohaberandmcnabb13andupsonetal14andmanyexisting Where,thedataisltered,tocreateasubsetofthedata,whichisthenmappedintoarepresentationwhichcanbe Thedataowmodeldescribesthevisualizationprocessasaseriesofthreeprocesses:lter,mapanddisplay. thevisualizationtasks,byprovidinganintelligentuserinterface.forexample,woodetal19mentionthethesisof Stead,andtheVISTAsystem20providesaseriesofrulesthatappropriatelydisplaythevisualization.Suchsystems pretation.onesolutionistoshortenthevisualizationcycle.thismaybeachievedbyautomatingsomeorallof donotemphasiseexplorationtechniques.analternativemethodmayconsequentlybegeneratedbyintegratingthe Webelievethislengthyvisualizationcyclemaycausefrustrationandconfusion,leadingtoinformationmisinter- thenbefurtherlteredanddisplayed. displayintothevisualizationpipeline,byallowingthedisplaytoactastheinformationlter.theltereddatamay informationhasbeenspecialized.thisnewdatasetmaybefurtherlteredanddisplayed.thediagram,figure2b, operation,figure2b.thus,thedatahasbeenrenedthroughthisdisplay-lter,andanewdatasetisformedby makingasubsetfromaselectionoftheinitialdataelements.wenamethisnewdatasetadataspecialization,asthe alsoshowsthattheorderoftheprocesseshasbeenalteredtomap,displayandlter.thisallowssomelterprocess Thislteroperation,namedadisplaylter,21allowstheoutputfromonedisplaytobeinputtoanotherlter tobeomitted,enablingtheselectedobjectstobedisplayedwithoutbeingrened.moreover,thespecializeddata maybeadditionallylteredbythereceivingmini-pipeline.obviously,multipledisplay-lteroperationswillgenerate aseriesofchilddata-specializations,whichmayformadata-hierarchyofsubdatasets,figure3. Filter Map Display Filter Map Display Figure3.Ahierarchyofdataselectionsmaybegenerated Filter Map Display Filter Map Display Filter Map Display

4 Thedatawithinanyofthedata-specializationsmaybedisplayedinmultipleforms,consequentlygeneratinga groupofrenderers.4anothervisualizationmethodmaybeaddedtothisdisplay-groupbysimplyrequestingthe appropriatemethod. Themanipulationofelementsisalsoscopedbytherender-group.Thisallowsthesameobjects,butindierent views,tobejointlymanipulated.forexample,objectswithinasurfaceandaskeleton-displayofthesameinformation maybejointlymanipulated:scaled,rotatedortranslated.ourmanipulationoperationsjointlytransformtheviewing projection(inthreedimensions)orhighlightandtransformindividualelements.additionally,wegrouptogetherthe mapping-attributes,sothehue,colourortransparency(ofthemappedobjects)maybecoincidentlyaltered. Thisstyleoflinked-manipulationissimilarlyimplementedinsystems,suchas,Klinker1inAVS,KBVision,10 LinkWinds11andSciAn,12but,ratherthanallowtheusertojoinappropriatelinks,ourdisplay-groupmethod allowsthelinkingtobeautomaticallyprovidedbythesystem.thelinksareautomaticallyaddedtotherelevant displayswhenanewdisplayisaddedtothelist,thussimplifyingtheuserinteraction. Theuserinterfaceisfurthersimpliedbycoercingtheprocessesofthemini-visualization-pipelineintoonemodule. Thisonemoduleallows,throughmenuselections,thelter,mappinganddisplayoperationstobeperformed.Thus, tocreateanewmoduletheuserselectstheexportmenu,thatautomaticallygeneratesanothermodule.thistechnique couldbedescribedasbeingamixtureofamodulebuildingenvironmentandamenu-basedvisualizationsystem; becauseoftheuser-controllablenetwork,withmenu-basedcommands. Further,wehavedevelopedamodule-manager,thatautomaticallypositionsthemodulesontheworkarea,taking theresponsibilityfromtheuser.anewwindowisgeneratedforeachdisplay,sothemanagerlabelseachwindow withauniquereferencenumber,relatingtheseparatewindowstothework-area.themultiformdisplayspersist throughoutavisualizationsession,enablingthedisplaystoprovidea`history'ofpreviousexperimentations. Oursystemincorporatesthedisplayasarst-class-citizen,byincludingthedisplayoperationasanintegralpart ofthevisualizationprocess.thisencouragesandsupportstheuserto,rst,displaythesamedata,andaspectsof thedata,usingdierentrenderingschemes.second,providedirectmanipulationoftheviewsandobjectswithin resultantvisualizations,toallowtheusertodirectlyselectobjectswithinthedatatoenablethedatatobeltered. Third,toautomaticallylinkcorrespondingfeaturesbetweenvisualizations,allowingobjectsandviewstobejointly manipulated.thevisualizationprocessthenbecomes:aprocessof`display(correlate)andrene'operations. 4.EXAMPLES{AUSER'SVIEW TheWaltzsystemhasbeendevelopedforvolumedata.Webelievethemethodologycouldbeeasilyextendedto otherdata-types,alongwiththehigh-leveluser-interfaceimplementation.however,thelow-leveldatastructure wouldneedtobegeneralizedtosupportotherdatatypes. Todescribetheoperationandcontrolofthesystem,wewillworkthroughtwoexamplesessions.Therstexample usesatestdatasetcontainingconcentricthree-dimensionallayers. Onstartup,acleancanvasispresentedtotheuser.Arstmoduleisautomaticallyplacedonthecanvaswhen thedataisloaded.thisrstmoduledisplaysthele-name,holdstheimporteddataandactsastherootnodeon theworkarea.subsequent`children'modulesarealwaysofthedisplay-grouptype.thelteroperationontherst display-groupmoduleisusedtoprocessthedataelementsintoobjects.currently,onlyonealgorithmisprovided, thatclustersthe(individual)dataelementsintosetsofsimilarvalue.thealgorithmusesaoodingtechniqueto thresholdandconnectthedata.initially,noimagesaredisplayed,butadditionalrealizationsareadded(anddeleted) byselectingtheappropriatedisplay-groupmenu.initiallyweaddasurfacerendering;however,asthewholedataset isanobjectitself,athree-dimensionalcubeisrendered,andtheinternalstructureremainsunseen.therefore,we addaslice-display,enablingtheinternalstructuretobeviewed,figure4. Throughourexplorationwerealizethattherearemultiplepartstothedataset;wecaneitherre-evaluatethedatasegmentationinthismoduleoraddanothermodule:asachildofthedata-lemodule.Infact,whenthesegmentation isre-evaluated,eachdisplaymethod(withinadisplay-group)automaticallydisplaysthenewinformation. Weaddanothermodule,Figure5,thistimeweprocessthedataintotwogroups:theinteresting-featureand thesurroundingair.thefeatureisselected,consequentlyhighlightedbythesystem,andafurtherdisplay-module isgeneratedholdingonlythisfeature,towhichweaddasurface-displayandalist-display,figure6.thelistmoduledisplaysthreegroups:theobjectandtwopaddinggroups(alltheelementsoutsidethisandtheprevious specialization).

