Data Structures for Big Data: Bloom Filter. Vinicius Vielmo Cogo Smalltalks, DI, FC/UL. October 16, 2014.
|
|
|
- Jean Thomas
- 10 years ago
- Views:
Transcription
1 Data Structures for Big Data: Bloom Filter Vinicius Vielmo Cogo Smalltalks, DI, FC/UL. October 16, 2014.
2 is relative is not defined by a specific number of TB, PB, EB is when it becomes big for you is when your solutions become inefficient/impractical 2 / 30
3 Data Structures for Big Data Traditional DSs are subject to the same problems e.g., lists, trees or (e.g., YARN, NoSQL) (e.g., index, metadata) reached the point of thinking in new DSs for BD 3 / 30
4 Outline Bloom Filter Use Cases Implementations Other Filters Other Data Structures for Big Data 4 / 30
5 Membership testing Does my collection contain this element? 5 / 30
6 City Coimbra Leiria 6 / 30
7 Index i bf[i] / 30
8 City Coimbra Leiria Hash Function Fnv Murmur Index i bf[i] / 30
9 City Coimbra Leiria Hash Function Fnv Murmur i=4 i=7 Index i bf[i] / 30
10 City Coimbra Leiria Hash Function Fnv Murmur i=4 i=7 Index i bf[i] / 30
11 City Coimbra Leiria Hash Function Fnv Murmur Index i bf[i] / 30
12 City Coimbra Leiria Hash Function Fnv Murmur i=2 i=9 Index i bf[i] / 30
13 City Coimbra Leiria Hash Function Fnv Murmur i=2 i=9 Index i bf[i] / 30
14 City Coimbra Leiria Hash Function Fnv Murmur Index i bf[i] / 30
15 City Braga Guarda Coimbra Lisboa 15 / 30
16 City Braga Guarda Coimbra Lisboa Hash Function Fnv Murmur i=10 i=14 Index i bf[i] Result: false 16 / 30
17 City Braga Guarda Coimbra Lisboa Hash Function Fnv Murmur i=2 i=12 Index i bf[i] Result: false 17 / 30
18 City Braga Guarda Coimbra Lisboa Hash Function Fnv Murmur i=4 i=7 Index i bf[i] Result: true 18 / 30
19 City Braga Guarda Coimbra Lisboa Hash Function Fnv Murmur i=7 i=9 Index i bf[i] Result: true (but it is a false positive) 19 / 30
20 DS proposed by Burton Howard Bloom in 1970 Design principles Space-efficient Smaller than the original dataset Time-efficient Low latency R/W O(k), which is much smaller than O(n) High throughput Probabilistic E.g., mycollection.mightcontain(myobject) False positives happen (but in a configurable way) 20 / 30
21 Important variables = Expected collection size City Coimbra Leiria = False positive rate (e.g., % or 1 in 1M) = Bitmap size = Optimal number of hash functions Hash Function Fnv Murmur 21 / 30
22 Important variables 22 / 30
23 Users define two of them (normally n and any other) The other two are calculated with those equations Interesting relations: Bigger collection ( ) Larger bitmap ( ) Bigger collection ( ) More false positives ( ) Larger bitmap ( Less false positives ( ) Larger bitmap ( ) Less hash functions ( ) Less hash functions ( ) 23 / 30
24 Bloom filter size vs. False positive rate 24 / 30
25 Use Cases Reducing unnecessary disk reads Client BloomFilter Dataset 1 1? No F F 2 2? 2 T necessary read(2) T 3 3? No T unnecessary read(3) F RAM Hard Disk 25 / 30
26 Use Cases Google BigTable, Apache Cassandra and HBase Reducing disk lookups Google Chrome Lookup a list of known malicious URLs Bitcoin Get only the transactions relevant to your wallet Others In my Ph.D. work Lookup a list of known privacy-sensitive DNA sequences 26 / 30
27 Implementations -libraries Orestes-Bloomfilter java-bloomfilter java-longfastbloomfilter 27 / 30
28 Other Filters Counting Bloom filters Allow deletions (use a 4-bit counter instead of 1 bit) Buffered Bloom filters Sub-filters in SSD with buffered R/W exploring bit locality Quotient and Cascade filters Uses an SSD, instead of the main memory, for scalability 28 / 30
29 Other DSs (and techniques) for Big Data Locality-sensitive hashing (LSH) Hashing similar elements into the same bucket with high probability HyperLogLog for computing cardinality Counting the number of distinct elements in a collection Log Structured Merge (LSM) trees Indexed access to files with high insert volume and background batch synchronization 29 / 30
