PCL - SURFACE RECONSTRUCTION
|
|
|
- Andrea Greer
- 10 years ago
- Views:
Transcription
1 PCL - SURFACE RECONSTRUCTION TOYOTA CODE SPRINT Alexandru-Eugen Ichim Computer Graphics and Geometry Laboratory
2 PROBLEM DESCRIPTION 1/2 3D revolution due to cheap RGB-D cameras (Asus Xtion & Microsoft Kinect) Affordability comes with poor quality: high level of noise in both the depth and the color images quantization artifacts missing pixels various color image distortions, specific to webcam sensors and optics
3 PROBLEM DESCRIPTION 2/2 Incapability of the Kinect to record transparent or shiny objects
4 MOTIVATION 3D points are sampling surfaces - no dimension, orientation, etc. (see surflets) point neighborhoods and features capture some aspects of these surfaces in some cases we are interested in the actual surface Knowing the real surface enables: more accurate feature extraction smoothing and resampling (hole filling) collision and occlusion checks texture mapping fitting and recognition
5 DATASET COLLECTION 30 realistic situations that a personal robot might face in an undirected human environment captured so that to simulate a robot movement and to record all the known sensor artifacts all available at
6 pcl::surface REVAMP CloudSurfaceProcessing PointCloud to PointCloud for better surface approximation e.g., MovingLeastSquares, BilateralUpsampling MeshConstruction PointCloud to PolygonMesh, convert cloud to mesh without modifying vertex positions e.g., ConcaveHull, ConvexHull, OrganizedFastMesh, GreedyProjectionTriangulation SurfaceReconstruction PointCloud to PolygonMesh, generate mesh with a possibly modified underlying vertex set e.g., GridProjection, MarchingCubes, SurfelSmoothing, Poisson MeshProcessing PolygonMesh to PolygonMesh, improve input meshes by modifying connectivity and/or vertices e.g., EarClipping, MeshSmoothingLaplacianVTK, MeshSmoothingWindowedSincVTK, MeshSubdivisionVTK
7 MOVING LEAST SQUARES 1/2 Approximation of the underlying surface with an analytical function Based on a (weighted) neighborhood Height-map along a tangent normal onto which the query point is projected Complexity of the used function (and of the tangent estimation) define accuracy/runtime Having a function enables accurate computation of normals, surface curves, and up/down-sampling
8 MOVING LEAST SQUARES M. Levin, Mesh-independent surface interpolation,geometric Modeling for Scientific Visualization Springer-Verlag, 2003, /2 1. Fit plane to local surface (PCA) 2. Fit a polynomial function in the set of distances from the points to the surface. 3. Project points back to surface
9 MOVING LEAST SQUARES 1.SMOOTHING 1/3 MLS applied on the Bottles dataset Eliminates noise. from left to right: original scan MLS smoothed with search radius = 3 cm and second order polynomial fitting MLS smoothed with search radius = 5 cm and second order polynomial fitting
10 MOVING LEAST SQUARES 1.SMOOTHING 2/3 MLS applied on the Bed Sheets dataset from left to right: original scan MLS smoothed with search radius = 5 cm and second order polynomial fitting MLS smoothed with search radius = 3 cm and second order polynomial fitting Smoother surfaces.
11 MOVING LEAST SQUARES 1.SMOOTHING 3/3 3.4 x order 0 order 1 order 2 order 3 RMS error Adding noise to original Stanford Bunny dataset with standard deviation (resulting in RMSE of ) Algorithm search radius Best result at search_radius=0.005, improvement of RMSE with 15% (similarly for the Dragon dataset) Varying the order of the polynomial fitting: higher order beneficial when large surface/ curvature variance in neighborhood
12 MOVING LEAST SQUARES 2. UPSAMPLING 1/6 SAMPLE_LOCAL_PLANE Door Handle dataset After Before
13 MOVING LEAST SQUARES 2. UPSAMPLING 2/6 SAMPLE_LOCAL_PLANE More grippable surfaces. Tupperware dataset After Before
14 MOVING LEAST SQUARES 2. UPSAMPLING 3/6 VOXEL_GRID_DILATION
15 MOVING LEAST SQUARES 2. UPSAMPLING 4/6 VOXEL_GRID_DILATION Computer Screen dataset Fills relatively large holes. Before After