5 displaywindow) Figure4.TheWaltzworkarea,showingthedata-lemodule,agrouped-displaymodule(withasliceandsurface- Figure5.Twonewgrouped-displaymodules,evaluatedintotwointeresting-feature,shownbytheslice-display intoafourthgroup-displaymodule,andasurface-displayisaddedtothismodule.bymethodssimilartothisthe aslice-display,figure7.thensomeoftheelements,specically3,4,5,6,7asseenfromthelist-display,areexported usercanexploreandfocusonspecicpartsoftheinformation. Finally,were-evaluatethegrouped-featuresonthisthird-moduleandincludeabounding-boxabstractionand wishtobothdisplaythemainsurfaceandinvestigatethepressureswithinthedata. isbombardedwithasmallerpieceofmaterial.thedatasetdescribesthepressureintheblock.fromthisdata,we Initially,wedividethedatasetintotwointerestingfeatures:theblockandair,Figure8.Boththesliceand Thesecondsessionvisualizesthedatafromaspacedustimpactsimulation;whereastationaryblockofmaterial grouped-displaymodule.thissecondmoduleisusedtodisplaytheblocksurface. surface-displayareusedtorealizethefeatures.theblockisthenselectedandexportedtogeneratedthenext objectspecializationinthethirdmoduletogeneratemultipleobjects.towhich,weaddsurface,bounding-boxand network-displays,seefigure9. Insimilaroperationtogeneratingthesecondmodule,wecreateathirdmodule.Were-segmentthesingle- Userinterrogationmaybeperformedonthedata.Forexample,theobjectsmayberotated,Figure10or

6 Figure6.TheWaltzworkarea,showingthedata-lemodule,agrouped-displaymodule(withtwoabstractions: theslice-displayandasurface-display) transformedfigure11.theinteractionisautomaticallydirectedtotherelevantobjectsofeachrendererina Bounding-box,Surface,listandslicedisplays. Figure7.Thedatainthethirdmoduleisrenedfromtheone-groupintosixgroups,andrealizedusingthe particulardisplay-group. ThenameWaltziscoinedfromthemusictermofthreepartsinfour,fromtheMultiform,AbstractandManipulation processeswithinagraphicaluser-interface. WaltzhasbeendesignedinC++withclassesrepresentingthedata,groupingsofthedataandabstractions, 5.IMPLEMENTATION andisimplementedoverxandxlibusingthemotifwidgetset,inventor22andopengl23libraries.foradetailed descriptionoftheimplementation,see.5

7 exported.thesecondmoduledisplaysthesurfaceoftheblock. Figure8.Therstmoduleisusedtosegmentthedataintotwofeatures;theimpact-blockisthenselectedand Sowhenanewmoduleiscreatedthemanagerpositionsthewidgetsinthedesiredposition.Likewise,asnew Themodule-managercontrolsthepositionsofthemodulesandiscontrolledusingtheXcallbackmechanism. Figure9.TheWaltzworkareashowingonedata-lemodulewiththreegroup-displaymodules. display-abstractionsareaddedtothedisplay-groupthemodule-manageriscalledtoupdateworkarea. hascontrol-structuresallowingupanddowntree-traversal. ulators.threedimensionalmanipulators(jacks)areappliedtotheobjectsintheinventorscene-graph.togenerate ThemanipulationwithinthedisplaysiscontrolledusingboththeXcallbackmechanismandtheInventormanip- Themodule-managerstoresthemodulehierarchyinformationinatreedata-structure.Forconveniencethetree thelinkedmanipulationwithinthegrouped-displaymodule,thecodereferencesoneinventor-manipulator,thatis placedineachdisplay-method'sscenegraph.infact,individualmanipulatorscanbeswitchedintothegraph,to allowspecicmanipulation.thisswitchiscontrolledbyaradio-buttonselectiononamotif-basedform. to24),withalistofthegroupsandtheiradjacencyinformation. data.relevantpartsofthedataarecopiedandexportedfromonemoduletothenext.thisexportoperationis controlledexplicitlybythesystemuser.eachdatashadowholdsthegroupingsdataasanarrayofslices(similar ThedataisstoredinaDataShadowclass,thatholdsinformationaboutthegroupingsandspecializationsofthe

8 Figure10.Thewholeviewmaybedirectlymanipulated.Thecontrolislinkedbetweenviewswithin thesamedisplay-group.theimagesshowthreeviewsbeingrotated. Figure11.Individualdataelementsmaybedirectlytransformed.Thecontrolislinkedbetween viewswithinthesamedisplay-group.theimagesdepictonegroupbeingtranslated.

