Data. Visualization process. Segmented, adapted, chosen data. Sampled or simulated (original) data. Display Data (geometry information)
|
|
|
- Mariah Cannon
- 10 years ago
- Views:
Transcription
1 Waltz{AnExploratoryVisualizationtoolforVolumeData, usingmultiformabstractdisplays ComputingLaboratory,UniversityofKent,Canterbury,Kent,England,UK JonathanC.Roberts simplifying(orabstracting)thestructureoftheviewedinformation;andlinkingobjectsandviewstogether(allowing toaidauserinterpretdatacorrectly.theseare:displayingthedataindierentforms(multiformvisualization); Although,visualizationisnowwidelyused,misinterpretationsstilloccur.Therearethreeprimarysolutionsintended ABSTRACT correspondingobjectstobejointlymanipulatedandinterrogated). andrene'visualizationcycle. endofalongvisualizationprocess.ourvisualizationsystem,basedonanadaptedvisualizationmodel,allowsa displaymethodtobeusedthroughoutthevisualizationprocess,inwhichtheuseroperatesa`display(correlate) howeverthatcurrentvisualizationsystemsdonoteectivelyutilisethedisplay,forexample,oftenplacingitatthe Thesewell-knownvisualizationtechniques,provideanemphasistowardsthevisualizationdisplay.Webelieve Keywords:Visualization,Visualizationsystem,Multiform,Manipulation,Abstraction befurtherdisplayed,manipulatedandltered. manipulated;asetof`portionsofinterest'canbeselectedtogenerateaspecializeddataset.thismaysubsequently Thisdisplayintegrationprovidesausefulexplorationenvironment,whereobjectsandviewsmaybedirectly ifthepictureisincorrect:byalgorithmicerrors,accumulatedduringtransformations,orinherentinthealgorithm atacertainresolution?then,theusermaymisinterpretormisunderstandtheunderlyinginformation. Theadage\apictureisworthathousandwords"providesapowerfulincentiveforvisualizingdata.However,what 1.INTRODUCTION scientistwantingtodiscoverfacts,auserinvestigatingandclarifyingthescientistsworkoraresearcherpresenting results,theaimsarethesame:toperceiveandgaininsightoftheunderlyingdatabyinvestigatingrelationships, dependenciesandproportionsintheinformation. Understandingphenomenafromtheunderlyingdataisthemainreasonfordoingvisualization.Whether,itisa information.westate:explorationtechniquesfocusingoninteractionmethodsandthevisualizationdisplayare thevisualrepresentationstheusergainsabetter,andhopefullymoreaccurateunderstandingoftheunderlying usefulfor`correctinformationdissemination'. Scienticinvestigationandexplorationisconsequentlyimportant:as,bymanipulatingandexperimentingwith allowtheusertoquicklydisplayarepresentationofthedata,andthenfurtherrenethevisualization. Ourvisualizationsystemprovidesa`display,rene,display'cycleasaseriesofmini-dataowpipelines,which Inreal-life,anexplorer,wishingtonavigatefromCityAtoTownB,wouldusemapsatdierentscales.First,they representationshowingtheminorroads.thelargescalemapprovidescontextinformationforthedetailedmap. wouldlookatamapshowinganoverviewofthemajorroadconnections;thentheywouldlookatadetailedmap 2.THECONCEPTS understandthedetailedinformation. details.thistwo-levelapproachprovidesstructuredinformationtotheuser,whoisthen,inabetterpositionto Likewise,inscienticexploration,itisbesttounderstandtheinformationasawholeentity,thenlookatspecic allowcomplexanddiverseoperations,butdonotprovidetoolsthatencouragetheusertousethisconcept.moreover, Fromthisexample,weproposethatvisualizationsystemsneedtoadoptthistwo-levelpolicy,currentsystemsdo Otherauthorinformation:
2 Filter Map Display Data Segmented, adapted, chosen data Display Data (geometry information) Sampled or simulated (original) data Visualization process Figure1.Thetraditionalvisualizationprocess:Filter,Map,Display toachievethisstyleofexplorationonscienticdata,asklinkermentioned,1imagingtoolsneedtoprovideinteractive mechanisms,allowingtheusertointerrogateandunderstandrelationshipsanddependencieswithintheinformation. Webelievethattherearethreeprimary(andpowerful)visualizationtechniquesthataidtheusertoexplore andgenerateacorrectinterpretationoftheunderlyinginformation.first,displaythedataindierentforms{ Multiformvisualization.Second,displaytheinformationinsimpliedAbstractviews.Third,provideahighdegree ofinteractionanddirectmanipulation. Multiformvisualizationistheprocessofdisplayingthesameinformationinmultipleways.2Thisenablestheuser tounderstandtheinformationfromdierentperspectives,helpingtoovercomeconfusionandmisinterpretation frombelievingtheresultfromasingularvisualizationmethod.thishasbeensuccessfullyusedtodisplay multivariatedata,asexempliedbythexmdvtool,3andwe,likeyageletal,4advocatetechniquesthat utilisedierentrenderingschemestouncoverdierentaspectsinthedata. Abstractviewsrepresentsimplied,augmentedorstructuralrealizationsoftheinformation.5Thistechnique generatesmultiformviews,asabove.however,theseviewsaregeneratedbythesamealgorithmwithdierent simplicationcriteria.forexample,asurfacealgorithmmaybegeneratedatahighresolutionwithmany surface-trianglesoralowresolutionwithfewertriangle-elements,thelatterwouldberenderedfasterand providesasimpliedversionoftheinformation.thissimplicationisusefulfor`fastinteractive'navigation, asusedbythevolvissystem,6forexample. Infacttheabstractionmayoccurateitherthedataortheimagelevel.Atthedatalevel,theinformationcontent maybereduced(simplied)bysamplingorgroupinglikeobjectstogether;forexample,silver7segmentsthe dataintogroupsnamedobjects,thatmaybetrackedastheyevolveandmovethroughoutthedata.8at theimagelevel,thevariableorattributesbeingmappedontothedisplaymaybealtered.forexample,the trianglesmakinguptheisosurfacemaybeexchangedtolinesorpoints;thiswouldallowotherwiseoccluded objectstobeseen.alternatively,thepositionoftheobjectsmaybeaugmentedtofacilitatetheunderstanding ofthedata.forexample,sheelaghetal9usethistechniquetoprovidea`clearlineofsight'toobscuredan concealedsectionsofthedata. Theabstractviewsmayallowobjectsthatarenormallyoccludedtobeseen,orgenerateastructuralviewof