30 Thank you! Vinicius Vielmo Cogo Smalltalks, DI, FC/UL. October 16, 2014.
Kafka & Redis for Big Data Solutions
Kafka & Redis for Big Data Solutions Christopher Curtin Head of Technical Research @ChrisCurtin About Me 25+ years in technology Head of Technical Research at Silverpop, an IBM Company (14 + years at Silverpop)
Hypertable Architecture Overview
WHITE PAPER - MARCH 2012 Hypertable Architecture Overview Hypertable is an open source, scalable NoSQL database modeled after Bigtable, Google s proprietary scalable database. It is written in C++ for
CS435 Introduction to Big Data
CS435 Introduction to Big Data Final Exam Date: May 11 6:20PM 8:20PM Location: CSB 130 Closed Book, NO cheat sheets Topics covered *Note: Final exam is NOT comprehensive. 1. NoSQL Impedance mismatch Scale-up
MAD2: A Scalable High-Throughput Exact Deduplication Approach for Network Backup Services
MAD2: A Scalable High-Throughput Exact Deduplication Approach for Network Backup Services Jiansheng Wei, Hong Jiang, Ke Zhou, Dan Feng School of Computer, Huazhong University of Science and Technology,
FAST 11. Yongseok Oh <[email protected]> University of Seoul. Mobile Embedded System Laboratory
CAFTL: A Content-Aware Flash Translation Layer Enhancing the Lifespan of flash Memory based Solid State Drives FAST 11 Yongseok Oh University of Seoul Mobile Embedded System Laboratory
Hadoop Ecosystem B Y R A H I M A.
Hadoop Ecosystem B Y R A H I M A. History of Hadoop Hadoop was created by Doug Cutting, the creator of Apache Lucene, the widely used text search library. Hadoop has its origins in Apache Nutch, an open
HBase Schema Design. NoSQL Ma4ers, Cologne, April 2013. Lars George Director EMEA Services
HBase Schema Design NoSQL Ma4ers, Cologne, April 2013 Lars George Director EMEA Services About Me Director EMEA Services @ Cloudera ConsulFng on Hadoop projects (everywhere) Apache Commi4er HBase and Whirr
Big Data With Hadoop
With Saurabh Singh [email protected] The Ohio State University February 11, 2016 Overview 1 2 3 Requirements Ecosystem Resilient Distributed Datasets (RDDs) Example Code vs Mapreduce 4 5 Source: [Tutorials
Non-Stop for Apache HBase: Active-active region server clusters TECHNICAL BRIEF
Non-Stop for Apache HBase: -active region server clusters TECHNICAL BRIEF Technical Brief: -active region server clusters -active region server clusters HBase is a non-relational database that provides
NoSQL Data Base Basics
NoSQL Data Base Basics Course Notes in Transparency Format Cloud Computing MIRI (CLC-MIRI) UPC Master in Innovation & Research in Informatics Spring- 2013 Jordi Torres, UPC - BSC www.jorditorres.eu HDFS
Facebook: Cassandra. Smruti R. Sarangi. Department of Computer Science Indian Institute of Technology New Delhi, India. Overview Design Evaluation
Facebook: Cassandra Smruti R. Sarangi Department of Computer Science Indian Institute of Technology New Delhi, India Smruti R. Sarangi Leader Election 1/24 Outline 1 2 3 Smruti R. Sarangi Leader Election
Cassandra vs MySQL. SQL vs NoSQL database comparison
Cassandra vs MySQL SQL vs NoSQL database comparison 19 th of November, 2015 Maxim Zakharenkov Maxim Zakharenkov Riga, Latvia Java Developer/Architect Company Goals Explore some differences of SQL and NoSQL
BIG DATA What it is and how to use?