9 Wehavepresentedasystemthatprovidesexplorationtechniques,especiallyforthe`correctdissemination'ofinformation.Weacknowledgethatexplorationisonlyonemethodtosuppressmisinterpretation.Butwebelieveittobe 6.DISCUSSIONANDFUTURERESEARCH animportantone!furtherworkisrequiredinthis`correctdissemination'area. ItistruethattheModulevisualizationenvironments(AVS,IRISExploreretc,25)allowmultipleviews,butinour experiencethesetendtobeexpensive:usingtime,processingandmemoryresources.thus,therearesomeadvantages inhavingmultiplelightweightrenderingwindows,suchasprovidedbywaltz. Oursystemprovidesmethodsthatencouragestheusertoperformmultipledisplaysofthesameinformation. ofpreviousexperimentations.infactwebelievethatabstracttechniquesareuseful,becausetheyprovidesimpler anddiverseinterpretationsoftheunderlyinginformation.althoughsomeabstracttechniquesaremeaninglessin occludedelements,forexample,tobeselectedandmanipulateddirectly. isolation(suchasthelist-display)theycanactascontrol-abstractions,andwhenlinkedwithotherviewstheyallow Themultiformdisplayspersistthroughoutavisualizationsession,enablingthedisplaystoprovidea`history' features,andtomanagethecontrolofthelinked-interactionandtheplacementofthemodules.othersystems,such asthetelecollaborativeenvironmentdescribedbyklinker1orthevisualizationinputpipeline26provideextensible webelievethatitisusefultoallowtheusertolterthedatathroughthedisplay,bysegmentingtheinformationinto interactivevisualizationsystemsbutdonotmanageeitherthelinked-interactionorthemodule-layout. OthersystemssuchasSciAn12andLinkWinds11providemultipleviewsofthedatainalinkedenvironment,but, neatlayout!problemswiththislayoutwouldoccurinalongsession.currently,modulesmaybedeletedandthe together,andreducestheirsize,toallowlargernetworkstobevisualizedonthework-area. workareascrolled.butitwouldbebenecialtoapplyamorecomplicatedalgorithm,that(say)groupsthemodules byreducingtheneedforadditionalpipesorlinksandstopstheuserfrom`wastingtime'movingthemodulesintoa Webelievethat,bymanagingthemodule-layout,theuserreceivesadditionalinformation,simpliesthenetwork example,thevistasystem20,27operatesbygeneratinganappropriaterealizationfromalistofordered,anduser preferencedvariables.thistechnique,maybeusefulfornaiveandinfrequentusersbutexpertusersmaywishfor morecontroloverthegeneratedvisualization.indeed,misinterpretationsgeneratedthroughthewrong-useofthe visualizationprocesswouldbesignicantlyreducedusinganintelligentsystemapproach. Theintelligentvisualizationsystemstakethesystemandinformation-managementtechniquetotheextreme.For ltertechnique.thedisplay-ltermethodprovidesanintuitivelteringmethod,albeithardertoimplementand technique,withsixdisplaymethods.othertechniqueshavebeenproposed,butareleftforfuturework.moreover, lessdiversethantraditionaltechniques.infact,thecurrentimplementationonlyprovidesonedata-segmentation theabstractiontechniquecouldbeappliedmorevigorouslytothecurrent(andfuture)displaymethods.thecode, However,anintelligentapproachdoesnotallowsomuchuser-exploration;suchasprovidedthroughadisplaytechniqueanewsub-classisrequired,andthesystemre-compiled. wasdesignedtobeextensibleespeciallytheuserinterface,butinpractice,foreachnewsegmentationordisplay informationinterpretation. displayedrealizations.comparativevisualizationtechniques28mayprovideadditionalinformation,aidingacorrect Themultiformlinkeddisplaysprovideausefulexplorationenvironment,however,theusermanuallycomparesthe fromitsoriginalpositionandautomaticallyreplaceditwhentheuserreleasedcontrol. intocompoundoperations,forexample,anoperationmaybedesignedto`lookandsee',thatmovedafeatureaway niquescouldbeimplemented.currentresearchistakingplaceinthisarea.someofthemechanismscouldbemade Waltzcurrentlyimplementsselectionandtransformationstylesoflinking.Furtherbrushing3andlinking1tech- WehavepresentedavisualizationsystemincorporatingMultiform,AbstractandManipulationtechniques,forthe correctdisseminationofscienticinformation.wehaveadvocatedtheuseofexplorationtechniques,andacknowledge thatexplorationisonlyonemethodtosuppressthismisinterpretation. 7.CONCLUSION visualizationandcorrectdisseminationinauserextensibleframework. WeproposetodevelopandextendtheWaltzsystem,toincorporateandprovidemechanismsforexploratory

