Future Prospects of Scalable Cloud Computing
|
|
|
- Cory Hampton
- 10 years ago
- Views:
Transcription
1 Future Prospects of Scalable Cloud Computing Keijo Heljanko Department of Information and Computer Science School of Science Aalto University /17
2 Future Cloud Topics Beyond MapReduce Pig (Scripting language for MapReduce) Hive (SQL engine for Hadoop) PACT (MapReduce, Joins, ++) Spark (Berkeley, iterative algorithms) Future of Storage Technologies - Disk, Flash & DRAM Cloud Databases - BigTable & HBase Distributed Databases with Transactions - Google Percolator (used for Google s new search engine) 2/17
3 Flash Storage Currently one of the trends is the introduction of Flash memory SSDs (solid state disks) are replacing hard disks in many applications Flash capacity per Euro is increasing faster than hard disk capacity per Euro Random SSD read (and often also write) IOPS are more than 100 those of high end hard disk read and write IOPS 3/17
4 Sustained Flash Write Performance Because of the write leveling algoritms, the sustained Flash memory write speeds are often hard to benchmark and need long test runs to saturate the SSD: http: // Intel_X25-E_G1_vs_Intel_X25-M_G2.htm 4/17
5 Optimizing for Flash One should minimize the number of bytes written to Flash Less bytes written means less wear and longer lifetime expectancy of Flash Less bytes written means less frequent slow block erases, and this improves the overall Flash IOPS Heavy sequential write workloads (e.g., database logs) can be efficiently handled by arrays of hard disks without any problems with write endurance Operating systems support such as the TRIM command which tells to the SSD which data blocks can be safely discarded is very useful 5/17
6 Future of Storage Technologies A mantra from Jim Gray of Microsoft in his 2006 presentation gray/talks/flash_is_good.ppt: Tape is Dead Disk is Tape Flash is Disk RAM Locality is King 6/17
7 Jim Gray on Disks (in 2006) Disk are cheap per capacity Sequential access full disk reads of take hours Random access full disk reads take weeks Thus most of disk should be treated as a cold-storage archive 7/17
8 Jim Gray on Flash (in 2006) Lots of IOPS Expensive compared to disks (but improving) Limited write endurance Slow to write (compared to reading) 8/17
9 Jim Gray on RAM (2006 numbers) Flash/disk is cycles away from the CPU RAM is 100 cycles away from the CPU Thus Jim Gray concludes that main memory databases are going to be common 9/17
10 Some Rule of Thumb Numbers for Flash For a single random access read, the following rules of thumb numbers apply: Main memory reference: 100 ns Flash drive access: ns (1000x slower than memory) Disk seek: ns ( x slower than memory) 10/17
11 RAMCloud John K. Ousterhout, Parag Agrawal, David Erickson, Christos Kozyrakis, Jacob Leverich, David Mazires, Subhasish Mitra, Aravind Narayanan, Diego Ongaro, Guru M. Parulkar, Mendel Rosenblum, Stephen M. Rumble, Eric Stratmann, Ryan Stutsman: The case for RAMCloud. Commun. ACM 54(7): (2011). Facebook in 2009 has been running in 2009 with enough RAM to fit 75% of their dataset (not counting images or video) in RAM If they would use enough RAM cache to hit 99% of the dataset, the random disk seek latency would still kill their average latency performance: (99% 100 ns + 1% ns) = ns, which is way more that 100ns! 11/17
12 RAMCloud - Discussing the Numbers With Flash disks and 99% cache hit rate we get latencies: (99% 100 ns + 1% ns) = 1099 ns, which is still 10x more that 100ns. The above concerns only average latency, not throughput, but similar reasoning also applies to aggregate IOPS numbers of RAM, Flash, and Disk If a system can have enough memory to have 100% of the working set in RAM, instead of Flash / Hard disk, way more IOPS can be served with the same number of servers. 12/17
13 RAMCloud - Limiting Factors The main problem in RAMcloud style designs to guarantee data persistence in case of power failure + quick recovery in case of server crash / power outage The second problem is to have enough low latency networking hardware and OS to keep RAM busy 13/17