BIG DATA What it is and how to use? Lauri Ilison, PhD Data Scientist 21.11.2014 Big Data definition? There is no clear definition for BIG DATA BIG DATA is more of a concept than precise term 1 21.11.14
Yahoo! Cloud Serving Benchmark
Yahoo! Cloud Serving Benchmark Overview and results March 31, 2010 Brian F. Cooper [email protected] Joint work with Adam Silberstein, Erwin Tam, Raghu Ramakrishnan and Russell Sears System setup and
THE HADOOP DISTRIBUTED FILE SYSTEM
THE HADOOP DISTRIBUTED FILE SYSTEM Konstantin Shvachko, Hairong Kuang, Sanjay Radia, Robert Chansler Presented by Alexander Pokluda October 7, 2013 Outline Motivation and Overview of Hadoop Architecture,
Hadoop IST 734 SS CHUNG
Hadoop IST 734 SS CHUNG Introduction What is Big Data?? Bulk Amount Unstructured Lots of Applications which need to handle huge amount of data (in terms of 500+ TB per day) If a regular machine need to
BENCHMARKING CLOUD DATABASES CASE STUDY on HBASE, HADOOP and CASSANDRA USING YCSB
BENCHMARKING CLOUD DATABASES CASE STUDY on HBASE, HADOOP and CASSANDRA USING YCSB Planet Size Data!? Gartner s 10 key IT trends for 2012 unstructured data will grow some 80% over the course of the next
Apache HBase. Crazy dances on the elephant back
Apache HBase Crazy dances on the elephant back Roman Nikitchenko, 16.10.2014 YARN 2 FIRST EVER DATA OS 10.000 nodes computer Recent technology changes are focused on higher scale. Better resource usage
Hadoop: Embracing future hardware
Hadoop: Embracing future hardware Suresh Srinivas @suresh_m_s Page 1 About Me Architect & Founder at Hortonworks Long time Apache Hadoop committer and PMC member Designed and developed many key Hadoop
Quanqing XU [email protected]. YuruBackup: A Highly Scalable and Space-Efficient Incremental Backup System in the Cloud
Quanqing XU [email protected] YuruBackup: A Highly Scalable and Space-Efficient Incremental Backup System in the Cloud Outline Motivation YuruBackup s Architecture Backup Client File Scan, Data
A programming model in Cloud: MapReduce
A programming model in Cloud: MapReduce Programming model and implementation developed by Google for processing large data sets Users specify a map function to generate a set of intermediate key/value
Lambda Architecture. Near Real-Time Big Data Analytics Using Hadoop. January 2015. Email: [email protected] Website: www.qburst.com
Lambda Architecture Near Real-Time Big Data Analytics Using Hadoop January 2015 Contents Overview... 3 Lambda Architecture: A Quick Introduction... 4 Batch Layer... 4 Serving Layer... 4 Speed Layer...
A Deduplication File System & Course Review
A Deduplication File System & Course Review Kai Li 12/13/12 Topics A Deduplication File System Review 12/13/12 2 Traditional Data Center Storage Hierarchy Clients Network Server SAN Storage Remote mirror
The Apache Cassandra storage engine
The Apache Cassandra storage engine Sylvain Lebresne ([email protected]) FOSDEM 12, Brussels 1. What is Apache Cassandra 2. Data Model 3. The storage engine 1. What is Apache Cassandra 2. Data Model 3. The
Xiaoming Gao Hui Li Thilina Gunarathne
Xiaoming Gao Hui Li Thilina Gunarathne Outline HBase and Bigtable Storage HBase Use Cases HBase vs RDBMS Hands-on: Load CSV file to Hbase table with MapReduce Motivation Lots of Semi structured data Horizontal
Hadoop2, Spark Big Data, real time, machine learning & use cases. Cédric Carbone Twitter : @carbone
Hadoop2, Spark Big Data, real time, machine learning & use cases Cédric Carbone Twitter : @carbone Agenda Map Reduce Hadoop v1 limits Hadoop v2 and YARN Apache Spark Streaming : Spark vs Storm Machine
Big Data & Scripting Part II Streaming Algorithms
Big Data & Scripting Part II Streaming Algorithms 1, Counting Distinct Elements 2, 3, counting distinct elements problem formalization input: stream of elements o from some universe U e.g. ids from a set
ESS event: Big Data in Official Statistics. Antonino Virgillito, Istat
ESS event: Big Data in Official Statistics Antonino Virgillito, Istat v erbi v is 1 About me Head of Unit Web and BI Technologies, IT Directorate of Istat Project manager and technical coordinator of Web
Can the Elephants Handle the NoSQL Onslaught?