thewholedata.theyprovidetheuserwithadditionalinformationaboutthestructureofthedata:usefulfor a`correctdissemination'oftheinformation. DirectManipulationallowsobjectswithinthedisplaytobedirectlyinterrogated,scaledandpositioned.This interrogationisalsopropagatedtorelatedviewsofthesamedata,toprovidejointinteractivedataprobing andobjectmanipulation.thisissimilartothebrushingtechniqueofward,3thatallowselementsinoneview tobebrushedbythemouse,coincidentallyhighlightingcorrespondingelementsinrelatedviews;andsimilar tothemanipulationlinkingtechniqueusedintelecollaboration1orbyothersystems.10{12 3.THEWALTZEXPLORATIONMETHOD TheMultiform,AbstractandManipulationmethodsarewell-knownvisualizationtechniquesandtheiremphasisis towardsthedisplayedimage.userswishingtoexplorethevisualizationneedtoconcentrateonthevisualoutput andnotthevisualizationprocess.however,webelievethatcurrentvisualizationsystemsdonoteectivelyintegrate
3 Traditional connected dataflow pipeline A Data Filter Map Display Filter Map Display Dataflow connected using the display filter method B Data Filter Map Display Filter Map Display thedisplayintothevisualizationprocess,oftenplacingitattheendofalongsequenceofcommands.thislong visualizationprocessisverypowerful,comprehensiveandextensible,andisoftendescribedbythedataowmodel. Figure2.Thedisplayactingasalter,thatmaybefurtherdisplayedandltered data display filter an additional filter specialization operation included visualizationsystemsarebasedonthismodel.14{18 displayed,figure1.thisworkisoftenaccreditedtohaberandmcnabb13andupsonetal14andmanyexisting Where,thedataisltered,tocreateasubsetofthedata,whichisthenmappedintoarepresentationwhichcanbe Thedataowmodeldescribesthevisualizationprocessasaseriesofthreeprocesses:lter,mapanddisplay. thevisualizationtasks,byprovidinganintelligentuserinterface.forexample,woodetal19mentionthethesisof Stead,andtheVISTAsystem20providesaseriesofrulesthatappropriatelydisplaythevisualization.Suchsystems pretation.onesolutionistoshortenthevisualizationcycle.thismaybeachievedbyautomatingsomeorallof donotemphasiseexplorationtechniques.analternativemethodmayconsequentlybegeneratedbyintegratingthe Webelievethislengthyvisualizationcyclemaycausefrustrationandconfusion,leadingtoinformationmisinter- thenbefurtherlteredanddisplayed. displayintothevisualizationpipeline,byallowingthedisplaytoactastheinformationlter.theltereddatamay informationhasbeenspecialized.thisnewdatasetmaybefurtherlteredanddisplayed.thediagram,figure2b, operation,figure2b.thus,thedatahasbeenrenedthroughthisdisplay-lter,andanewdatasetisformedby makingasubsetfromaselectionoftheinitialdataelements.wenamethisnewdatasetadataspecialization,asthe alsoshowsthattheorderoftheprocesseshasbeenalteredtomap,displayandlter.thisallowssomelterprocess Thislteroperation,namedadisplaylter,21allowstheoutputfromonedisplaytobeinputtoanotherlter tobeomitted,enablingtheselectedobjectstobedisplayedwithoutbeingrened.moreover,thespecializeddata maybeadditionallylteredbythereceivingmini-pipeline.obviously,multipledisplay-lteroperationswillgenerate aseriesofchilddata-specializations,whichmayformadata-hierarchyofsubdatasets,figure3. Filter Map Display Filter Map Display Figure3.Ahierarchyofdataselectionsmaybegenerated Filter Map Display Filter Map Display Filter Map Display
4 Thedatawithinanyofthedata-specializationsmaybedisplayedinmultipleforms,consequentlygeneratinga groupofrenderers.4anothervisualizationmethodmaybeaddedtothisdisplay-groupbysimplyrequestingthe appropriatemethod. Themanipulationofelementsisalsoscopedbytherender-group.Thisallowsthesameobjects,butindierent views,tobejointlymanipulated.forexample,objectswithinasurfaceandaskeleton-displayofthesameinformation maybejointlymanipulated:scaled,rotatedortranslated.ourmanipulationoperationsjointlytransformtheviewing projection(inthreedimensions)orhighlightandtransformindividualelements.additionally,wegrouptogetherthe mapping-attributes,sothehue,colourortransparency(ofthemappedobjects)maybecoincidentlyaltered. Thisstyleoflinked-manipulationissimilarlyimplementedinsystems,suchas,Klinker1inAVS,KBVision,10 LinkWinds11andSciAn,12but,ratherthanallowtheusertojoinappropriatelinks,ourdisplay-groupmethod allowsthelinkingtobeautomaticallyprovidedbythesystem.thelinksareautomaticallyaddedtotherelevant displayswhenanewdisplayisaddedtothelist,thussimplifyingtheuserinteraction. Theuserinterfaceisfurthersimpliedbycoercingtheprocessesofthemini-visualization-pipelineintoonemodule. Thisonemoduleallows,throughmenuselections,thelter,mappinganddisplayoperationstobeperformed.Thus, tocreateanewmoduletheuserselectstheexportmenu,thatautomaticallygeneratesanothermodule.thistechnique couldbedescribedasbeingamixtureofamodulebuildingenvironmentandamenu-basedvisualizationsystem; becauseoftheuser-controllablenetwork,withmenu-basedcommands. Further,wehavedevelopedamodule-manager,thatautomaticallypositionsthemodulesontheworkarea,taking theresponsibilityfromtheuser.anewwindowisgeneratedforeachdisplay,sothemanagerlabelseachwindow withauniquereferencenumber,relatingtheseparatewindowstothework-area.themultiformdisplayspersist throughoutavisualizationsession,enablingthedisplaystoprovidea`history'ofpreviousexperimentations. Oursystemincorporatesthedisplayasarst-class-citizen,byincludingthedisplayoperationasanintegralpart ofthevisualizationprocess.thisencouragesandsupportstheuserto,rst,displaythesamedata,andaspectsof thedata,usingdierentrenderingschemes.second,providedirectmanipulationoftheviewsandobjectswithin resultantvisualizations,toallowtheusertodirectlyselectobjectswithinthedatatoenablethedatatobeltered. Third,toautomaticallylinkcorrespondingfeaturesbetweenvisualizations,allowingobjectsandviewstobejointly manipulated.thevisualizationprocessthenbecomes:aprocessof`display(correlate)andrene'operations. 