16 MOVING LEAST SQUARES 2. UPSAMPLING 5/6 Sample locally fitted polynomial in different ways.
17 MOVING LEAST SQUARES 2. UPSAMPLING 6/6 Plane fitting quality (images show inliers) original MLS, no upsampling SAMPLE_LOCAL_PLANE Best performer! RANDOM_UNIFORM_DENSITY VOXEL_GRID_DILATION
18 BILATERAL FILTERING UPSAMPLING 1/4 Kinect modes: 640x480 RGB image + 640x480 depth image at 30Hz 1280x1024 RGB image + 640x480 depth image at 15 Hz Why not use the better quality RGB image to enhance the depth map? J. Kopf, Joint Bilateral Upsampling, ACM Transactions on Graphics (Proceedings of SIGGRAPH 2007)
19 BILATERAL FILTERING UPSAMPLING 2/4 4x the amount of points. Smoother surfaces. original upsampled
20 Fills small holes. BILATERAL FILTERING UPSAMPLING 3/4 More iterations - fill larger holes - needs more computation time
21 BILATERAL FILTERING UPSAMPLING 4/4 Still, this does not solve for the problem of transparent objects...
22 MARCHING CUBES Have implementations of 2 classical methods: Hoppe et al.: RBF:
23 M. Kazhdan, Poisson Surface Reconstruction, Symposium on Geometry Processing (June 2006) POISSON SURFACE RECONSTRUCTION Sensitive to noise.
24 OTHER METHODS Mesh Operations from VTK MeshSmoothingLaplacianVTK MeshSmoothingWindowedSincVTK Need to convert between data types. MeshSubdivisionVTK OrganizedFastMesh (demo) ConcaveHull, ConvexHull - use QHull library GridProjection - work of WG intern, Rosie Li
25 RECONSTRUCTION PIPELINE EXAMPLE 1/4 #include <pcl/common/common.h> #include <pcl/io/pcd_io.h> #include <pcl/features/normal_3d_omp.h> #include <pcl/surface/mls.h> #include <pcl/surface/poisson.h> #include <pcl/io/vtk_io.h> using namespace pcl; int main (int argc, char **argv) { if (argc!= 3) { PCL_ERROR ("Syntax: %s input.pcd output.ply\n", argv[0]); return -1; } PointCloud<PointXYZ>::Ptr cloud (new PointCloud<PointXYZ> ()); io::loadpcdfile (argv[1], *cloud);
26 RECONSTRUCTION PIPELINE EXAMPLE 2/4 MovingLeastSquares<PointXYZ, PointXYZ> mls; mls.setinputcloud (cloud); mls.setsearchradius (0.01); mls.setpolynomialfit (true); mls.setpolynomialorder (2); mls.setupsamplingmethod (MovingLeastSquares<PointXYZ, PointXYZ>::SAMPLE_LOCAL_PLANE); mls.setupsamplingradius (0.005); mls.setupsamplingstepsize (0.003); PointCloud<PointXYZ>::Ptr cloud_smoothed (new PointCloud<PointXYZ> ()); mls.process (*cloud_smoothed); NormalEstimationOMP<PointXYZ, Normal> ne; ne.setnumberofthreads (8); ne.setinputcloud (cloud_smoothed); ne.setradiussearch (0.01); Eigen::Vector4f centroid; compute3dcentroid (*cloud_smoothed, centroid); ne.setviewpoint (centroid[0], centroid[1], centroid[2]); PointCloud<Normal>::Ptr cloud_normals (new PointCloud<Normal> ()); ne.compute (*cloud_normals); for (size_t i = 0; i < cloud_normals->size (); ++i) { cloud_normals->points[i].normal_x *= -1; cloud_normals->points[i].normal_y *= -1; cloud_normals->points[i].normal_z *= -1; } PointCloud<PointNormal>::Ptr cloud_smoothed_normals (new PointCloud<PointNormal> ()); concatenatefields (*cloud_smoothed, *cloud_normals, *cloud_smoothed_normals);
27 RECONSTRUCTION PIPELINE EXAMPLE 3/4
28 RECONSTRUCTION PIPELINE EXAMPLE 4/4 Poisson<PointNormal> poisson; poisson.setdepth (9); poisson.setinputcloud (cloud_smoothed_normals); PolygonMesh mesh; poisson.reconstruct (mesh); io::savevtkfile (argv[2], mesh); } return 0;
29 THANKS!
PCL Tutorial: The Point Cloud Library By Example. Jeff Delmerico. Vision and Perceptual Machines Lab 106 Davis Hall UB North Campus. jad12@buffalo.