Can the Elephants Handle the NoSQL Onslaught? Avrilia Floratou, Nikhil Teletia David J. DeWitt, Jignesh M. Patel, Donghui Zhang University of Wisconsin-Madison Microsoft Jim Gray Systems Lab Presented
Informatica Cloud Connector for SharePoint 2010/2013 User Guide
Informatica Cloud Connector for SharePoint 2010/2013 User Guide Contents 1. Introduction 3 2. SharePoint Plugin 4 3. Objects / Operation Matrix 4 4. Filter fields 4 5. SharePoint Configuration: 6 6. Data
Architectural patterns for building real time applications with Apache HBase. Andrew Purtell Committer and PMC, Apache HBase
Architectural patterns for building real time applications with Apache HBase Andrew Purtell Committer and PMC, Apache HBase Who am I? Distributed systems engineer Principal Architect in the Big Data Platform
Practical Cassandra. Vitalii Tymchyshyn [email protected] @tivv00
Practical Cassandra NoSQL key-value vs RDBMS why and when Cassandra architecture Cassandra data model Life without joins or HDD space is cheap today Hardware requirements & deployment hints Vitalii Tymchyshyn
CS 2112 Spring 2014. 0 Instructions. Assignment 3 Data Structures and Web Filtering. 0.1 Grading. 0.2 Partners. 0.3 Restrictions
CS 2112 Spring 2014 Assignment 3 Data Structures and Web Filtering Due: March 4, 2014 11:59 PM Implementing spam blacklists and web filters requires matching candidate domain names and URLs very rapidly
Big Data Patterns. Ron Bodkin Founder and President, Think Big
Big Data Patterns Ron Bodkin Founder and President, Think Big 1 About Me Ron Bodkin Founder and President, Think Big I have 9 years experience working with Big Data and Hadoop. In 2010, I founded Think
Distributed File Systems
Distributed File Systems Paul Krzyzanowski Rutgers University October 28, 2012 1 Introduction The classic network file systems we examined, NFS, CIFS, AFS, Coda, were designed as client-server applications.
DataStax Enterprise Reference Architecture
DataStax Enterprise Reference Architecture DataStax Enterprise Reference Architecture 7.8.15 1 Table of Contents ABSTRACT... 3 INTRODUCTION... 3 DATASTAX ENTERPRISE... 3 ARCHITECTURE... 3 OPSCENTER: EASY-
brief contents PART 1 BACKGROUND AND FUNDAMENTALS...1 PART 2 PART 3 BIG DATA PATTERNS...253 PART 4 BEYOND MAPREDUCE...385
brief contents PART 1 BACKGROUND AND FUNDAMENTALS...1 1 Hadoop in a heartbeat 3 2 Introduction to YARN 22 PART 2 DATA LOGISTICS...59 3 Data serialization working with text and beyond 61 4 Organizing and
Speeding Up Cloud/Server Applications Using Flash Memory
Speeding Up Cloud/Server Applications Using Flash Memory Sudipta Sengupta Microsoft Research, Redmond, WA, USA Contains work that is joint with B. Debnath (Univ. of Minnesota) and J. Li (Microsoft Research,
A SCALABLE DEDUPLICATION AND GARBAGE COLLECTION ENGINE FOR INCREMENTAL BACKUP
A SCALABLE DEDUPLICATION AND GARBAGE COLLECTION ENGINE FOR INCREMENTAL BACKUP Dilip N Simha (Stony Brook University, NY & ITRI, Taiwan) Maohua Lu (IBM Almaden Research Labs, CA) Tzi-cker Chiueh (Stony
DEXT3: Block Level Inline Deduplication for EXT3 File System
DEXT3: Block Level Inline Deduplication for EXT3 File System Amar More M.A.E. Alandi, Pune, India [email protected] Zishan Shaikh M.A.E. Alandi, Pune, India [email protected] Vishal Salve
FAQs. This material is built based on. Lambda Architecture. Scaling with a queue. 8/27/2015 Sangmi Pallickara