4.EXAMPLES{AUSER'SVIEW TheWaltzsystemhasbeendevelopedforvolumedata.Webelievethemethodologycouldbeeasilyextendedto otherdata-types,alongwiththehigh-leveluser-interfaceimplementation.however,thelow-leveldatastructure wouldneedtobegeneralizedtosupportotherdatatypes. Todescribetheoperationandcontrolofthesystem,wewillworkthroughtwoexamplesessions.Therstexample usesatestdatasetcontainingconcentricthree-dimensionallayers. Onstartup,acleancanvasispresentedtotheuser.Arstmoduleisautomaticallyplacedonthecanvaswhen thedataisloaded.thisrstmoduledisplaysthele-name,holdstheimporteddataandactsastherootnodeon theworkarea.subsequent`children'modulesarealwaysofthedisplay-grouptype.thelteroperationontherst display-groupmoduleisusedtoprocessthedataelementsintoobjects.currently,onlyonealgorithmisprovided, thatclustersthe(individual)dataelementsintosetsofsimilarvalue.thealgorithmusesaoodingtechniqueto thresholdandconnectthedata.initially,noimagesaredisplayed,butadditionalrealizationsareadded(anddeleted) byselectingtheappropriatedisplay-groupmenu.initiallyweaddasurfacerendering;however,asthewholedataset isanobjectitself,athree-dimensionalcubeisrendered,andtheinternalstructureremainsunseen.therefore,we addaslice-display,enablingtheinternalstructuretobeviewed,figure4. Throughourexplorationwerealizethattherearemultiplepartstothedataset;wecaneitherre-evaluatethedatasegmentationinthismoduleoraddanothermodule:asachildofthedata-lemodule.Infact,whenthesegmentation isre-evaluated,eachdisplaymethod(withinadisplay-group)automaticallydisplaysthenewinformation. Weaddanothermodule,Figure5,thistimeweprocessthedataintotwogroups:theinteresting-featureand thesurroundingair.thefeatureisselected,consequentlyhighlightedbythesystem,andafurtherdisplay-module isgeneratedholdingonlythisfeature,towhichweaddasurface-displayandalist-display,figure6.thelistmoduledisplaysthreegroups:theobjectandtwopaddinggroups(alltheelementsoutsidethisandtheprevious specialization).
5 displaywindow) Figure4.TheWaltzworkarea,showingthedata-lemodule,agrouped-displaymodule(withasliceandsurface- Figure5.Twonewgrouped-displaymodules,evaluatedintotwointeresting-feature,shownbytheslice-display intoafourthgroup-displaymodule,andasurface-displayisaddedtothismodule.bymethodssimilartothisthe aslice-display,figure7.thensomeoftheelements,specically3,4,5,6,7asseenfromthelist-display,areexported usercanexploreandfocusonspecicpartsoftheinformation. Finally,were-evaluatethegrouped-featuresonthisthird-moduleandincludeabounding-boxabstractionand wishtobothdisplaythemainsurfaceandinvestigatethepressureswithinthedata. isbombardedwithasmallerpieceofmaterial.thedatasetdescribesthepressureintheblock.fromthisdata,we Initially,wedividethedatasetintotwointerestingfeatures:theblockandair,Figure8.Boththesliceand Thesecondsessionvisualizesthedatafromaspacedustimpactsimulation;whereastationaryblockofmaterial grouped-displaymodule.thissecondmoduleisusedtodisplaytheblocksurface. surface-displayareusedtorealizethefeatures.theblockisthenselectedandexportedtogeneratedthenext objectspecializationinthethirdmoduletogeneratemultipleobjects.towhich,weaddsurface,bounding-boxand network-displays,seefigure9. Insimilaroperationtogeneratingthesecondmodule,wecreateathirdmodule.Were-segmentthesingle- Userinterrogationmaybeperformedonthedata.Forexample,theobjectsmayberotated,Figure10or
6 Figure6.TheWaltzworkarea,showingthedata-lemodule,agrouped-displaymodule(withtwoabstractions: theslice-displayandasurface-display) transformedfigure11.theinteractionisautomaticallydirectedtotherelevantobjectsofeachrendererina Bounding-box,Surface,listandslicedisplays. Figure7.Thedatainthethirdmoduleisrenedfromtheone-groupintosixgroups,andrealizedusingthe particulardisplay-group. ThenameWaltziscoinedfromthemusictermofthreepartsinfour,fromtheMultiform,AbstractandManipulation processeswithinagraphicaluser-interface. WaltzhasbeendesignedinC++withclassesrepresentingthedata,groupingsofthedataandabstractions, 5.IMPLEMENTATION andisimplementedoverxandxlibusingthemotifwidgetset,inventor22andopengl23libraries.foradetailed descriptionoftheimplementation,see.5
7 exported.thesecondmoduledisplaysthesurfaceoftheblock. Figure8.Therstmoduleisusedtosegmentthedataintotwofeatures;theimpact-blockisthenselectedand Sowhenanewmoduleiscreatedthemanagerpositionsthewidgetsinthedesiredposition.Likewise,asnew Themodule-managercontrolsthepositionsofthemodulesandiscontrolledusingtheXcallbackmechanism. Figure9.TheWaltzworkareashowingonedata-lemodulewiththreegroup-displaymodules. display-abstractionsareaddedtothedisplay-groupthemodule-manageriscalledtoupdateworkarea. hascontrol-structuresallowingupanddowntree-traversal. ulators.threedimensionalmanipulators(jacks)areappliedtotheobjectsintheinventorscene-graph.togenerate ThemanipulationwithinthedisplaysiscontrolledusingboththeXcallbackmechanismandtheInventormanip- Themodule-managerstoresthemodulehierarchyinformationinatreedata-structure.Forconveniencethetree thelinkedmanipulationwithinthegrouped-displaymodule,thecodereferencesoneinventor-manipulator,thatis placedineachdisplay-method'sscenegraph.infact,individualmanipulatorscanbeswitchedintothegraph,to allowspecicmanipulation.thisswitchiscontrolledbyaradio-buttonselectiononamotif-basedform. to24),withalistofthegroupsandtheiradjacencyinformation. data.relevantpartsofthedataarecopiedandexportedfromonemoduletothenext.thisexportoperationis controlledexplicitlybythesystemuser.eachdatashadowholdsthegroupingsdataasanarrayofslices(similar ThedataisstoredinaDataShadowclass,thatholdsinformationaboutthegroupingsandspecializationsofthe
8 Figure10.Thewholeviewmaybedirectlymanipulated.Thecontrolislinkedbetweenviewswithin thesamedisplay-group.theimagesshowthreeviewsbeingrotated. Figure11.Individualdataelementsmaybedirectlytransformed.Thecontrolislinkedbetween viewswithinthesamedisplay-group.theimagesdepictonegroupbeingtranslated.