14 RAM vs Flash vs Disk The RAMCloud paper has the following diagram adapted from the paper: Andersen, D., Franklin, J., Kaminsky, M., et al., FAWN: A Fast Array of Wimpy Nodes, Proc. 22nd Symposium on Operating Systems Principles, 2009: 14/17
15 BigTable Described in the paper: Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Deborah A. Wallach, Michael Burrows, Tushar Chandra, Andrew Fikes, Robert E. Gruber: Bigtable: A Distributed Storage System for Structured Data. ACM Trans. Comput. Syst. 26(2): (2008) A highly scalable consistent and partition tolerant datastore Implemented on top of the Google Filesystem (GFS) GFS provides data persistence by replication but only supports sequential writes BigTable design does no random writes, only sequential writes are used Open source clone: Apache HBase 15/17
16 BigTable Recall that sequential writes are much faster than random writes BigTable is a write optimized design: Writes are optimized over reads The random reads that miss the DRAM cache used are slower than in traditional RDBMS - Most active data should be in DRAM! The design also minimizes the number of bytes written by using efficient logging and compression of data. Also a good design principle for Flash SSD use 16/17
17 BigTable Summary BigTable is a scalable write optimized database design It uses only sequential writes for improved write performance For read intensive workloads BigTable can be a good fit if most of the working set fits into DRAM For read intensive working sets much larger than DRAM, traditional RDBMS systems are still a good match BigTable also has an impressive data scan speed, so scan based workloads (getting MapReduce input data from BigTable) are a good match for its performance Some optimizations such as agressive compression and use of Bloom filters are only viable because SSTables are immutable data objects 17/17
Web Technologies: RAMCloud and Fiz. John Ousterhout Stanford University
Web Technologies: RAMCloud and Fiz John Ousterhout Stanford University The Web is Changing Everything Discovering the potential: New applications 100-1000x scale New development style New approach to deployment
CSE-E5430 Scalable Cloud Computing Lecture 2
CSE-E5430 Scalable Cloud Computing Lecture 2 Keijo Heljanko Department of Computer Science School of Science Aalto University [email protected] 14.9-2015 1/36 Google MapReduce A scalable batch processing
Storage of Structured Data: BigTable and HBase. New Trends In Distributed Systems MSc Software and Systems
Storage of Structured Data: BigTable and HBase 1 HBase and BigTable HBase is Hadoop's counterpart of Google's BigTable BigTable meets the need for a highly scalable storage system for structured data Provides
CSE-E5430 Scalable Cloud Computing Lecture 11
CSE-E5430 Scalable Cloud Computing Lecture 11 Keijo Heljanko Department of Computer Science School of Science Aalto University [email protected] 30.11-2015 1/24 Distributed Coordination Systems Consensus
Introduction to Big Data! with Apache Spark" UC#BERKELEY#
Introduction to Big Data! with Apache Spark" UC#BERKELEY# This Lecture" The Big Data Problem" Hardware for Big Data" Distributing Work" Handling Failures and Slow Machines" Map Reduce and Complex Jobs"
Hadoop-BAM and SeqPig
Hadoop-BAM and SeqPig Keijo Heljanko 1, André Schumacher 1,2, Ridvan Döngelci 1, Luca Pireddu 3, Matti Niemenmaa 1, Aleksi Kallio 4, Eija Korpelainen 4, and Gianluigi Zanetti 3 1 Department of Computer
Processing NGS Data with Hadoop-BAM and SeqPig
Processing NGS Data with Hadoop-BAM and SeqPig Keijo Heljanko 1, André Schumacher 1,2, Ridvan Döngelci 1, Luca Pireddu 3, Matti Niemenmaa 1, Aleksi Kallio 4, Eija Korpelainen 4, and Gianluigi Zanetti 3
Big Data and Hadoop with components like Flume, Pig, Hive and Jaql
Abstract- Today data is increasing in volume, variety and velocity. To manage this data, we have to use databases with massively parallel software running on tens, hundreds, or more than thousands of servers.