PCL Tutorial: The Point Cloud Library By Example Jeff Delmerico Vision and Perceptual Machines Lab 106 Davis Hall UB North Campus [email protected] February 11, 2013 Jeff Delmerico February 11, 2013 1/38
How To Create A Surface From Points On A Computer With A Marching Cube
Surface Reconstruction from a Point Cloud with Normals Landon Boyd and Massih Khorvash Department of Computer Science University of British Columbia,2366 Main Mall Vancouver, BC, V6T1Z4, Canada {blandon,khorvash}@cs.ubc.ca
Fast and Robust Normal Estimation for Point Clouds with Sharp Features
1/37 Fast and Robust Normal Estimation for Point Clouds with Sharp Features Alexandre Boulch & Renaud Marlet University Paris-Est, LIGM (UMR CNRS), Ecole des Ponts ParisTech Symposium on Geometry Processing
A Genetic Algorithm-Evolved 3D Point Cloud Descriptor
A Genetic Algorithm-Evolved 3D Point Cloud Descriptor Dominik Wȩgrzyn and Luís A. Alexandre IT - Instituto de Telecomunicações Dept. of Computer Science, Univ. Beira Interior, 6200-001 Covilhã, Portugal
Point Cloud Simulation & Applications Maurice Fallon
Point Cloud & Applications Maurice Fallon Contributors: MIT: Hordur Johannsson and John Leonard U. of Salzburg: Michael Gschwandtner and Roland Kwitt Overview : Dense disparity information Efficient Image
Segmentation of building models from dense 3D point-clouds
Segmentation of building models from dense 3D point-clouds Joachim Bauer, Konrad Karner, Konrad Schindler, Andreas Klaus, Christopher Zach VRVis Research Center for Virtual Reality and Visualization, Institute
Real-Time 3D Reconstruction Using a Kinect Sensor
Computer Science and Information Technology 2(2): 95-99, 2014 DOI: 10.13189/csit.2014.020206 http://www.hrpub.org Real-Time 3D Reconstruction Using a Kinect Sensor Claudia Raluca Popescu *, Adrian Lungu
Terrain Traversability Analysis using Organized Point Cloud, Superpixel Surface Normals-based segmentation and PCA-based Classification
Terrain Traversability Analysis using Organized Point Cloud, Superpixel Surface Normals-based segmentation and PCA-based Classification Aras Dargazany 1 and Karsten Berns 2 Abstract In this paper, an stereo-based
CS277 - Experimental Haptics
Programming Assignment #3 Due Date: Tuesday, April 29, 11:59 PM Thus far, you have rendered virtual objects in the form of force fields and implicit surfaces defined by mathematical equations. These objects
Modelling 3D Avatar for Virtual Try on
Modelling 3D Avatar for Virtual Try on NADIA MAGNENAT THALMANN DIRECTOR MIRALAB UNIVERSITY OF GENEVA DIRECTOR INSTITUTE FOR MEDIA INNOVATION, NTU, SINGAPORE WWW.MIRALAB.CH/ Creating Digital Humans Vertex
A. OPENING POINT CLOUDS. (Notepad++ Text editor) (Cloud Compare Point cloud and mesh editor) (MeshLab Point cloud and mesh editor)
MeshLAB tutorial 1 A. OPENING POINT CLOUDS (Notepad++ Text editor) (Cloud Compare Point cloud and mesh editor) (MeshLab Point cloud and mesh editor) 2 OPENING POINT CLOUDS IN NOTEPAD ++ Let us understand
Removing Moving Objects from Point Cloud Scenes
1 Removing Moving Objects from Point Cloud Scenes Krystof Litomisky [email protected] Abstract. Three-dimensional simultaneous localization and mapping is a topic of significant interest in the research
Juha Hyvärinen SURFACE RECONSTRUCTION OF POINT CLOUDS CAPTURED WITH MICROSOFT KINECT
Juha Hyvärinen SURFACE RECONSTRUCTION OF POINT CLOUDS CAPTURED WITH MICROSOFT KINECT SURFACE RECONSTRUCTION OF POINT CLOUDS CAPTURED WITH MICROSOFT KINECT Juha Hyvärinen Bachelor s Thesis Spring 2012 Degree
A technical overview of the Fuel3D system.