9 Wehavepresentedasystemthatprovidesexplorationtechniques,especiallyforthe`correctdissemination'ofinformation.Weacknowledgethatexplorationisonlyonemethodtosuppressmisinterpretation.Butwebelieveittobe 6.DISCUSSIONANDFUTURERESEARCH animportantone!furtherworkisrequiredinthis`correctdissemination'area. ItistruethattheModulevisualizationenvironments(AVS,IRISExploreretc,25)allowmultipleviews,butinour experiencethesetendtobeexpensive:usingtime,processingandmemoryresources.thus,therearesomeadvantages inhavingmultiplelightweightrenderingwindows,suchasprovidedbywaltz. Oursystemprovidesmethodsthatencouragestheusertoperformmultipledisplaysofthesameinformation. ofpreviousexperimentations.infactwebelievethatabstracttechniquesareuseful,becausetheyprovidesimpler anddiverseinterpretationsoftheunderlyinginformation.althoughsomeabstracttechniquesaremeaninglessin occludedelements,forexample,tobeselectedandmanipulateddirectly. isolation(suchasthelist-display)theycanactascontrol-abstractions,andwhenlinkedwithotherviewstheyallow Themultiformdisplayspersistthroughoutavisualizationsession,enablingthedisplaystoprovidea`history' features,andtomanagethecontrolofthelinked-interactionandtheplacementofthemodules.othersystems,such asthetelecollaborativeenvironmentdescribedbyklinker1orthevisualizationinputpipeline26provideextensible webelievethatitisusefultoallowtheusertolterthedatathroughthedisplay,bysegmentingtheinformationinto interactivevisualizationsystemsbutdonotmanageeitherthelinked-interactionorthemodule-layout. OthersystemssuchasSciAn12andLinkWinds11providemultipleviewsofthedatainalinkedenvironment,but, neatlayout!problemswiththislayoutwouldoccurinalongsession.currently,modulesmaybedeletedandthe together,andreducestheirsize,toallowlargernetworkstobevisualizedonthework-area. workareascrolled.butitwouldbebenecialtoapplyamorecomplicatedalgorithm,that(say)groupsthemodules byreducingtheneedforadditionalpipesorlinksandstopstheuserfrom`wastingtime'movingthemodulesintoa Webelievethat,bymanagingthemodule-layout,theuserreceivesadditionalinformation,simpliesthenetwork example,thevistasystem20,27operatesbygeneratinganappropriaterealizationfromalistofordered,anduser preferencedvariables.thistechnique,maybeusefulfornaiveandinfrequentusersbutexpertusersmaywishfor morecontroloverthegeneratedvisualization.indeed,misinterpretationsgeneratedthroughthewrong-useofthe visualizationprocesswouldbesignicantlyreducedusinganintelligentsystemapproach. Theintelligentvisualizationsystemstakethesystemandinformation-managementtechniquetotheextreme.For ltertechnique.thedisplay-ltermethodprovidesanintuitivelteringmethod,albeithardertoimplementand technique,withsixdisplaymethods.othertechniqueshavebeenproposed,butareleftforfuturework.moreover, lessdiversethantraditionaltechniques.infact,thecurrentimplementationonlyprovidesonedata-segmentation theabstractiontechniquecouldbeappliedmorevigorouslytothecurrent(andfuture)displaymethods.thecode, However,anintelligentapproachdoesnotallowsomuchuser-exploration;suchasprovidedthroughadisplaytechniqueanewsub-classisrequired,andthesystemre-compiled. wasdesignedtobeextensibleespeciallytheuserinterface,butinpractice,foreachnewsegmentationordisplay informationinterpretation. displayedrealizations.comparativevisualizationtechniques28mayprovideadditionalinformation,aidingacorrect Themultiformlinkeddisplaysprovideausefulexplorationenvironment,however,theusermanuallycomparesthe fromitsoriginalpositionandautomaticallyreplaceditwhentheuserreleasedcontrol. intocompoundoperations,forexample,anoperationmaybedesignedto`lookandsee',thatmovedafeatureaway niquescouldbeimplemented.currentresearchistakingplaceinthisarea.someofthemechanismscouldbemade Waltzcurrentlyimplementsselectionandtransformationstylesoflinking.Furtherbrushing3andlinking1tech- WehavepresentedavisualizationsystemincorporatingMultiform,AbstractandManipulationtechniques,forthe correctdisseminationofscienticinformation.wehaveadvocatedtheuseofexplorationtechniques,andacknowledge thatexplorationisonlyonemethodtosuppressthismisinterpretation. 7.CONCLUSION visualizationandcorrectdisseminationinauserextensibleframework. WeproposetodevelopandextendtheWaltzsystem,toincorporateandprovidemechanismsforexploratory