CS535 Big Data - Fall 2015 W1.B.1 CS535 Big Data - Fall 2015 W1.B.2 CS535 BIG DATA FAQs Wait list Term project topics PART 0. INTRODUCTION 2. A PARADIGM FOR BIG DATA Sangmi Lee Pallickara Computer Science,
Trends in Enterprise Backup Deduplication
Trends in Enterprise Backup Deduplication Shankar Balasubramanian Architect, EMC 1 Outline Protection Storage Deduplication Basics CPU-centric Deduplication: SISL (Stream-Informed Segment Layout) Data
Accelerating Cassandra Workloads using SanDisk Solid State Drives
WHITE PAPER Accelerating Cassandra Workloads using SanDisk Solid State Drives February 2015 951 SanDisk Drive, Milpitas, CA 95035 2015 SanDIsk Corporation. All rights reserved www.sandisk.com Table of
Future Prospects of Scalable Cloud Computing
Future Prospects of Scalable Cloud Computing Keijo Heljanko Department of Information and Computer Science School of Science Aalto University [email protected] 7.3-2012 1/17 Future Cloud Topics Beyond
Bigdata High Availability (HA) Architecture
Bigdata High Availability (HA) Architecture Introduction This whitepaper describes an HA architecture based on a shared nothing design. Each node uses commodity hardware and has its own local resources
Benchmarking Cassandra on Violin
Technical White Paper Report Technical Report Benchmarking Cassandra on Violin Accelerating Cassandra Performance and Reducing Read Latency With Violin Memory Flash-based Storage Arrays Version 1.0 Abstract
Oracle Database In- Memory Op4on in Ac4on
Oracle Database In- Memory Op4on in Ac4on Tanel Põder & Kerry Osborne Accenture Enkitec Group h4p:// 1 Tanel Põder Intro: About Consultant, Trainer, Troubleshooter Oracle Database Performance geek Exadata
Bigtable is a proven design Underpins 100+ Google services:
Mastering Massive Data Volumes with Hypertable Doug Judd Talk Outline Overview Architecture Performance Evaluation Case Studies Hypertable Overview Massively Scalable Database Modeled after Google s Bigtable
THE ATLAS DISTRIBUTED DATA MANAGEMENT SYSTEM & DATABASES
THE ATLAS DISTRIBUTED DATA MANAGEMENT SYSTEM & DATABASES Vincent Garonne, Mario Lassnig, Martin Barisits, Thomas Beermann, Ralph Vigne, Cedric Serfon [email protected] [email protected] XLDB
Introduction to Hbase Gkavresis Giorgos 1470
Introduction to Hbase Gkavresis Giorgos 1470 Agenda What is Hbase Installation About RDBMS Overview of Hbase Why Hbase instead of RDBMS Architecture of Hbase Hbase interface Summarise What is Hbase Hbase
Apache HBase: the Hadoop Database
Apache HBase: the Hadoop Database Yuanru Qian, Andrew Sharp, Jiuling Wang Today we will discuss Apache HBase, the Hadoop Database. HBase is designed specifically for use by Hadoop, and we will define Hadoop
Cassandra. Jonathan Ellis
Cassandra Jonathan Ellis Motivation Scaling reads to a relational database is hard Scaling writes to a relational database is virtually impossible and when you do, it usually isn't relational anymore The
CSE-E5430 Scalable Cloud Computing Lecture 2
CSE-E5430 Scalable Cloud Computing Lecture 2 Keijo Heljanko Department of Computer Science School of Science Aalto University [email protected] 14.9-2015 1/36 Google MapReduce A scalable batch processing
On- Prem MongoDB- as- a- Service Powered by the CumuLogic DBaaS Platform
On- Prem MongoDB- as- a- Service Powered by the CumuLogic DBaaS Platform Page 1 of 16 Table of Contents Table of Contents... 2 Introduction... 3 NoSQL Databases... 3 CumuLogic NoSQL Database Service...