Big Fast Data Hadoop acceleration with Flash. June 2013
Big Fast Data Hadoop acceleration with Flash June 2013 Agenda The Big Data Problem What is Hadoop Hadoop and Flash The Nytro Solution Test Results The Big Data Problem Big Data Output Facebook Traditional
Hadoop Ecosystem B Y R A H I M A.
Hadoop Ecosystem B Y R A H I M A. History of Hadoop Hadoop was created by Doug Cutting, the creator of Apache Lucene, the widely used text search library. Hadoop has its origins in Apache Nutch, an open
Big Data Analysis using Hadoop components like Flume, MapReduce, Pig and Hive
Big Data Analysis using Hadoop components like Flume, MapReduce, Pig and Hive E. Laxmi Lydia 1,Dr. M.Ben Swarup 2 1 Associate Professor, Department of Computer Science and Engineering, Vignan's Institute
Big Data With Hadoop
With Saurabh Singh [email protected] The Ohio State University February 11, 2016 Overview 1 2 3 Requirements Ecosystem Resilient Distributed Datasets (RDDs) Example Code vs Mapreduce 4 5 Source: [Tutorials
Large scale processing using Hadoop. Ján Vaňo
Large scale processing using Hadoop Ján Vaňo What is Hadoop? Software platform that lets one easily write and run applications that process vast amounts of data Includes: MapReduce offline computing engine
Lecture 5: GFS & HDFS! Claudia Hauff (Web Information Systems)! [email protected]
Big Data Processing, 2014/15 Lecture 5: GFS & HDFS!! Claudia Hauff (Web Information Systems)! [email protected] 1 Course content Introduction Data streams 1 & 2 The MapReduce paradigm Looking behind
Hadoop implementation of MapReduce computational model. Ján Vaňo
Hadoop implementation of MapReduce computational model Ján Vaňo What is MapReduce? A computational model published in a paper by Google in 2004 Based on distributed computation Complements Google s distributed
Bigtable is a proven design Underpins 100+ Google services:
Mastering Massive Data Volumes with Hypertable Doug Judd Talk Outline Overview Architecture Performance Evaluation Case Studies Hypertable Overview Massively Scalable Database Modeled after Google s Bigtable
Cloud Computing at Google. Architecture
Cloud Computing at Google Google File System Web Systems and Algorithms Google Chris Brooks Department of Computer Science University of San Francisco Google has developed a layered system to handle webscale
Big Data and Apache Hadoop s MapReduce
Big Data and Apache Hadoop s MapReduce Michael Hahsler Computer Science and Engineering Southern Methodist University January 23, 2012 Michael Hahsler (SMU/CSE) Hadoop/MapReduce January 23, 2012 1 / 23
Slave. Master. Research Scholar, Bharathiar University
Volume 3, Issue 7, July 2013 ISSN: 2277 128X International Journal of Advanced Research in Computer Science and Software Engineering Research Paper online at: www.ijarcsse.com Study on Basically, and Eventually
DIABLO TECHNOLOGIES MEMORY CHANNEL STORAGE AND VMWARE VIRTUAL SAN : VDI ACCELERATION
DIABLO TECHNOLOGIES MEMORY CHANNEL STORAGE AND VMWARE VIRTUAL SAN : VDI ACCELERATION A DIABLO WHITE PAPER AUGUST 2014 Ricky Trigalo Director of Business Development Virtualization, Diablo Technologies
Scalable Cloud Computing Solutions for Next Generation Sequencing Data
Scalable Cloud Computing Solutions for Next Generation Sequencing Data Matti Niemenmaa 1, Aleksi Kallio 2, André Schumacher 1, Petri Klemelä 2, Eija Korpelainen 2, and Keijo Heljanko 1 1 Department of
Petabyte Scale Data at Facebook. Dhruba Borthakur, Engineer at Facebook, SIGMOD, New York, June 2013
Petabyte Scale Data at Facebook Dhruba Borthakur, Engineer at Facebook, SIGMOD, New York, June 2013 Agenda 1 Types of Data 2 Data Model and API for Facebook Graph Data 3 SLTP (Semi-OLTP) and Analytics
Hadoop IST 734 SS CHUNG