A technical overview of the Fuel3D system. Contents Introduction 3 How does Fuel3D actually work? 4 Photometric imaging for high-resolution surface detail 4 Optical localization to track movement during
Using Photorealistic RenderMan for High-Quality Direct Volume Rendering
Using Photorealistic RenderMan for High-Quality Direct Volume Rendering Cyrus Jam [email protected] Mike Bailey [email protected] San Diego Supercomputer Center University of California San Diego Abstract With
t t k t t tt t 7 4 4 k
tt k tt knt ttt t t t t t tt k k t t k t t tt t 7 4 4 k t ttt t tt t tt æ æ ææ k k k ttt k æ æ æ æ æ ææ ææ k t t tt t kt n n t 4 4 4 44 44 44 4 44 æææ æ æ 7 4 477 4 47 4 7 ¹ æ ¹ æ....... t ttt k : k tt
A Short Introduction to Computer Graphics
A Short Introduction to Computer Graphics Frédo Durand MIT Laboratory for Computer Science 1 Introduction Chapter I: Basics Although computer graphics is a vast field that encompasses almost any graphical
3D Face Modeling. Vuong Le. IFP group, Beckman Institute University of Illinois ECE417 Spring 2013
3D Face Modeling Vuong Le IFP group, Beckman Institute University of Illinois ECE417 Spring 2013 Contents Motivation 3D facial geometry modeling 3D facial geometry acquisition 3D facial deformation modeling
CUBE-MAP DATA STRUCTURE FOR INTERACTIVE GLOBAL ILLUMINATION COMPUTATION IN DYNAMIC DIFFUSE ENVIRONMENTS
ICCVG 2002 Zakopane, 25-29 Sept. 2002 Rafal Mantiuk (1,2), Sumanta Pattanaik (1), Karol Myszkowski (3) (1) University of Central Florida, USA, (2) Technical University of Szczecin, Poland, (3) Max- Planck-Institut
Monash University Clayton s School of Information Technology CSE3313 Computer Graphics Sample Exam Questions 2007
Monash University Clayton s School of Information Technology CSE3313 Computer Graphics Questions 2007 INSTRUCTIONS: Answer all questions. Spend approximately 1 minute per mark. Question 1 30 Marks Total
On Fast Surface Reconstruction Methods for Large and Noisy Point Clouds
On Fast Surface Reconstruction Methods for Large and Noisy Point Clouds Zoltan Csaba Marton, Radu Bogdan Rusu, Michael Beetz Intelligent Autonomous Systems, Technische Universität München {marton,rusu,beetz}@cs.tum.edu
Deferred Shading & Screen Space Effects
Deferred Shading & Screen Space Effects State of the Art Rendering Techniques used in the 3D Games Industry Sebastian Lehmann 11. Februar 2014 FREESTYLE PROJECT GRAPHICS PROGRAMMING LAB CHAIR OF COMPUTER
PERFORMANCE ANALYSIS OF HIGH RESOLUTION IMAGES USING INTERPOLATION TECHNIQUES IN MULTIMEDIA COMMUNICATION SYSTEM
PERFORMANCE ANALYSIS OF HIGH RESOLUTION IMAGES USING INTERPOLATION TECHNIQUES IN MULTIMEDIA COMMUNICATION SYSTEM Apurva Sinha 1, Mukesh kumar 2, A.K. Jaiswal 3, Rohini Saxena 4 Department of Electronics
MeshLab and Arc3D: Photo-Reconstruction and Processing of 3D meshes
MeshLab and Arc3D: Photo-Reconstruction and Processing of 3D meshes P. Cignoni, M Corsini, M. Dellepiane, G. Ranzuglia, (Visual Computing Lab, ISTI - CNR, Italy) M. Vergauven, L. Van Gool (K.U.Leuven ESAT-PSI
Multispectral stereo acquisition using 2 RGB cameras and color filters: color and disparity accuracy
Multispectral stereo acquisition using 2 RGB cameras and color filters: color and disparity accuracy (a) and Bernhard Hill (b) (a) Institute of Imaging and Computer Vision (b) Research Group Color and
Spatio-Temporally Coherent 3D Animation Reconstruction from Multi-view RGB-D Images using Landmark Sampling
, March 13-15, 2013, Hong Kong Spatio-Temporally Coherent 3D Animation Reconstruction from Multi-view RGB-D Images using Landmark Sampling Naveed Ahmed Abstract We present a system for spatio-temporally
Assessment. Presenter: Yupu Zhang, Guoliang Jin, Tuo Wang Computer Vision 2008 Fall
Automatic Photo Quality Assessment Presenter: Yupu Zhang, Guoliang Jin, Tuo Wang Computer Vision 2008 Fall Estimating i the photorealism of images: Distinguishing i i paintings from photographs h Florin
3D Object Recognition in Clutter with the Point Cloud Library
3D Object Recognition in Clutter with the Point Cloud Library Federico Tombari, Ph.D [email protected] University of Bologna Open Perception Data representations in PCL PCL can deal with both organized
High Performance GPU-based Preprocessing for Time-of-Flight Imaging in Medical Applications
High Performance GPU-based Preprocessing for Time-of-Flight Imaging in Medical Applications Jakob Wasza 1, Sebastian Bauer 1, Joachim Hornegger 1,2 1 Pattern Recognition Lab, Friedrich-Alexander University
How To Fuse A Point Cloud With A Laser And Image Data From A Pointcloud
REAL TIME 3D FUSION OF IMAGERY AND MOBILE LIDAR Paul Mrstik, Vice President Technology Kresimir Kusevic, R&D Engineer Terrapoint Inc. 140-1 Antares Dr. Ottawa, Ontario K2E 8C4 Canada [email protected]