W I S E. SQL Server 2008/2008 R2 Advanced DBA Performance & WISE LTD.
SQL Server 2008/2008 R2 Advanced DBA Performance & Tuning COURSE CODE: COURSE TITLE: AUDIENCE: SQSDPT SQL Server 2008/2008 R2 Advanced DBA Performance & Tuning SQL Server DBAs, capacity planners and system
Cassandra A Decentralized, Structured Storage System
Cassandra A Decentralized, Structured Storage System Avinash Lakshman and Prashant Malik Facebook Published: April 2010, Volume 44, Issue 2 Communications of the ACM http://dl.acm.org/citation.cfm?id=1773922
Probabilistic Deduplication for Cluster-Based Storage Systems
Probabilistic Deduplication for Cluster-Based Storage Systems Davide Frey, Anne-Marie Kermarrec, Konstantinos Kloudas INRIA Rennes, France Motivation Volume of data stored increases exponentially. Provided
Cuckoo Filter: Practically Better Than Bloom
Cuckoo Filter: Practically Better Than Bloom Bin Fan, David G. Andersen, Michael Kaminsky, Michael D. Mitzenmacher Carnegie Mellon University, Intel Labs, Harvard University {binfan,dga}@cs.cmu.edu, [email protected],
SMALL INDEX LARGE INDEX (SILT)
Wayne State University ECE 7650: Scalable and Secure Internet Services and Architecture SMALL INDEX LARGE INDEX (SILT) A Memory Efficient High Performance Key Value Store QA REPORT Instructor: Dr. Song
Open source large scale distributed data management with Google s MapReduce and Bigtable
Open source large scale distributed data management with Google s MapReduce and Bigtable Ioannis Konstantinou Email: [email protected] Web: http://www.cslab.ntua.gr/~ikons Computing Systems Laboratory
MADOCA II Data Logging System Using NoSQL Database for SPring-8
MADOCA II Data Logging System Using NoSQL Database for SPring-8 A.Yamashita and M.Kago SPring-8/JASRI, Japan NoSQL WED3O03 OR: How I Learned to Stop Worrying and Love Cassandra Outline SPring-8 logging
LARGE-SCALE DATA STORAGE APPLICATIONS
BENCHMARKING AVAILABILITY AND FAILOVER PERFORMANCE OF LARGE-SCALE DATA STORAGE APPLICATIONS Wei Sun and Alexander Pokluda December 2, 2013 Outline Goal and Motivation Overview of Cassandra and Voldemort
Moving From Hadoop to Spark
+ Moving From Hadoop to Spark Sujee Maniyam Founder / Principal @ www.elephantscale.com [email protected] Bay Area ACM meetup (2015-02-23) + HI, Featured in Hadoop Weekly #109 + About Me : Sujee
Bloom Filters. Christian Antognini Trivadis AG Zürich, Switzerland
Bloom Filters Christian Antognini Trivadis AG Zürich, Switzerland Oracle Database uses bloom filters in various situations. Unfortunately, no information about their usage is available in Oracle documentation.