10 8.ACKNOWLEDGEMENTS IacknowledgeSteveHillforhisadviceonthisproject,TimHopkinsforhishelp,DuncanLangfordforproofreading thispaperandtheuniversityofkentphysicslaboratory,u.k.fortheimpactdata. REFERENCES 1.G.J.Klinker,\Anenvironmentfortelecollaborativedataexploration,"inProceedingsVisualization'93{ sponsoredbytheieeecomputersociety,pp.110{117, P.R.KellerandM.M.Keller,VisualCues{PracticalDataandVisualization,IEEEComputerSocietyPress, M.O.Ward,\XmdvTool:Integratingmultiplemethodsforvisualizingmultivariatedata,"inProceedingsVisualization'94{sponsoredbytheIEEEComputerSociety,pp.326{333, R.Yagel,D.S.Ebert,J.N.Scott,andY.Kurzion,\Groupingvolumerenderersforenhancedvisualizationin computationaluiddynamics,"ieeetransactionsonvisualizationandcomputergraphics1,pp.117{132, June J.C.Roberts,AspectsofAbstractioninScienticVisualization.Ph.Dthesis,KentUniversity,Computing Laboratory,Canterbury,Kent,England,UK,CT27NF,October R.S.Avila,L.M.Sobierajski,andA.E.Kaufman,\Towardsacomprehensivevolumevisualizationsystem,"in ProceedingsVisualization'92{sponsoredbytheIEEEComputerSociety,pp.13{20, D.Silver,\Object-orientedvisualization,"IEEEComputerGraphicsandApplications15,pp.54{62,May R.Samtaney,D.Silver,N.Zabusky,andJ.Cao,\Visualizingfeaturesandtrackingtheirevolution,"IEEE Computer27,pp.20{27,July M.Sheelagh,R.Carpendale,D.J.Cowperthwaite,andF.D.Fracchia,\Distortionviewingtechniquesfor3- dimensionaldata,"inproceedings'96informationvisualization{sponsoredbytheieeecomputersociety, pp.46{53, AmerinexA.I.,Inc,409MainStreet,Amherst,MA01002,GeneralSupportToolsforImageUnderstanding, 1992.( 11.A.S.Jacobson,A.L.Berkin,andM.N.Orton,\LinkWinds:Interactivescienticdataanalysisandvisualization,"CommunicationsoftheACM37,pp.43{52,April E.PepkeandJ.Lyons,SciAn:User'sManual.SupercomputerComputationsResearchInstitute,FloridaState University,Tallahassee,Florida,1993.( 13.R.B.HaberandD.A.McNabb,\Visualizationidioms:Aconceptualmodelforscienticvisualizationsystems," invisualizationinscienticcomputing,b.shriver,g.m.nielson,andl.j.rosenblum,eds.,pp.74{93,ieee ComputerSocietyPress, C.Upson,T.Faulhaber,D.Kamins,D.Schlegel,D.Laidlaw,F.Vroom,R.Gurwitz,andA.vanDam,\The applicationvisualizationsystem:acomputationalenvironmentforscienticvisualization,"ieeecomputer GraphicsandApplications9(4),pp.30{42, G.AbramandL.Treinish,\Anextendeddata-owarchitecturefordataanalysisandvisualization,"inProceedingsVisualization'95{sponsoredbytheIEEEComputerSociety,pp.263{270, D.S.Dyer,\Adataowtoolkitforvisualization,"IEEEComputerGraphicsandApplications10(4),pp.60{69, SiliconGraphicsComputerSystems{SiliconGraphicsInc.,IRISExplorerTechnicalOverview,April1992. ( 18.M.Young,D.Argiro,andS.Kubica,\Cantata:VisualprogrammingenvironmentfortheKhorossystem," ComputerGraphics29,pp.22{24,May J.Wood,K.Brodlie,andH.Wright,\Visualisationovertheworldwidewebanditsapplicationtoenvironmental data,"inproceedingsvisualization'96{sponsoredbytheieeecomputersociety, H.SenayandE.Ignatius,\Aknowledge-basedsystemforvisualizationdesign,"IEEEComputerGraphicsand Applications14,pp.36{47,November W.J.Schroeder,W.E.Lorensen,G.D.Montanaro,andC.R.Volpe,\VISAGE:anobject-orientedscientic visualizationsystem,"inproceedingsvisualization'92{sponsoredbytheieeecomputersociety,pp.219{226, 1992.

11 22.J.Wernecke,TheInventorMentor:ProgrammingObject-Oriented3DGraphicswithOpenInventor,Release2, 24.K.J.ZuiderveldandM.A.Viergever,\Multi-modalvolumevisualizationusingobject-orientedmethods,"in 23.J.Neider,T.Davis,andM.Woo,OpenGLProgrammingGuide{TheOcialGuidetoLearningOpenGL, Release1,Addison-Wesley, SymposiumonVolumeVisualization{Washington,D.C.,October17{18,A.KaufmanandW.Krueger, 26.W.FelgerandF.Schroder,\Thevisualizationinputpipeline{enablingsemanticinteractioninscienticvisualization,"inEurographics'92(ComputerGraphicsForumVolume11No.3){AlistairKilgourandLars 25.C.Williams,J.Rasure,andC.Hansen,\Thestateoftheartofvisuallanguagesforvisualization,"inProceedings Visualization'92{sponsoredbytheIEEEComputerSociety,pp.202{209,1992. eds.,pp.59{74,acmsiggraphandieeecomputersocietypress,1994.(vroom). 28.H.-G.PagendarmandF.H.Post,\Comparativevisualization-approachesandexamples,"inFifthEurographics 27.J.Mackinlay,\Automatingthedesignofgraphicalpresentationsofrelationalinformation,"ACMtransactions ongraphics5(2),pp.110{141,1986. KjelldahlEds.,pp.139{151,BlackwellPublishers,1992. WorkshoponVisualizationinScienticComputing,May1994.

Data Visualization - A Very Rough Guide

Data Visualization - A Very Rough Guide Data Visualization - A Very Rough Guide Ken Brodlie University of Leeds 1 What is This Thing Called Visualization? Visualization Use of computersupported, interactive, visual representations of data to

More information

Advanced Diploma of Professional Game Development - Game Art and Animation (10343NAT)

Advanced Diploma of Professional Game Development - Game Art and Animation (10343NAT) The Academy of Interactive Entertainment 201 Advanced Diploma of Professional Game Development - Game Art and Animation (10343NAT) Subject Listing Online Campus 0 Page Contents 3D Art Pipeline...2 Grasping

More information

The Evolution of Computer Graphics. SVP, Content & Technology, NVIDIA

The Evolution of Computer Graphics. SVP, Content & Technology, NVIDIA The Evolution of Computer Graphics Tony Tamasi SVP, Content & Technology, NVIDIA Graphics Make great images intricate shapes complex optical effects seamless motion Make them fast invent clever techniques

More information

The Visualization Pipeline

The Visualization Pipeline The Visualization Pipeline Conceptual perspective Implementation considerations Algorithms used in the visualization Structure of the visualization applications Contents The focus is on presenting the

More information

Volume visualization I Elvins

Volume visualization I Elvins Volume visualization I Elvins 1 surface fitting algorithms marching cubes dividing cubes direct volume rendering algorithms ray casting, integration methods voxel projection, projected tetrahedra, splatting

More information

3D GIS: It s a Brave New World

3D GIS: It s a Brave New World 3D GIS: It s a Brave New World Reida ELWANNAS, United Arab Emirates Key words: 3D Models, CityGML, GIS SUMMARY For the past several decades we have been enjoying the power of GIS. The introduction of 2.5D

More information

How To Model Surfaces With Rp

How To Model Surfaces With Rp Models of surfaces by 3D printing 17/10/2007 Gregorio Franzoni Università di Cagliari Dip. di Matematica e Informatica 1 Models of mathematical objects Why producing visual and physical models? Fields

More information

Interactive Level-Set Deformation On the GPU

Interactive Level-Set Deformation On the GPU Interactive Level-Set Deformation On the GPU Institute for Data Analysis and Visualization University of California, Davis Problem Statement Goal Interactive system for deformable surface manipulation