Dense Matching Methods for 3D Scene Reconstruction from Wide Baseline Images
Dense Matching Methods for 3D Scene Reconstruction from Wide Baseline Images Zoltán Megyesi PhD Theses Supervisor: Prof. Dmitry Chetverikov Eötvös Loránd University PhD Program in Informatics Program Director:
PHOTOGRAMMETRIC TECHNIQUES FOR MEASUREMENTS IN WOODWORKING INDUSTRY
PHOTOGRAMMETRIC TECHNIQUES FOR MEASUREMENTS IN WOODWORKING INDUSTRY V. Knyaz a, *, Yu. Visilter, S. Zheltov a State Research Institute for Aviation System (GosNIIAS), 7, Victorenko str., Moscow, Russia
3D Scanner using Line Laser. 1. Introduction. 2. Theory
. Introduction 3D Scanner using Line Laser Di Lu Electrical, Computer, and Systems Engineering Rensselaer Polytechnic Institute The goal of 3D reconstruction is to recover the 3D properties of a geometric
Neural Gas for Surface Reconstruction
Neural Gas for Surface Reconstruction Markus Melato, Barbara Hammer, Kai Hormann IfI Technical Report Series IfI-07-08 Impressum Publisher: Institut für Informatik, Technische Universität Clausthal Julius-Albert
Introduction to Computer Graphics
Introduction to Computer Graphics Torsten Möller TASC 8021 778-782-2215 [email protected] www.cs.sfu.ca/~torsten Today What is computer graphics? Contents of this course Syllabus Overview of course topics
Water Flow in. Alex Vlachos, Valve July 28, 2010
Water Flow in Alex Vlachos, Valve July 28, 2010 Outline Goals & Technical Constraints How Artists Create Flow Maps Flowing Normal Maps in Left 4 Dead 2 Flowing Color Maps in Portal 2 Left 4 Dead 2 Goals
Surface Curvature from Laser Triangulation Data. John Rugis ELECTRICAL & COMPUTER ENGINEERING
Surface Curvature from Laser Triangulation Data John Rugis ELECTRICAL & COMPUTER ENGINEERING 1) Laser scan data? Application: Digital archive, preserve, restore. Cultural and scientific heritage. Michelangelo
Colorado School of Mines Computer Vision Professor William Hoff
Professor William Hoff Dept of Electrical Engineering &Computer Science http://inside.mines.edu/~whoff/ 1 Introduction to 2 What is? A process that produces from images of the external world a description
INTRODUCTION TO RENDERING TECHNIQUES
INTRODUCTION TO RENDERING TECHNIQUES 22 Mar. 212 Yanir Kleiman What is 3D Graphics? Why 3D? Draw one frame at a time Model only once X 24 frames per second Color / texture only once 15, frames for a feature
From Scattered Samples to Smooth Surfaces
From Scattered Samples to Smooth Surfaces Kai Hormann 1 California Institute of Technology (a) (b) (c) (d) Figure 1: A point cloud with 4,100 scattered samples (a), its triangulation with 7,938 triangles
DINAMIC AND STATIC CENTRE OF PRESSURE MEASUREMENT ON THE FORCEPLATE. F. R. Soha, I. A. Szabó, M. Budai. Abstract
ACTA PHYSICA DEBRECINA XLVI, 143 (2012) DINAMIC AND STATIC CENTRE OF PRESSURE MEASUREMENT ON THE FORCEPLATE F. R. Soha, I. A. Szabó, M. Budai University of Debrecen, Department of Solid State Physics Abstract
TEXTURE AND BUMP MAPPING
Department of Applied Mathematics and Computational Sciences University of Cantabria UC-CAGD Group COMPUTER-AIDED GEOMETRIC DESIGN AND COMPUTER GRAPHICS: TEXTURE AND BUMP MAPPING Andrés Iglesias e-mail:
Optical Digitizing by ATOS for Press Parts and Tools
Optical Digitizing by ATOS for Press Parts and Tools Konstantin Galanulis, Carsten Reich, Jan Thesing, Detlef Winter GOM Gesellschaft für Optische Messtechnik mbh, Mittelweg 7, 38106 Braunschweig, Germany
Adaptive Neighborhood Selection for Real-Time Surface Normal Estimation from Organized Point Cloud Data Using Integral Images
1 IEEE/RSJ International Conference on Intelligent Robots and Systems October 7-1, 1. Vilamoura, Algarve, Portugal Adaptive Neighborhood Selection for Real-Time Surface Normal Estimation from Organized
Consolidated Visualization of Enormous 3D Scan Point Clouds with Scanopy
Consolidated Visualization of Enormous 3D Scan Point Clouds with Scanopy Claus SCHEIBLAUER 1 / Michael PREGESBAUER 2 1 Institute of Computer Graphics and Algorithms, Vienna University of Technology, Austria
Surface Reconstruction from Point Clouds
Autonomous Systems Lab Prof. Roland Siegwart Bachelor-Thesis Surface Reconstruction from Point Clouds Spring Term 2010 Supervised by: Andreas Breitenmoser François Pomerleau Author: Inna Tishchenko Abstract
Advanced Methods for Pedestrian and Bicyclist Sensing
Advanced Methods for Pedestrian and Bicyclist Sensing Yinhai Wang PacTrans STAR Lab University of Washington Email: [email protected] Tel: 1-206-616-2696 For Exchange with University of Nevada Reno Sept. 25,
A 3D OBJECT SCANNER An approach using Microsoft Kinect.