10 8.ACKNOWLEDGEMENTS IacknowledgeSteveHillforhisadviceonthisproject,TimHopkinsforhishelp,DuncanLangfordforproofreading thispaperandtheuniversityofkentphysicslaboratory,u.k.fortheimpactdata. REFERENCES 1.G.J.Klinker,\Anenvironmentfortelecollaborativedataexploration,"inProceedingsVisualization'93{ sponsoredbytheieeecomputersociety,pp.110{117, P.R.KellerandM.M.Keller,VisualCues{PracticalDataandVisualization,IEEEComputerSocietyPress, M.O.Ward,\XmdvTool:Integratingmultiplemethodsforvisualizingmultivariatedata,"inProceedingsVisualization'94{sponsoredbytheIEEEComputerSociety,pp.326{333, R.Yagel,D.S.Ebert,J.N.Scott,andY.Kurzion,\Groupingvolumerenderersforenhancedvisualizationin computationaluiddynamics,"ieeetransactionsonvisualizationandcomputergraphics1,pp.117{132, June J.C.Roberts,AspectsofAbstractioninScienticVisualization.Ph.Dthesis,KentUniversity,Computing Laboratory,Canterbury,Kent,England,UK,CT27NF,October R.S.Avila,L.M.Sobierajski,andA.E.Kaufman,\Towardsacomprehensivevolumevisualizationsystem,"in ProceedingsVisualization'92{sponsoredbytheIEEEComputerSociety,pp.13{20, D.Silver,\Object-orientedvisualization,"IEEEComputerGraphicsandApplications15,pp.54{62,May R.Samtaney,D.Silver,N.Zabusky,andJ.Cao,\Visualizingfeaturesandtrackingtheirevolution,"IEEE Computer27,pp.20{27,July M.Sheelagh,R.Carpendale,D.J.Cowperthwaite,andF.D.Fracchia,\Distortionviewingtechniquesfor3- dimensionaldata,"inproceedings'96informationvisualization{sponsoredbytheieeecomputersociety, pp.46{53, AmerinexA.I.,Inc,409MainStreet,Amherst,MA01002,GeneralSupportToolsforImageUnderstanding, 1992.( 11.A.S.Jacobson,A.L.Berkin,andM.N.Orton,\LinkWinds:Interactivescienticdataanalysisandvisualization,"CommunicationsoftheACM37,pp.43{52,April E.PepkeandJ.Lyons,SciAn:User'sManual.SupercomputerComputationsResearchInstitute,FloridaState University,Tallahassee,Florida,1993.( 13.R.B.HaberandD.A.McNabb,\Visualizationidioms:Aconceptualmodelforscienticvisualizationsystems," invisualizationinscienticcomputing,b.shriver,g.m.nielson,andl.j.rosenblum,eds.,pp.74{93,ieee ComputerSocietyPress, C.Upson,T.Faulhaber,D.Kamins,D.Schlegel,D.Laidlaw,F.Vroom,R.Gurwitz,andA.vanDam,\The applicationvisualizationsystem:acomputationalenvironmentforscienticvisualization,"ieeecomputer GraphicsandApplications9(4),pp.30{42, G.AbramandL.Treinish,\Anextendeddata-owarchitecturefordataanalysisandvisualization,"inProceedingsVisualization'95{sponsoredbytheIEEEComputerSociety,pp.263{270, D.S.Dyer,\Adataowtoolkitforvisualization,"IEEEComputerGraphicsandApplications10(4),pp.60{69, SiliconGraphicsComputerSystems{SiliconGraphicsInc.,IRISExplorerTechnicalOverview,April1992. ( 18.M.Young,D.Argiro,andS.Kubica,\Cantata:VisualprogrammingenvironmentfortheKhorossystem," ComputerGraphics29,pp.22{24,May J.Wood,K.Brodlie,andH.Wright,\Visualisationovertheworldwidewebanditsapplicationtoenvironmental data,"inproceedingsvisualization'96{sponsoredbytheieeecomputersociety, H.SenayandE.Ignatius,\Aknowledge-basedsystemforvisualizationdesign,"IEEEComputerGraphicsand Applications14,pp.36{47,November W.J.Schroeder,W.E.Lorensen,G.D.Montanaro,andC.R.Volpe,\VISAGE:anobject-orientedscientic visualizationsystem,"inproceedingsvisualization'92{sponsoredbytheieeecomputersociety,pp.219{226, 1992.
11 22.J.Wernecke,TheInventorMentor:ProgrammingObject-Oriented3DGraphicswithOpenInventor,Release2, 24.K.J.ZuiderveldandM.A.Viergever,\Multi-modalvolumevisualizationusingobject-orientedmethods,"in 23.J.Neider,T.Davis,andM.Woo,OpenGLProgrammingGuide{TheOcialGuidetoLearningOpenGL, Release1,Addison-Wesley, SymposiumonVolumeVisualization{Washington,D.C.,October17{18,A.KaufmanandW.Krueger, 26.W.FelgerandF.Schroder,\Thevisualizationinputpipeline{enablingsemanticinteractioninscienticvisualization,"inEurographics'92(ComputerGraphicsForumVolume11No.3){AlistairKilgourandLars 25.C.Williams,J.Rasure,andC.Hansen,\Thestateoftheartofvisuallanguagesforvisualization,"inProceedings Visualization'92{sponsoredbytheIEEEComputerSociety,pp.202{209,1992. eds.,pp.59{74,acmsiggraphandieeecomputersocietypress,1994.(vroom). 28.H.-G.PagendarmandF.H.Post,\Comparativevisualization-approachesandexamples,"inFifthEurographics 27.J.Mackinlay,\Automatingthedesignofgraphicalpresentationsofrelationalinformation,"ACMtransactions ongraphics5(2),pp.110{141,1986. KjelldahlEds.,pp.139{151,BlackwellPublishers,1992. WorkshoponVisualizationinScienticComputing,May1994.