More information

Creation of an Unlimited Database of Virtual Bone. Validation and Exploitation for Orthopedic Devices

Creation of an Unlimited Database of Virtual Bone. Validation and Exploitation for Orthopedic Devices Creation of an Unlimited Database of Virtual Bone Population using Mesh Morphing: Validation and Exploitation for Orthopedic Devices Najah Hraiech 1, Christelle Boichon 1, Michel Rochette 1, 2 Thierry

More information

TEXT ANALYTICS INTEGRATION

TEXT ANALYTICS INTEGRATION TEXT ANALYTICS INTEGRATION A TELECOMMUNICATIONS BEST PRACTICES CASE STUDY VISION COMMON ANALYTICAL ENVIRONMENT Structured Unstructured Analytical Mining Text Discovery Text Categorization Text Sentiment

More information

Unit & Live Testing for SSIS

Unit & Live Testing for SSIS Unit & Live Testing for SSIS SSIS Tester is the framework that makes unit and integration testing of SSIS packages possible Test implementation follows common methodology as seen in MS Test or Nunit Use

More information

Architectures for massive data management

Architectures for massive data management Architectures for massive data management Apache Kafka, Samza, Storm Albert Bifet [email protected] October 20, 2015 Stream Engine Motivation Digital Universe EMC Digital Universe with

More information

Visualisatie BMT. Introduction, visualization, visualization pipeline. Arjan Kok Huub van de Wetering ([email protected])

Visualisatie BMT. Introduction, visualization, visualization pipeline. Arjan Kok Huub van de Wetering (h.v.d.wetering@tue.nl) Visualisatie BMT Introduction, visualization, visualization pipeline Arjan Kok Huub van de Wetering ([email protected]) 1 Lecture overview Goal Summary Study material What is visualization Examples

More information

Interactive Level-Set Segmentation on the GPU

Interactive Level-Set Segmentation on the GPU Interactive Level-Set Segmentation on the GPU Problem Statement Goal Interactive system for deformable surface manipulation Level-sets Challenges Deformation is slow Deformation is hard to control Solution

More information

Getting Started with Tableau Server 6.1

Getting Started with Tableau Server 6.1 Getting Started with Tableau Server 6.1 Welcome to Tableau Server. This guide will walk you through the basic steps to install and configure Tableau Server. Then follow along using sample data and users

More information

Publishing Stories to Lumira Cloud

Publishing Stories to Lumira Cloud Publishing Stories to Lumira Cloud The latest release of SAP Lumira and Lumira Cloud includes the ability to publish stories designed in Lumira (or Predictive Analysis) to Lumira Cloud. Today s blog shows

More information

Best Practises for LabVIEW FPGA Design Flow. uk.ni.com ireland.ni.com

Best Practises for LabVIEW FPGA Design Flow. uk.ni.com ireland.ni.com Best Practises for LabVIEW FPGA Design Flow 1 Agenda Overall Application Design Flow Host, Real-Time and FPGA LabVIEW FPGA Architecture Development FPGA Design Flow Common FPGA Architectures Testing and

More information

EDI Overview 3. EDIConnect Benefits 3. EDIConnect - A Complete Solution 4. Key Technologies 5. Translator 5. Transaction Builder 7

EDI Overview 3. EDIConnect Benefits 3. EDIConnect - A Complete Solution 4. Key Technologies 5. Translator 5. Transaction Builder 7 EDIConnect Table of Contents EDI Overview 3 EDIConnect Benefits 3 EDIConnect - A Complete Solution 4 Key Technologies 5 Translator 5 Transaction Builder 7 Key Transformations 8 Validator 11 Partner Manager

More information

Computer Graphics AACHEN AACHEN AACHEN AACHEN. Public Perception of CG. Computer Graphics Research. Methodological Approaches - - - - - - - - - -

Computer Graphics AACHEN AACHEN AACHEN AACHEN. Public Perception of CG. Computer Graphics Research. Methodological Approaches - - - - - - - - - - Public Perception of CG Games Computer Graphics Movies Computer Graphics Research algorithms & data structures fundamental continuous & discrete mathematics optimization schemes 3D reconstruction global

More information

Forecasting Traffic Growth and Impact with Cisco MATE Design

Forecasting Traffic Growth and Impact with Cisco MATE Design White Paper Forecasting Traffic Growth and Impact with Cisco MATE Design Forecasting Scenarios for Planners, Engineers, and Operations What You Will Learn The ability to predict the impact of traffic growth

More information

CAD and Creativity. Contents

CAD and Creativity. Contents CAD and Creativity K C Hui Department of Automation and Computer- Aided Engineering Contents Various aspects of CAD CAD training in the university and the industry Conveying fundamental concepts in CAD

More information

2933A: Developing Business Process and Integration Solutions Using Microsoft BizTalk Server 2006

2933A: Developing Business Process and Integration Solutions Using Microsoft BizTalk Server 2006 www.peaksolutions.com 2933A: Developing Business Process and Integration Solutions Using Microsoft BizTalk Server 2006 Course 2933A: Five days; Instructor-Led Introduction This five-day instructor-led

More information

SAP PPM Portfolio Analysis Dashboard

SAP PPM Portfolio Analysis Dashboard SAP PPM Portfolio Analysis Dashboard A PPM Consulting Solution SAP PPM Portfolio Analysis Dashboard A number of portfolio management process steps require in detail information to execute a reliable comparison

More information

SolidWorks Corporation: CSWP Sample Exam

SolidWorks Corporation: CSWP Sample Exam SolidWorks Corporation: CSWP Sample Exam Certified SolidWorks Professional: Solid Modeling Specialist (CSWP-CORE) These questions are an example of what to expect in Segment 1 of the CSWP-CORE exam. How

More information

Firewall Verification and Redundancy Checking are Equivalent

Firewall Verification and Redundancy Checking are Equivalent Firewall Verification and Redundancy Checking are Equivalent H. B. Acharya University of Texas at Austin [email protected] M. G. Gouda National Science Foundation University of Texas at Austin [email protected]