MASTER THESIS A 3D OBJECT SCANNER An approach using Microsoft Kinect. Master thesis in Information Technology 2013 October Authors: Behnam Adlkhast & Omid Manikhi Supervisor: Dr. Björn Åstrand Examiner:
Data Visualization. Principles and Practice. Second Edition. Alexandru Telea
Data Visualization Principles and Practice Second Edition Alexandru Telea First edition published in 2007 by A K Peters, Ltd. Cover image: The cover shows the combination of scientific visualization and
A Comparison of 3D Sensors for Wheeled Mobile Robots
A Comparison of 3D Sensors for Wheeled Mobile Robots Gerald Rauscher, Daniel Dube and Andreas Zell Chair of Cognitive Systems, University of Tuebingen, Sand 1, 72076 Tuebingen, Germany {g.rauscher, daniel.dube,
Computing and Rendering Point Set Surfaces
IEEE TVCG 9(1) Jan 2003 Computing and Rendering Point Set Surfaces Marc Alexa TU Darmstadt Johannes Behr ZGDV Darmstadt Daniel Cohen-Or Tel Aviv University Shachar Fleishman Tel Aviv University David Levin
Automatic Labeling of Lane Markings for Autonomous Vehicles
Automatic Labeling of Lane Markings for Autonomous Vehicles Jeffrey Kiske Stanford University 450 Serra Mall, Stanford, CA 94305 [email protected] 1. Introduction As autonomous vehicles become more popular,
Alphacam Art combines Vectric s Aspire artistic design software with the market leading Alphacam manufacturing software.
Alphacam Art Alphacam Art - CNC Routing For Artists & Ideal Jewellery Cad Cam Software Alphacam Art combines Vectric s Aspire artistic design software with the market leading Alphacam manufacturing software.
Efficient Attendance Management: A Face Recognition Approach
Efficient Attendance Management: A Face Recognition Approach Badal J. Deshmukh, Sudhir M. Kharad Abstract Taking student attendance in a classroom has always been a tedious task faultfinders. It is completely
COMP175: Computer Graphics. Lecture 1 Introduction and Display Technologies
COMP175: Computer Graphics Lecture 1 Introduction and Display Technologies Course mechanics Number: COMP 175-01, Fall 2009 Meetings: TR 1:30-2:45pm Instructor: Sara Su ([email protected]) TA: Matt Menke
The Visualization Pipeline
The Visualization Pipeline Conceptual perspective Implementation considerations Algorithms used in the visualization Structure of the visualization applications Contents The focus is on presenting the
GUIDE TO POST-PROCESSING OF THE POINT CLOUD
GUIDE TO POST-PROCESSING OF THE POINT CLOUD Contents Contents 3 Reconstructing the point cloud with MeshLab 16 Reconstructing the point cloud with CloudCompare 2 Reconstructing the point cloud with MeshLab
Analecta Vol. 8, No. 2 ISSN 2064-7964
EXPERIMENTAL APPLICATIONS OF ARTIFICIAL NEURAL NETWORKS IN ENGINEERING PROCESSING SYSTEM S. Dadvandipour Institute of Information Engineering, University of Miskolc, Egyetemváros, 3515, Miskolc, Hungary,
Computer Graphics. Introduction. Computer graphics. What is computer graphics? Yung-Yu Chuang
Introduction Computer Graphics Instructor: Yung-Yu Chuang ( 莊 永 裕 ) E-mail: [email protected] Office: CSIE 527 Grading: a MatchMove project Computer Science ce & Information o Technolog og Yung-Yu Chuang
Image Processing and Computer Graphics. Rendering Pipeline. Matthias Teschner. Computer Science Department University of Freiburg
Image Processing and Computer Graphics Rendering Pipeline Matthias Teschner Computer Science Department University of Freiburg Outline introduction rendering pipeline vertex processing primitive processing
CAD and Creativity. Contents
CAD and Creativity K C Hui Department of Automation and Computer- Aided Engineering Contents Various aspects of CAD CAD training in the university and the industry Conveying fundamental concepts in CAD
A Prototype For Eye-Gaze Corrected
A Prototype For Eye-Gaze Corrected Video Chat on Graphics Hardware Maarten Dumont, Steven Maesen, Sammy Rogmans and Philippe Bekaert Introduction Traditional webcam video chat: No eye contact. No extensive
Model Repair. Leif Kobbelt RWTH Aachen University )NPUT $ATA 2EMOVAL OF TOPOLOGICAL AND GEOMETRICAL ERRORS !NALYSIS OF SURFACE QUALITY