Large scale processing using Hadoop. Ján Vaňo
Large scale processing using Hadoop Ján Vaňo What is Hadoop? Software platform that lets one easily write and run applications that process vast amounts of data Includes: MapReduce offline computing engine
Department of Computer Science University of Cyprus EPL646 Advanced Topics in Databases. Lecture 14
Department of Computer Science University of Cyprus EPL646 Advanced Topics in Databases Lecture 14 Big Data Management IV: Big-data Infrastructures (Background, IO, From NFS to HFDS) Chapter 14-15: Abideboul
Case Study : 3 different hadoop cluster deployments
Case Study : 3 different hadoop cluster deployments Lee moon soo [email protected] HDFS as a Storage Last 4 years, our HDFS clusters, stored Customer 1500 TB+ data safely served 375,000 TB+ data to customer
Workshop on Hadoop with Big Data
Workshop on Hadoop with Big Data Hadoop? Apache Hadoop is an open source framework for distributed storage and processing of large sets of data on commodity hardware. Hadoop enables businesses to quickly
Hinky: Defending Against Text-based Message Spam on Smartphones
Hinky: Defending Against Text-based Message Spam on Smartphones Abdelkader Lahmadi, Laurent Delosière, Olivier Festor To cite this version: Abdelkader Lahmadi, Laurent Delosière, Olivier Festor. Hinky:
Storage Systems Autumn 2009. Chapter 6: Distributed Hash Tables and their Applications André Brinkmann
Storage Systems Autumn 2009 Chapter 6: Distributed Hash Tables and their Applications André Brinkmann Scaling RAID architectures Using traditional RAID architecture does not scale Adding news disk implies
File Management. Chapter 12
Chapter 12 File Management File is the basic element of most of the applications, since the input to an application, as well as its output, is usually a file. They also typically outlive the execution
SkimpyStash: RAM Space Skimpy Key-Value Store on Flash-based Storage
SkimpyStash: RAM Space Skimpy Key-Value Store on Flash-based Storage Biplob Debnath,1 Sudipta Sengupta Jin Li Microsoft Research, Redmond, WA, USA EMC Corporation, Santa Clara, CA, USA ABSTRACT We present
Hadoop implementation of MapReduce computational model. Ján Vaňo
Hadoop implementation of MapReduce computational model Ján Vaňo What is MapReduce? A computational model published in a paper by Google in 2004 Based on distributed computation Complements Google s distributed
Maximizing Hadoop Performance and Storage Capacity with AltraHD TM
Maximizing Hadoop Performance and Storage Capacity with AltraHD TM Executive Summary The explosion of internet data, driven in large part by the growth of more and more powerful mobile devices, has created
Big Data: A Storage Systems Perspective Muthukumar Murugan Ph.D. HP Storage Division
Big Data: A Storage Systems Perspective Muthukumar Murugan Ph.D. HP Storage Division In this talk Big data storage: Current trends Issues with current storage options Evolution of storage to support big
STREAM PROCESSING AT LINKEDIN: APACHE KAFKA & APACHE SAMZA. Processing billions of events every day
STREAM PROCESSING AT LINKEDIN: APACHE KAFKA & APACHE SAMZA Processing billions of events every day Neha Narkhede Co-founder and Head of Engineering @ Stealth Startup Prior to this Lead, Streams Infrastructure
Reference Architecture, Requirements, Gaps, Roles
Reference Architecture, Requirements, Gaps, Roles The contents of this document are an excerpt from the brainstorming document M0014. The purpose is to show how a detailed Big Data Reference Architecture
How To Scale Out Of A Nosql Database
Firebird meets NoSQL (Apache HBase) Case Study Firebird Conference 2011 Luxembourg 25.11.2011 26.11.2011 Thomas Steinmaurer DI +43 7236 3343 896 [email protected] www.scch.at Michael Zwick DI
Hypertable Goes Realtime at Baidu. Yang Dong [email protected] Sherlock Yang(http://weibo.com/u/2624357843)
Hypertable Goes Realtime at Baidu Yang Dong [email protected] Sherlock Yang(http://weibo.com/u/2624357843) Agenda Motivation Related Work Model Design Evaluation Conclusion 2 Agenda Motivation Related
Putting Apache Kafka to Use!