Data Visualization - A Very Rough Guide
Data Visualization - A Very Rough Guide Ken Brodlie University of Leeds 1 What is This Thing Called Visualization? Visualization Use of computersupported, interactive, visual representations of data to
Advanced Diploma of Professional Game Development - Game Art and Animation (10343NAT)
The Academy of Interactive Entertainment 201 Advanced Diploma of Professional Game Development - Game Art and Animation (10343NAT) Subject Listing Online Campus 0 Page Contents 3D Art Pipeline...2 Grasping
The Evolution of Computer Graphics. SVP, Content & Technology, NVIDIA
The Evolution of Computer Graphics Tony Tamasi SVP, Content & Technology, NVIDIA Graphics Make great images intricate shapes complex optical effects seamless motion Make them fast invent clever techniques
The Visualization Pipeline
The Visualization Pipeline Conceptual perspective Implementation considerations Algorithms used in the visualization Structure of the visualization applications Contents The focus is on presenting the
Volume visualization I Elvins
Volume visualization I Elvins 1 surface fitting algorithms marching cubes dividing cubes direct volume rendering algorithms ray casting, integration methods voxel projection, projected tetrahedra, splatting
3D GIS: It s a Brave New World
3D GIS: It s a Brave New World Reida ELWANNAS, United Arab Emirates Key words: 3D Models, CityGML, GIS SUMMARY For the past several decades we have been enjoying the power of GIS. The introduction of 2.5D
How To Model Surfaces With Rp
Models of surfaces by 3D printing 17/10/2007 Gregorio Franzoni Università di Cagliari Dip. di Matematica e Informatica 1 Models of mathematical objects Why producing visual and physical models? Fields
Interactive Level-Set Deformation On the GPU
Interactive Level-Set Deformation On the GPU Institute for Data Analysis and Visualization University of California, Davis Problem Statement Goal Interactive system for deformable surface manipulation
Creation of an Unlimited Database of Virtual Bone. Validation and Exploitation for Orthopedic Devices
Creation of an Unlimited Database of Virtual Bone Population using Mesh Morphing: Validation and Exploitation for Orthopedic Devices Najah Hraiech 1, Christelle Boichon 1, Michel Rochette 1, 2 Thierry
TEXT ANALYTICS INTEGRATION
TEXT ANALYTICS INTEGRATION A TELECOMMUNICATIONS BEST PRACTICES CASE STUDY VISION COMMON ANALYTICAL ENVIRONMENT Structured Unstructured Analytical Mining Text Discovery Text Categorization Text Sentiment
Unit & Live Testing for SSIS
Unit & Live Testing for SSIS SSIS Tester is the framework that makes unit and integration testing of SSIS packages possible Test implementation follows common methodology as seen in MS Test or Nunit Use
Architectures for massive data management
Architectures for massive data management Apache Kafka, Samza, Storm Albert Bifet [email protected] October 20, 2015 Stream Engine Motivation Digital Universe EMC Digital Universe with
Visualisatie BMT. Introduction, visualization, visualization pipeline. Arjan Kok Huub van de Wetering ([email protected])
Visualisatie BMT Introduction, visualization, visualization pipeline Arjan Kok Huub van de Wetering ([email protected]) 1 Lecture overview Goal Summary Study material What is visualization Examples
Interactive Level-Set Segmentation on the GPU
Interactive Level-Set Segmentation on the GPU Problem Statement Goal Interactive system for deformable surface manipulation Level-sets Challenges Deformation is slow Deformation is hard to control Solution
Getting Started with Tableau Server 6.1
Getting Started with Tableau Server 6.1 Welcome to Tableau Server. This guide will walk you through the basic steps to install and configure Tableau Server. Then follow along using sample data and users
Publishing Stories to Lumira Cloud
Publishing Stories to Lumira Cloud The latest release of SAP Lumira and Lumira Cloud includes the ability to publish stories designed in Lumira (or Predictive Analysis) to Lumira Cloud. Today s blog shows
Best Practises for LabVIEW FPGA Design Flow. uk.ni.com ireland.ni.com
Best Practises for LabVIEW FPGA Design Flow 1 Agenda Overall Application Design Flow Host, Real-Time and FPGA LabVIEW FPGA Architecture Development FPGA Design Flow Common FPGA Architectures Testing and
EDI Overview 3. EDIConnect Benefits 3. EDIConnect - A Complete Solution 4. Key Technologies 5. Translator 5. Transaction Builder 7
EDIConnect Table of Contents EDI Overview 3 EDIConnect Benefits 3 EDIConnect - A Complete Solution 4 Key Technologies 5 Translator 5 Transaction Builder 7 Key Transformations 8 Validator 11 Partner Manager
Computer Graphics AACHEN AACHEN AACHEN AACHEN. Public Perception of CG. Computer Graphics Research. Methodological Approaches - - - - - - - - - -
Public Perception of CG Games Computer Graphics Movies Computer Graphics Research algorithms & data structures fundamental continuous & discrete mathematics optimization schemes 3D reconstruction global
Forecasting Traffic Growth and Impact with Cisco MATE Design
White Paper Forecasting Traffic Growth and Impact with Cisco MATE Design Forecasting Scenarios for Planners, Engineers, and Operations What You Will Learn The ability to predict the impact of traffic growth
CAD and Creativity. Contents
CAD and Creativity K C Hui Department of Automation and Computer- Aided Engineering Contents Various aspects of CAD CAD training in the university and the industry Conveying fundamental concepts in CAD
2933A: Developing Business Process and Integration Solutions Using Microsoft BizTalk Server 2006
www.peaksolutions.com 2933A: Developing Business Process and Integration Solutions Using Microsoft BizTalk Server 2006 Course 2933A: Five days; Instructor-Led Introduction This five-day instructor-led
SAP PPM Portfolio Analysis Dashboard
SAP PPM Portfolio Analysis Dashboard A PPM Consulting Solution SAP PPM Portfolio Analysis Dashboard A number of portfolio management process steps require in detail information to execute a reliable comparison
SolidWorks Corporation: CSWP Sample Exam
SolidWorks Corporation: CSWP Sample Exam Certified SolidWorks Professional: Solid Modeling Specialist (CSWP-CORE) These questions are an example of what to expect in Segment 1 of the CSWP-CORE exam. How
Firewall Verification and Redundancy Checking are Equivalent
Firewall Verification and Redundancy Checking are Equivalent H. B. Acharya University of Texas at Austin [email protected] M. G. Gouda National Science Foundation University of Texas at Austin [email protected]
AML710 CAD LECTURE 1. Introduction to CAD. Motivation Principles of CAD / CAM. AML710 Computer Aided Design