)NPUT $ATA 2ANGE 3CAN #!$ 4OMOGRAPHY 2EMOVAL OF TOPOLOGICAL AND GEOMETRICAL ERRORS!NALYSIS OF SURFACE QUALITY 3URFACE SMOOTHING FOR NOISE REMOVAL 0ARAMETERIZATION 3IMPLIFICATION FOR COMPLEXITY REDUCTION
VIRTUAL TRIAL ROOM USING AUGMENTED REALITY
VIRTUAL TRIAL ROOM USING AUGMENTED REALITY Shreya Kamani, Neel Vasa, Kriti Srivastava, D. J. Sanghvi College of Engineering, Mumbai 53 Abstract This paper presents a Virtual Trial Room application using
Efficient Organized Point Cloud Segmentation with Connected Components
Efficient Organized Point Cloud Segmentation with Connected Components Alexander J. B. Trevor, Suat Gedikli, Radu B. Rusu, Henrik I. Christensen Abstract Segmentation is an important step in many perception
A Comprehensive Set of Image Quality Metrics
The Gold Standard of image quality specification and verification A Comprehensive Set of Image Quality Metrics GoldenThread is the product of years of research and development conducted for the Federal
REALTIME 3D MAPPING, OPTIMIZATION, AND RENDERING BASED ON A DEPTH SENSOR CRAIG MOUSER. Bachelor of Science in Computer Engineering
REALTIME 3D MAPPING, OPTIMIZATION, AND RENDERING BASED ON A DEPTH SENSOR By CRAIG MOUSER Bachelor of Science in Computer Engineering Kansas State University Manhattan, KS 2011 Submitted to the Faculty
Introduction to Computer Graphics. Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2012
CSE 167: Introduction to Computer Graphics Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2012 Today Course organization Course overview 2 Course Staff Instructor Jürgen Schulze,
Lighting Estimation in Indoor Environments from Low-Quality Images
Lighting Estimation in Indoor Environments from Low-Quality Images Natalia Neverova, Damien Muselet, Alain Trémeau Laboratoire Hubert Curien UMR CNRS 5516, University Jean Monnet, Rue du Professeur Benoît
Sensor Modeling for a Walking Robot Simulation. 1 Introduction
Sensor Modeling for a Walking Robot Simulation L. France, A. Girault, J-D. Gascuel, B. Espiau INRIA, Grenoble, FRANCE imagis, GRAVIR/IMAG, Grenoble, FRANCE Abstract This paper proposes models of short-range
1 Log visualization at CNES (Part II)
1 Log visualization at CNES (Part II) 1.1 Background For almost 2 years now, CNES has set up a team dedicated to "log analysis". Its role is multiple: This team is responsible for analyzing the logs after
Efficient Storage, Compression and Transmission
Efficient Storage, Compression and Transmission of Complex 3D Models context & problem definition general framework & classification our new algorithm applications for digital documents Mesh Decimation
Point Cloud Segmentation via Constrained Nonlinear Least Squares Surface Normal Estimates
Point Cloud Segmentation via Constrained Nonlinear Least Squares Surface Normal Estimates Edward Castillo Radiation Oncology Department University of Texas MD Anderson Cancer Center, Houston TX [email protected]
Volume visualization I Elvins
Volume visualization I Elvins 1 surface fitting algorithms marching cubes dividing cubes direct volume rendering algorithms ray casting, integration methods voxel projection, projected tetrahedra, splatting
Efficient Simplification of Point-Sampled Surfaces
Efficient Simplification of Point-Sampled Surfaces Mark Pauly Markus Gross Leif P Kobbelt ETH Zürich ETH Zürich RWTH Aachen Figure 1: Michelangelo s David at different levels-of-detail From left to right,
Interactive Segmentation, Tracking, and Kinematic Modeling of Unknown 3D Articulated Objects
Interactive Segmentation, Tracking, and Kinematic Modeling of Unknown 3D Articulated Objects Dov Katz, Moslem Kazemi, J. Andrew Bagnell and Anthony Stentz 1 Abstract We present an interactive perceptual
NVIDIA IndeX Enabling Interactive and Scalable Visualization for Large Data Marc Nienhaus, NVIDIA IndeX Engineering Manager and Chief Architect
SIGGRAPH 2013 Shaping the Future of Visual Computing NVIDIA IndeX Enabling Interactive and Scalable Visualization for Large Data Marc Nienhaus, NVIDIA IndeX Engineering Manager and Chief Architect NVIDIA
Enhanced LIC Pencil Filter
Enhanced LIC Pencil Filter Shigefumi Yamamoto, Xiaoyang Mao, Kenji Tanii, Atsumi Imamiya University of Yamanashi {[email protected], [email protected], [email protected]}