Putting Apache Kafka to Use! Building a Real-time Data Platform for Event Streams! JAY KREPS, CONFLUENT! A Couple of Themes! Theme 1: Rise of Events! Theme 2: Immutability Everywhere! Level! Example! Immutable
Amazon Cloud Storage Options
Amazon Cloud Storage Options Table of Contents 1. Overview of AWS Storage Options 02 2. Why you should use the AWS Storage 02 3. How to get Data into the AWS.03 4. Types of AWS Storage Options.03 5. Object
High Throughput Computing on P2P Networks. Carlos Pérez Miguel [email protected]
High Throughput Computing on P2P Networks Carlos Pérez Miguel [email protected] Overview High Throughput Computing Motivation All things distributed: Peer-to-peer Non structured overlays Structured
Estimate Performance and Capacity Requirements for Workflow in SharePoint Server 2010
Estimate Performance and Capacity Requirements for Workflow in SharePoint Server 2010 This document is provided as-is. Information and views expressed in this document, including URL and other Internet
This material is built based on, Patterns covered in this class FILTERING PATTERNS. Filtering pattern
2/23/15 CS480 A2 Introduction to Big Data - Spring 2015 1 2/23/15 CS480 A2 Introduction to Big Data - Spring 2015 2 PART 0. INTRODUCTION TO BIG DATA PART 1. MAPREDUCE AND THE NEW SOFTWARE STACK 1. DISTRIBUTED
A client side persistent block cache for the data center. Vault Boston 2015 - Luis Pabón - Red Hat
PBLCACHE A client side persistent block cache for the data center Vault Boston 2015 - Luis Pabón - Red Hat ABOUT ME LUIS PABÓN Principal Software Engineer, Red Hat Storage IRC, GitHub: lpabon QUESTIONS:
Chapter 13. Disk Storage, Basic File Structures, and Hashing
Chapter 13 Disk Storage, Basic File Structures, and Hashing Chapter Outline Disk Storage Devices Files of Records Operations on Files Unordered Files Ordered Files Hashed Files Dynamic and Extendible Hashing
Big Table A Distributed Storage System For Data
Big Table A Distributed Storage System For Data OSDI 2006 Fay Chang, Jeffrey Dean, Sanjay Ghemawat et.al. Presented by Rahul Malviya Why BigTable? Lots of (semi-)structured data at Google - - URLs: Contents,
Big Data on AWS. Services Overview. Bernie Nallamotu Principle Solutions Architect
on AWS Services Overview Bernie Nallamotu Principle Solutions Architect \ So what is it? When your data sets become so large that you have to start innovating around how to collect, store, organize, analyze
Scalable Prefix Matching for Internet Packet Forwarding
Scalable Prefix Matching for Internet Packet Forwarding Marcel Waldvogel Computer Engineering and Networks Laboratory Institut für Technische Informatik und Kommunikationsnetze Background Internet growth
Intro to Map/Reduce a.k.a. Hadoop
Intro to Map/Reduce a.k.a. Hadoop Based on: Mining of Massive Datasets by Ra jaraman and Ullman, Cambridge University Press, 2011 Data Mining for the masses by North, Global Text Project, 2012 Slides by
CS2510 Computer Operating Systems
CS2510 Computer Operating Systems HADOOP Distributed File System Dr. Taieb Znati Computer Science Department University of Pittsburgh Outline HDF Design Issues HDFS Application Profile Block Abstraction
CS2510 Computer Operating Systems
CS2510 Computer Operating Systems HADOOP Distributed File System Dr. Taieb Znati Computer Science Department University of Pittsburgh Outline HDF Design Issues HDFS Application Profile Block Abstraction
Using Synology SSD Technology to Enhance System Performance Synology Inc.
Using Synology SSD Technology to Enhance System Performance Synology Inc. Synology_SSD_Cache_WP_ 20140512 Table of Contents Chapter 1: Enterprise Challenges and SSD Cache as Solution Enterprise Challenges...
Big Data Storage: Should We Pop the (Software) Stack? Michael Carey Information Systems Group CS Department UC Irvine. #AsterixDB
Big Data Storage: Should We Pop the (Software) Stack? Michael Carey Information Systems Group CS Department UC Irvine #AsterixDB 0 Rough Topical Plan Background and motivation (quick!) Big Data storage
Bloom Filter based Inter-domain Name Resolution: A Feasibility Study
Bloom Filter based Inter-domain Name Resolution: A Feasibility Study Konstantinos V. Katsaros, Wei Koong Chai and George Pavlou University College London, UK Outline Inter-domain name resolution in ICN