AML710 CAD LECTURE 1 Introduction to CAD Motivation Principles of CAD / CAM AML710 Computer Aided Design L-T-P 3-0-2 : 4 Credits Prerequisites and background Course Coordinator Course Webpage http://web.iitd.ac.in/~hegde/cad
How To Get A Computer Engineering Degree
COMPUTER ENGINEERING GRADUTE PROGRAM FOR MASTER S DEGREE (With Thesis) PREPARATORY PROGRAM* COME 27 Advanced Object Oriented Programming 5 COME 21 Data Structures and Algorithms COME 22 COME 1 COME 1 COME
Success Factors Recruitment Management
Success Factors Recruitment Management TODAY S AGENDA In this training we will introduce you to: The Recruiting system Creating Job Requisitions Requisition Approval Process Accessing Candidate Applications
Performance Management and KPIs
Performance Management and KPIs Outline Business Performance Management (BPM) Dashboards SSAS: KPI and Dashboards 2 Business Performance Management (BPM) 3 Business Performance Management (BPM) BPM encompasses
How To Create A Data Visualization
CSCI 552 Data Visualization Shiaofen Fang What Is Visualization? We observe and draw conclusions A picture says more than a thousand words/numbers Seeing is believing, seeing is understanding Beware of
PROGRAM OUTLINE 2015 - PAGE 1
PROGRAM OUTLINE 2015 - PAGE 1 MODULE 1 (8 WEEKS) INTRO TO 3D MODELING WITH MAYA An introduction on how to begin building and manipulating objects in 3D Space. DRAWING BASICS Here we will learn drawing
Setup for Success. We encourage you to visualize the following when thinking about PipelineDeals three core concepts:
G E T T I N G S TA R T E D W I T H P I P E L I N E D E A L S Setup for Success We encourage you to visualize the following when thinking about PipelineDeals three core concepts: PEOPLE are your relationships,
Scalable Machine Learning - or what to do with all that Big Data infrastructure
- or what to do with all that Big Data infrastructure TU Berlin blog.mikiobraun.de Strata+Hadoop World London, 2015 1 Complex Data Analysis at Scale Click-through prediction Personalized Spam Detection
Integrated Modeling for Data Integrity in Product Change Management
Integrated Modeling for Data Integrity in Product Change Management László Horváth*, Imre J. Rudas** Institute of Intelligent Engineering Systems, John von Neumann Faculty of Informatics, Budapest Tech
PCL - SURFACE RECONSTRUCTION
PCL - SURFACE RECONSTRUCTION TOYOTA CODE SPRINT Alexandru-Eugen Ichim Computer Graphics and Geometry Laboratory PROBLEM DESCRIPTION 1/2 3D revolution due to cheap RGB-D cameras (Asus Xtion & Microsoft
Armanino LLP Welcomes You To Today s Webinar:
Armanino LLP Welcomes You To Today s Webinar: Turbo Charge Your Sales Team New Sales & Marketing Dashboard The presentation will begin in a few moments 1 Armanino LLP armaninollp.com Armanino LLP armaninollp.com
Reduce Waste with Spray Technique Training in painting & coating operations
1 Innovation in Spray Technologies to Reduce Emissions Reduce Waste with Spray Technique Training in painting & coating operations Sue Schauls March 2007 2 Innovation in Spray Technologies to Reduce Emissions
Solving Common Sales & Marketing Problems Using Marketing Automation Software (MAS) by Ann Stanley, Managing Director
Solving Common Sales & Marketing Problems Using Marketing Automation Software (MAS) by Ann Stanley, Managing Director What is Marketing Automation? A software platform used for automation and integration
Chapter 12. Development Tools for Microcontroller Applications
Chapter 12 Development Tools for Microcontroller Applications Lesson 01 Software Development Process and Development Tools Step 1: Development Phases Analysis Design Implementation Phase 1 Phase 2 Phase
Appendix M INFORMATION TECHNOLOGY (IT) YOUTH APPRENTICESHIP
Appendix M INFORMATION TECHNOLOGY (IT) YOUTH APPRENTICESHIP PROGRAMMING & SOFTWARE DEVELOPMENT AND INFORMATION SUPPORT & SERVICES PATHWAY SOFTWARE UNIT UNIT 5 Programming & and Support & s: (Unit 5) PAGE
Technical white paper. www.la-con.com
Business Intelligence applications developed with IBM s Cognos Technical white paper www.la-con.com Table of contents: BUSINESS INTELLIGENCE 3 SUCCEED BI 3 LIFELINE 4 REPORT AND CHART FEATURES 5 2 Business
Water Flow in. Alex Vlachos, Valve July 28, 2010
Water Flow in Alex Vlachos, Valve July 28, 2010 Outline Goals & Technical Constraints How Artists Create Flow Maps Flowing Normal Maps in Left 4 Dead 2 Flowing Color Maps in Portal 2 Left 4 Dead 2 Goals
VIDEO SCRIPT: 8.2.1 Data Management
VIDEO SCRIPT: 8.2.1 Data Management OUTLINE/ INTENT: Create and control a simple numeric list. Use numeric relationships to describe simple geometry. Control lists using node lacing settings. This video
TRANSFORMING LIFE SCIENCES THROUGH ENTERPRISE ANALYTICS
TRANSFORMING LIFE SCIENCES THROUGH ENTERPRISE HOW SOLUTIONS AND ENTERPRISE ENVIRONMENTS ARE IMPROVING EFFICIENCY AND ENABLING NEW INSIGHTS THROUGHOUT THE LIFE SCIENCES INDUSTRY Matt Gross Director Health
THE FUTURE OF SOCIAL CRM
THE FUTURE OF SOCIAL CRM 28/11/2013 GARETH EDWARDS Contents The Future of Social CRM... 3 Basic Features of Social Media Management Platforms... 3 Terms... 4 The Solution... 5 What a CRM System Should
NewZapp Managed Service
NewZapp Managed Service Email Marketing performs at its best when part of a complete digital strategy. Outsourcing your email campaigns to NewZapp gives you the power to focus on other business goals whilst
Automotive EMI System
Automotive EMI System Page 1 Model Types Body Variants Car Geometry Board Net, Wire Path, ECU Configuration, Antenna Configurations... Parameters Affecting EMC Car Supply Net Voltage Regulator Signals
Motivation: Smartphone Market
Motivation: Smartphone Market Smartphone Systems External Display Device Display Smartphone Systems Smartphone-like system Main Camera Front-facing Camera Central Processing Unit Device Display Graphics
ADVANCED COMMUNICATION SERIES SPEAKING TO INFORM. Assignment #1: THE SPEECH TO INFORM
Assignment #1: THE SPEECH TO INFORM Select new and useful information for presentation to the audience Organize the information for easy understandability and retention Present the information in a way
Querying MongoDB without programming using FUNQL
Querying MongoDB without programming using FUNQL FUNQL? Federated Unified Query Language What does this mean? Federated - Integrates different independent stand alone data sources into one coherent view
Dong-Joo Kang* Dong-Kyun Kang** Balho H. Kim***
Visualization Issues of Mass Data for Efficient HMI Design on Control System in Electric Power Industry Visualization in Computerized Operation & Simulation Tools Dong-Joo Kang* Dong-Kyun Kang** Balho
Using Power to Improve C Programming Education
Using Power to Improve C Programming Education Jonas Skeppstedt Department of Computer Science Lund University Lund, Sweden [email protected] jonasskeppstedt.net jonasskeppstedt.net [email protected]