More information

AML710 CAD LECTURE 1. Introduction to CAD. Motivation Principles of CAD / CAM. AML710 Computer Aided Design

AML710 CAD LECTURE 1. Introduction to CAD. Motivation Principles of CAD / CAM. AML710 Computer Aided Design AML710 CAD LECTURE 1 Introduction to CAD Motivation Principles of CAD / CAM AML710 Computer Aided Design L-T-P 3-0-2 : 4 Credits Prerequisites and background Course Coordinator Course Webpage http://web.iitd.ac.in/~hegde/cad

More information

How To Get A Computer Engineering Degree

How To Get A Computer Engineering Degree COMPUTER ENGINEERING GRADUTE PROGRAM FOR MASTER S DEGREE (With Thesis) PREPARATORY PROGRAM* COME 27 Advanced Object Oriented Programming 5 COME 21 Data Structures and Algorithms COME 22 COME 1 COME 1 COME

More information

Success Factors Recruitment Management

Success Factors Recruitment Management Success Factors Recruitment Management TODAY S AGENDA In this training we will introduce you to: The Recruiting system Creating Job Requisitions Requisition Approval Process Accessing Candidate Applications

More information

Performance Management and KPIs

Performance Management and KPIs Performance Management and KPIs Outline Business Performance Management (BPM) Dashboards SSAS: KPI and Dashboards 2 Business Performance Management (BPM) 3 Business Performance Management (BPM) BPM encompasses

More information

How To Create A Data Visualization

How To Create A Data Visualization CSCI 552 Data Visualization Shiaofen Fang What Is Visualization? We observe and draw conclusions A picture says more than a thousand words/numbers Seeing is believing, seeing is understanding Beware of

More information

PROGRAM OUTLINE 2015 - PAGE 1

PROGRAM OUTLINE 2015 - PAGE 1 PROGRAM OUTLINE 2015 - PAGE 1 MODULE 1 (8 WEEKS) INTRO TO 3D MODELING WITH MAYA An introduction on how to begin building and manipulating objects in 3D Space. DRAWING BASICS Here we will learn drawing

More information

Setup for Success. We encourage you to visualize the following when thinking about PipelineDeals three core concepts:

Setup for Success. We encourage you to visualize the following when thinking about PipelineDeals three core concepts: G E T T I N G S TA R T E D W I T H P I P E L I N E D E A L S Setup for Success We encourage you to visualize the following when thinking about PipelineDeals three core concepts: PEOPLE are your relationships,

More information

Scalable Machine Learning - or what to do with all that Big Data infrastructure

Scalable Machine Learning - or what to do with all that Big Data infrastructure - or what to do with all that Big Data infrastructure TU Berlin blog.mikiobraun.de Strata+Hadoop World London, 2015 1 Complex Data Analysis at Scale Click-through prediction Personalized Spam Detection

More information

Integrated Modeling for Data Integrity in Product Change Management

Integrated Modeling for Data Integrity in Product Change Management Integrated Modeling for Data Integrity in Product Change Management László Horváth*, Imre J. Rudas** Institute of Intelligent Engineering Systems, John von Neumann Faculty of Informatics, Budapest Tech

More information

PCL - SURFACE RECONSTRUCTION

PCL - SURFACE RECONSTRUCTION PCL - SURFACE RECONSTRUCTION TOYOTA CODE SPRINT Alexandru-Eugen Ichim Computer Graphics and Geometry Laboratory PROBLEM DESCRIPTION 1/2 3D revolution due to cheap RGB-D cameras (Asus Xtion & Microsoft

More information

Armanino LLP Welcomes You To Today s Webinar:

Armanino LLP Welcomes You To Today s Webinar: Armanino LLP Welcomes You To Today s Webinar: Turbo Charge Your Sales Team New Sales & Marketing Dashboard The presentation will begin in a few moments 1 Armanino LLP armaninollp.com Armanino LLP armaninollp.com

More information

Reduce Waste with Spray Technique Training in painting & coating operations

Reduce Waste with Spray Technique Training in painting & coating operations 1 Innovation in Spray Technologies to Reduce Emissions Reduce Waste with Spray Technique Training in painting & coating operations Sue Schauls March 2007 2 Innovation in Spray Technologies to Reduce Emissions

More information

Solving Common Sales & Marketing Problems Using Marketing Automation Software (MAS) by Ann Stanley, Managing Director

Solving Common Sales & Marketing Problems Using Marketing Automation Software (MAS) by Ann Stanley, Managing Director Solving Common Sales & Marketing Problems Using Marketing Automation Software (MAS) by Ann Stanley, Managing Director What is Marketing Automation? A software platform used for automation and integration

More information

Chapter 12. Development Tools for Microcontroller Applications

Chapter 12. Development Tools for Microcontroller Applications Chapter 12 Development Tools for Microcontroller Applications Lesson 01 Software Development Process and Development Tools Step 1: Development Phases Analysis Design Implementation Phase 1 Phase 2 Phase

More information

Appendix M INFORMATION TECHNOLOGY (IT) YOUTH APPRENTICESHIP

Appendix M INFORMATION TECHNOLOGY (IT) YOUTH APPRENTICESHIP Appendix M INFORMATION TECHNOLOGY (IT) YOUTH APPRENTICESHIP PROGRAMMING & SOFTWARE DEVELOPMENT AND INFORMATION SUPPORT & SERVICES PATHWAY SOFTWARE UNIT UNIT 5 Programming & and Support & s: (Unit 5) PAGE

More information

Technical white paper. www.la-con.com

Technical white paper. www.la-con.com Business Intelligence applications developed with IBM s Cognos Technical white paper www.la-con.com Table of contents: BUSINESS INTELLIGENCE 3 SUCCEED BI 3 LIFELINE 4 REPORT AND CHART FEATURES 5 2 Business

More information

Water Flow in. Alex Vlachos, Valve July 28, 2010

Water Flow in. Alex Vlachos, Valve July 28, 2010 Water Flow in Alex Vlachos, Valve July 28, 2010 Outline Goals & Technical Constraints How Artists Create Flow Maps Flowing Normal Maps in Left 4 Dead 2 Flowing Color Maps in Portal 2 Left 4 Dead 2 Goals