The 3D rendering pipeline (our version for this class)
The 3D rendering pipeline (our version for this class) 3D models in model coordinates 3D models in world coordinates 2D Polygons in camera coordinates Pixels in image coordinates Scene graph Camera Rasterization
Normal Estimation for Point Clouds: A Comparison Study for a Voronoi Based Method
Eurographics Symposium on Point-Based Graphics (2005) M. Pauly, M. Zwicker, (Editors) Normal Estimation for Point Clouds: A Comparison Study for a Voronoi Based Method Tamal K. Dey Gang Li Jian Sun The
Computer Applications in Textile Engineering. Computer Applications in Textile Engineering
3. Computer Graphics Sungmin Kim http://latam.jnu.ac.kr Computer Graphics Definition Introduction Research field related to the activities that includes graphics as input and output Importance Interactive
High speed 3D capture for Configuration Management DOE SBIR Phase II Paul Banks [email protected]
High speed 3D capture for Configuration Management DOE SBIR Phase II Paul Banks [email protected] Advanced Methods for Manufacturing Workshop September 29, 2015 1 TetraVue does high resolution 3D
How To Analyze Ball Blur On A Ball Image
Single Image 3D Reconstruction of Ball Motion and Spin From Motion Blur An Experiment in Motion from Blur Giacomo Boracchi, Vincenzo Caglioti, Alessandro Giusti Objective From a single image, reconstruct:
Robust NURBS Surface Fitting from Unorganized 3D Point Clouds for Infrastructure As-Built Modeling
81 Robust NURBS Surface Fitting from Unorganized 3D Point Clouds for Infrastructure As-Built Modeling Andrey Dimitrov 1 and Mani Golparvar-Fard 2 1 Graduate Student, Depts of Civil Eng and Engineering
Application Example: Reverse Engineering
Application Example: Reverse Engineering Use of optical measuring technology in the ceramics industry Measuring system: ATOS Keywords: Reverse Engineering, Tool and Moldmaking, Quality Assurance, Ceramic
A Method for Controlling Mouse Movement using a Real- Time Camera
A Method for Controlling Mouse Movement using a Real- Time Camera Hojoon Park Department of Computer Science Brown University, Providence, RI, USA [email protected] Abstract This paper presents a new
Automatic Building Facade Detection in Mobile Laser Scanner point Clouds
Automatic Building Facade Detection in Mobile Laser Scanner point Clouds NALANI HETTI ARACHCHIGE 1 & HANS-GERD MAAS 1 Abstract: Mobile Laser Scanner (MLS) has been increasingly used in the modeling of
VEHICLE TRACKING USING ACOUSTIC AND VIDEO SENSORS
VEHICLE TRACKING USING ACOUSTIC AND VIDEO SENSORS Aswin C Sankaranayanan, Qinfen Zheng, Rama Chellappa University of Maryland College Park, MD - 277 {aswch, qinfen, rama}@cfar.umd.edu Volkan Cevher, James
Software Manual. IDEA The Software Version 1.0
Software Manual IDEA The Software Version 1.0 > Open Technologies srl Rezzato 2014 1 Index 1 IDEA the application for Scan in a box...3 2 Application Interface...3 2.1.1 Project management panel...4 2.1.2
Manual for simulation of EB processing. Software ModeRTL
1 Manual for simulation of EB processing Software ModeRTL How to get results. Software ModeRTL. Software ModeRTL consists of five thematic modules and service blocks. (See Fig.1). Analytic module is intended
3D Vision An enabling Technology for Advanced Driver Assistance and Autonomous Offroad Driving
3D Vision An enabling Technology for Advanced Driver Assistance and Autonomous Offroad Driving AIT Austrian Institute of Technology Safety & Security Department Christian Zinner Safe and Autonomous Systems
Blender Notes. Introduction to Digital Modelling and Animation in Design Blender Tutorial - week 9 The Game Engine
Blender Notes Introduction to Digital Modelling and Animation in Design Blender Tutorial - week 9 The Game Engine The Blender Game Engine This week we will have an introduction to the Game Engine build
HIGH-PERFORMANCE INSPECTION VEHICLE FOR RAILWAYS AND TUNNEL LININGS. HIGH-PERFORMANCE INSPECTION VEHICLE FOR RAILWAY AND ROAD TUNNEL LININGS.
HIGH-PERFORMANCE INSPECTION VEHICLE FOR RAILWAYS AND TUNNEL LININGS. HIGH-PERFORMANCE INSPECTION VEHICLE FOR RAILWAY AND ROAD TUNNEL LININGS. The vehicle developed by Euroconsult and Pavemetrics and described