OVERVIEW AVISO INSIGHTS
OVERVIEW Aviso provides the leading predictive analytics software to help sales organizations optimize their performance and exceed their revenue goals. Using a unique combination of machine learning algorithms
Master of Science in Computer Science
Master of Science in Computer Science Background/Rationale The MSCS program aims to provide both breadth and depth of knowledge in the concepts and techniques related to the theory, design, implementation,
An Introduction to Qualitative Data Analysis (QDA) with Atlas.ti
An Introduction to Qualitative Data Analysis (QDA) with Atlas.ti Ronald J. Shope Office of Qualitative & Mixed Methods Research Presentation to SSP March 2, 2007 Atlas.ti: http://www.atlasti.com/ Overview
Industrial Vision Days 2012 Making Cameras Smarter: FPGA Based Image Pre-processing Unleashed
Industrial Vision Days 2012 Making Cameras Smarter: FPGA Based Image Pre-processing Unleashed Announcement of Partnership Seite: 3 High Quality Digital Cameras and Vision Sensors Visual FPGA Programming
Sales Pipeline/Funnel Management Template User Guide
Sales Pipeline/Funnel Management Template User Guide Sales Funnel/Pipeline Management Template This Excel-based template is a comprehensive application for Sales Funnel/Pipeline management. The sales pipeline
Real-time Processing and Visualization of Massive Air-Traffic Data in Digital Landscapes
Real-time Processing and Visualization of Massive Air-Traffic Data in Digital Landscapes Digital Landscape Architecture 2015, Dessau Stefan Buschmann, Matthias Trapp, and Jürgen Döllner Hasso-Plattner-Institut,
PROJECT MANAGEMENT INNOVATION BASED ON BUILDING INFORMATION MODELING
PROJECT MANAGEMENT INNOVATION BASED ON BUILDING INFORMATION MODELING CHANGHUA LI Hefei University, Office of Science and Technology, China [email protected] LEON PRETORIUS University of Pretoria, Department
Avature CRM. Get Engaged to Talent
Get Engaged to Talent V8 Source, attract and engage critical talent ahead of business demand Managing and optimizing global sourcing efforts can be a huge challenge. Typically, recruiters have no choice
Exclusive access to metrics to measure KPIs in real time, and at scale
Analytics Exclusive access to metrics to measure KPIs in real time, and at scale Metrics to optimize your campaigns Isolate sources that matter most Advanced filtering Track active and passive customer
Visualizing Electromagnetic Fields: The Visualization Toolkit. Michael Selvanayagam
Visualizing Electromagnetic Fields: The Visualization Toolkit Michael Selvanayagam Visualization What is the purpose of visualizing electromagnetic (EM) Fields? Visualization 1. Understand the geometry
Predictive Analytics
Predictive Analytics How many of you used predictive today? 2015 SAP SE. All rights reserved. 2 2015 SAP SE. All rights reserved. 3 How can you apply predictive to your business? Predictive Analytics is
credits Programming with actors Dave B. Parlour Xilinx Research Labs Thomas A. Lenart Lund University Robert Esser
Programming with actors Jörn W. Janneck credits Dave B. Parlour Thomas A. Lenart Lund University Robert Esser University of Adelaide Ptolemy Miniconference VI, 2005-05-12-2 The FPGA Platform: Huge amounts
Building Information Modelling (BIM); How it Improves Building Performance. R.P. Kumanayake Lecturer, Department of Civil Engineering
Building Information Modelling (BIM); How it Improves Building Performance R.P. Kumanayake Lecturer, Department of Civil Engineering R.M.P.S. Bandara Lecturer, Department of Mechanical Engineering Faculty
Scientific Visualization with Open Source Tools. HM 2014 Julien Jomier [email protected]
Scientific Visualization with Open Source Tools HM 2014 Julien Jomier [email protected] Visualization is Communication Challenges of Visualization Challenges of Visualization Heterogeneous data
Facts about Visualization Pipelines, applicable to VisIt and ParaView
Facts about Visualization Pipelines, applicable to VisIt and ParaView March 2013 Jean M. Favre, CSCS Agenda Visualization pipelines Motivation by examples VTK Data Streaming Visualization Pipelines: Introduction
APD to Update Marketing Attributes from SAP BI to SAP CRM
APD to Update Marketing Attributes from SAP BI to SAP CRM Applies to: SAP NetWeaver BI 7.0 and SAP CRM 5.0(and above). For more information, visit the EDW homepage. Summary This article gives a clear picture
4.4 Transforming Circles
Specific Curriculum Outcomes. Transforming Circles E13 E1 E11 E3 E1 E E15 analyze and translate between symbolic, graphic, and written representation of circles and ellipses translate between different
What's New in Heavy Civil Construction Software. Chris Richardson HCC-6898
What's New in Heavy Civil Construction Software Chris Richardson HCC-6898 Segment Initiatives Make it simple Easy to use Integrated with the Heavy Civil Construction portfolio Workflow improvements Provide
Geometry: Unit 1 Vocabulary TERM DEFINITION GEOMETRIC FIGURE. Cannot be defined by using other figures.
Geometry: Unit 1 Vocabulary 1.1 Undefined terms Cannot be defined by using other figures. Point A specific location. It has no dimension and is represented by a dot. Line Plane A connected straight path.
XT B-Rep; Making it Real
XT B-Rep; Making it Real John Juckes Siemens PL SEPTEMBER 12-14 What is XT? Based on research from the Cambridge University Computer lab under Ian Braid The world s leading high precision, production-proven,
Service-Oriented Visualization of Virtual 3D City Models
Service-Oriented Visualization of Virtual 3D City Models Authors: Jan Klimke, Jürgen Döllner Computer Graphics Systems Division Hasso-Plattner-Institut, University of Potsdam, Germany http://www.hpi3d.de
Computers in Film Making
Computers in Film Making Snow White (1937) Computers in Film Making Slide 1 Snow White - Disney s Folly Moral: Original Budget $250,000 Production Cost $1,488,422 Frames 127,000 Production time 3.5 years
A Flexible Medical Image Archiving and Reporting System
A Flexible Medical Image Archiving and Reporting System Dzmitry Hlindzich 1), Pavel Krasnopevtsev 1), Tudor Poerner 2), Aleh Kryvanos 3) 1) Institute for Computer Engineering, University of Heidelberg,
WESTMORELAND COUNTY PUBLIC SCHOOLS 2011 2012 Integrated Instructional Pacing Guide and Checklist Computer Math
Textbook Correlation WESTMORELAND COUNTY PUBLIC SCHOOLS 2011 2012 Integrated Instructional Pacing Guide and Checklist Computer Math Following Directions Unit FIRST QUARTER AND SECOND QUARTER Logic Unit
Reporting in The Financial Edge David Kilmer
Reporting in The Financial Edge David Kilmer Agenda Visual Chart Organizer vs. Reports Why Use the Visual Chart Organizer The Design Process Popular Report Features Advanced Reporting Concepts Page #2