More information

VIDEO SCRIPT: 8.2.1 Data Management

VIDEO SCRIPT: 8.2.1 Data Management VIDEO SCRIPT: 8.2.1 Data Management OUTLINE/ INTENT: Create and control a simple numeric list. Use numeric relationships to describe simple geometry. Control lists using node lacing settings. This video

More information

TRANSFORMING LIFE SCIENCES THROUGH ENTERPRISE ANALYTICS

TRANSFORMING LIFE SCIENCES THROUGH ENTERPRISE ANALYTICS TRANSFORMING LIFE SCIENCES THROUGH ENTERPRISE HOW SOLUTIONS AND ENTERPRISE ENVIRONMENTS ARE IMPROVING EFFICIENCY AND ENABLING NEW INSIGHTS THROUGHOUT THE LIFE SCIENCES INDUSTRY Matt Gross Director Health

More information

THE FUTURE OF SOCIAL CRM

THE FUTURE OF SOCIAL CRM THE FUTURE OF SOCIAL CRM 28/11/2013 GARETH EDWARDS Contents The Future of Social CRM... 3 Basic Features of Social Media Management Platforms... 3 Terms... 4 The Solution... 5 What a CRM System Should

More information

NewZapp Managed Service

NewZapp Managed Service NewZapp Managed Service Email Marketing performs at its best when part of a complete digital strategy. Outsourcing your email campaigns to NewZapp gives you the power to focus on other business goals whilst

More information

Automotive EMI System

Automotive EMI System Automotive EMI System Page 1 Model Types Body Variants Car Geometry Board Net, Wire Path, ECU Configuration, Antenna Configurations... Parameters Affecting EMC Car Supply Net Voltage Regulator Signals

More information

Motivation: Smartphone Market

Motivation: Smartphone Market Motivation: Smartphone Market Smartphone Systems External Display Device Display Smartphone Systems Smartphone-like system Main Camera Front-facing Camera Central Processing Unit Device Display Graphics

More information

ADVANCED COMMUNICATION SERIES SPEAKING TO INFORM. Assignment #1: THE SPEECH TO INFORM

ADVANCED COMMUNICATION SERIES SPEAKING TO INFORM. Assignment #1: THE SPEECH TO INFORM Assignment #1: THE SPEECH TO INFORM Select new and useful information for presentation to the audience Organize the information for easy understandability and retention Present the information in a way

More information

Querying MongoDB without programming using FUNQL

Querying MongoDB without programming using FUNQL Querying MongoDB without programming using FUNQL FUNQL? Federated Unified Query Language What does this mean? Federated - Integrates different independent stand alone data sources into one coherent view

More information

Dong-Joo Kang* Dong-Kyun Kang** Balho H. Kim***

Dong-Joo Kang* Dong-Kyun Kang** Balho H. Kim*** Visualization Issues of Mass Data for Efficient HMI Design on Control System in Electric Power Industry Visualization in Computerized Operation & Simulation Tools Dong-Joo Kang* Dong-Kyun Kang** Balho

More information

Using Power to Improve C Programming Education

Using Power to Improve C Programming Education Using Power to Improve C Programming Education Jonas Skeppstedt Department of Computer Science Lund University Lund, Sweden [email protected] jonasskeppstedt.net jonasskeppstedt.net [email protected]

More information

OVERVIEW AVISO INSIGHTS

OVERVIEW AVISO INSIGHTS OVERVIEW Aviso provides the leading predictive analytics software to help sales organizations optimize their performance and exceed their revenue goals. Using a unique combination of machine learning algorithms

More information

Master of Science in Computer Science

Master of Science in Computer Science Master of Science in Computer Science Background/Rationale The MSCS program aims to provide both breadth and depth of knowledge in the concepts and techniques related to the theory, design, implementation,

More information

An Introduction to Qualitative Data Analysis (QDA) with Atlas.ti

An Introduction to Qualitative Data Analysis (QDA) with Atlas.ti An Introduction to Qualitative Data Analysis (QDA) with Atlas.ti Ronald J. Shope Office of Qualitative & Mixed Methods Research Presentation to SSP March 2, 2007 Atlas.ti: http://www.atlasti.com/ Overview

More information

Industrial Vision Days 2012 Making Cameras Smarter: FPGA Based Image Pre-processing Unleashed

Industrial Vision Days 2012 Making Cameras Smarter: FPGA Based Image Pre-processing Unleashed Industrial Vision Days 2012 Making Cameras Smarter: FPGA Based Image Pre-processing Unleashed Announcement of Partnership Seite: 3 High Quality Digital Cameras and Vision Sensors Visual FPGA Programming

More information

Sales Pipeline/Funnel Management Template User Guide

Sales Pipeline/Funnel Management Template User Guide Sales Pipeline/Funnel Management Template User Guide Sales Funnel/Pipeline Management Template This Excel-based template is a comprehensive application for Sales Funnel/Pipeline management. The sales pipeline

More information

Real-time Processing and Visualization of Massive Air-Traffic Data in Digital Landscapes

Real-time Processing and Visualization of Massive Air-Traffic Data in Digital Landscapes Real-time Processing and Visualization of Massive Air-Traffic Data in Digital Landscapes Digital Landscape Architecture 2015, Dessau Stefan Buschmann, Matthias Trapp, and Jürgen Döllner Hasso-Plattner-Institut,

More information

PROJECT MANAGEMENT INNOVATION BASED ON BUILDING INFORMATION MODELING

PROJECT MANAGEMENT INNOVATION BASED ON BUILDING INFORMATION MODELING PROJECT MANAGEMENT INNOVATION BASED ON BUILDING INFORMATION MODELING CHANGHUA LI Hefei University, Office of Science and Technology, China [email protected] LEON PRETORIUS University of Pretoria, Department

More information

Avature CRM. Get Engaged to Talent

Avature CRM. Get Engaged to Talent Get Engaged to Talent V8 Source, attract and engage critical talent ahead of business demand Managing and optimizing global sourcing efforts can be a huge challenge. Typically, recruiters have no choice

More information

Exclusive access to metrics to measure KPIs in real time, and at scale

Exclusive access to metrics to measure KPIs in real time, and at scale Analytics Exclusive access to metrics to measure KPIs in real time, and at scale Metrics to optimize your campaigns Isolate sources that matter most Advanced filtering Track active and passive customer

More information

Visualizing Electromagnetic Fields: The Visualization Toolkit. Michael Selvanayagam

Visualizing Electromagnetic Fields: The Visualization Toolkit. Michael Selvanayagam Visualizing Electromagnetic Fields: The Visualization Toolkit Michael Selvanayagam Visualization What is the purpose of visualizing electromagnetic (EM) Fields? Visualization 1. Understand the geometry

More information

Predictive Analytics

Predictive Analytics Predictive Analytics How many of you used predictive today? 2015 SAP SE. All rights reserved. 2 2015 SAP SE. All rights reserved. 3 How can you apply predictive to your business? Predictive Analytics is

More information

credits Programming with actors Dave B. Parlour Xilinx Research Labs Thomas A. Lenart Lund University Robert Esser

credits Programming with actors Dave B. Parlour Xilinx Research Labs Thomas A. Lenart Lund University Robert Esser Programming with actors Jörn W. Janneck credits Dave B. Parlour Thomas A. Lenart Lund University Robert Esser University of Adelaide Ptolemy Miniconference VI, 2005-05-12-2 The FPGA Platform: Huge amounts

More information

Building Information Modelling (BIM); How it Improves Building Performance. R.P. Kumanayake Lecturer, Department of Civil Engineering

Building Information Modelling (BIM); How it Improves Building Performance. R.P. Kumanayake Lecturer, Department of Civil Engineering Building Information Modelling (BIM); How it Improves Building Performance R.P. Kumanayake Lecturer, Department of Civil Engineering R.M.P.S. Bandara Lecturer, Department of Mechanical Engineering Faculty

More information

Scientific Visualization with Open Source Tools. HM 2014 Julien Jomier [email protected]

Scientific Visualization with Open Source Tools. HM 2014 Julien Jomier julien.jomier@kitware.com Scientific Visualization with Open Source Tools HM 2014 Julien Jomier [email protected] Visualization is Communication Challenges of Visualization Challenges of Visualization Heterogeneous data

More information

Facts about Visualization Pipelines, applicable to VisIt and ParaView

Facts about Visualization Pipelines, applicable to VisIt and ParaView Facts about Visualization Pipelines, applicable to VisIt and ParaView March 2013 Jean M. Favre, CSCS Agenda Visualization pipelines Motivation by examples VTK Data Streaming Visualization Pipelines: Introduction

More information

APD to Update Marketing Attributes from SAP BI to SAP CRM

APD to Update Marketing Attributes from SAP BI to SAP CRM APD to Update Marketing Attributes from SAP BI to SAP CRM Applies to: SAP NetWeaver BI 7.0 and SAP CRM 5.0(and above). For more information, visit the EDW homepage. Summary This article gives a clear picture

More information

4.4 Transforming Circles

4.4 Transforming Circles Specific Curriculum Outcomes. Transforming Circles E13 E1 E11 E3 E1 E E15 analyze and translate between symbolic, graphic, and written representation of circles and ellipses translate between different

More information

What's New in Heavy Civil Construction Software. Chris Richardson HCC-6898

What's New in Heavy Civil Construction Software. Chris Richardson HCC-6898 What's New in Heavy Civil Construction Software Chris Richardson HCC-6898 Segment Initiatives Make it simple Easy to use Integrated with the Heavy Civil Construction portfolio Workflow improvements Provide

More information

Geometry: Unit 1 Vocabulary TERM DEFINITION GEOMETRIC FIGURE. Cannot be defined by using other figures.

Geometry: Unit 1 Vocabulary TERM DEFINITION GEOMETRIC FIGURE. Cannot be defined by using other figures. Geometry: Unit 1 Vocabulary 1.1 Undefined terms Cannot be defined by using other figures. Point A specific location. It has no dimension and is represented by a dot. Line Plane A connected straight path.

More information

XT B-Rep; Making it Real

XT B-Rep; Making it Real XT B-Rep; Making it Real John Juckes Siemens PL SEPTEMBER 12-14 What is XT? Based on research from the Cambridge University Computer lab under Ian Braid The world s leading high precision, production-proven,

More information

Service-Oriented Visualization of Virtual 3D City Models

Service-Oriented Visualization of Virtual 3D City Models Service-Oriented Visualization of Virtual 3D City Models Authors: Jan Klimke, Jürgen Döllner Computer Graphics Systems Division Hasso-Plattner-Institut, University of Potsdam, Germany http://www.hpi3d.de

More information

Computers in Film Making

Computers in Film Making Computers in Film Making Snow White (1937) Computers in Film Making Slide 1 Snow White - Disney s Folly Moral: Original Budget $250,000 Production Cost $1,488,422 Frames 127,000 Production time 3.5 years

More information

A Flexible Medical Image Archiving and Reporting System

A Flexible Medical Image Archiving and Reporting System A Flexible Medical Image Archiving and Reporting System Dzmitry Hlindzich 1), Pavel Krasnopevtsev 1), Tudor Poerner 2), Aleh Kryvanos 3) 1) Institute for Computer Engineering, University of Heidelberg,

More information

WESTMORELAND COUNTY PUBLIC SCHOOLS 2011 2012 Integrated Instructional Pacing Guide and Checklist Computer Math

WESTMORELAND COUNTY PUBLIC SCHOOLS 2011 2012 Integrated Instructional Pacing Guide and Checklist Computer Math Textbook Correlation WESTMORELAND COUNTY PUBLIC SCHOOLS 2011 2012 Integrated Instructional Pacing Guide and Checklist Computer Math Following Directions Unit FIRST QUARTER AND SECOND QUARTER Logic Unit

More information

Reporting in The Financial Edge David Kilmer

Reporting in The Financial Edge David Kilmer Reporting in The Financial Edge David Kilmer Agenda Visual Chart Organizer vs. Reports Why Use the Visual Chart Organizer The Design Process Popular Report Features Advanced Reporting Concepts Page #2

More information