Hadoop IST 734 SS CHUNG Introduction What is Big Data?? Bulk Amount Unstructured Lots of Applications which need to handle huge amount of data (in terms of 500+ TB per day) If a regular machine need to
Enabling High performance Big Data platform with RDMA
Enabling High performance Big Data platform with RDMA Tong Liu HPC Advisory Council Oct 7 th, 2014 Shortcomings of Hadoop Administration tooling Performance Reliability SQL support Backup and recovery
Apache HBase. Crazy dances on the elephant back
Apache HBase Crazy dances on the elephant back Roman Nikitchenko, 16.10.2014 YARN 2 FIRST EVER DATA OS 10.000 nodes computer Recent technology changes are focused on higher scale. Better resource usage
Benchmarking Hadoop & HBase on Violin
Technical White Paper Report Technical Report Benchmarking Hadoop & HBase on Violin Harnessing Big Data Analytics at the Speed of Memory Version 1.0 Abstract The purpose of benchmarking is to show advantages
Distributed File System. MCSN N. Tonellotto Complements of Distributed Enabling Platforms
Distributed File System 1 How do we get data to the workers? NAS Compute Nodes SAN 2 Distributed File System Don t move data to workers move workers to the data! Store data on the local disks of nodes
Communication System Design Projects
Communication System Design Projects PROFESSOR DEJAN KOSTIC PRESENTER: KIRILL BOGDANOV KTH-DB Geo Distributed Key Value Store DESIGN AND DEVELOP GEO DISTRIBUTED KEY VALUE STORE. DEPLOY AND TEST IT ON A
Moving From Hadoop to Spark
+ Moving From Hadoop to Spark Sujee Maniyam Founder / Principal @ www.elephantscale.com [email protected] Bay Area ACM meetup (2015-02-23) + HI, Featured in Hadoop Weekly #109 + About Me : Sujee
Performance Beyond PCI Express: Moving Storage to The Memory Bus A Technical Whitepaper
: Moving Storage to The Memory Bus A Technical Whitepaper By Stephen Foskett April 2014 2 Introduction In the quest to eliminate bottlenecks and improve system performance, the state of the art has continually
DataStax Enterprise, powered by Apache Cassandra (TM)
PerfAccel (TM) Performance Benchmark on Amazon: DataStax Enterprise, powered by Apache Cassandra (TM) Disclaimer: All of the documentation provided in this document, is copyright Datagres Technologies
Big Data and Hadoop with Components like Flume, Pig, Hive and Jaql
Available Online at www.ijcsmc.com International Journal of Computer Science and Mobile Computing A Monthly Journal of Computer Science and Information Technology IJCSMC, Vol. 3, Issue. 7, July 2014, pg.759
Scalable Cloud Computing
Keijo Heljanko Department of Information and Computer Science School of Science Aalto University [email protected] 1/44 Business Drivers of Cloud Computing Large data centers allow for economics
Lecture 10: HBase! Claudia Hauff (Web Information Systems)! [email protected]
Big Data Processing, 2014/15 Lecture 10: HBase!! Claudia Hauff (Web Information Systems)! [email protected] 1 Course content Introduction Data streams 1 & 2 The MapReduce paradigm Looking behind the
Architectures for Big Data Analytics A database perspective
Architectures for Big Data Analytics A database perspective Fernando Velez Director of Product Management Enterprise Information Management, SAP June 2013 Outline Big Data Analytics Requirements Spectrum
Application Development. A Paradigm Shift
Application Development for the Cloud: A Paradigm Shift Ramesh Rangachar Intelsat t 2012 by Intelsat. t Published by The Aerospace Corporation with permission. New 2007 Template - 1 Motivation for the
NoSQL Data Base Basics
NoSQL Data Base Basics Course Notes in Transparency Format Cloud Computing MIRI (CLC-MIRI) UPC Master in Innovation & Research in Informatics Spring- 2013 Jordi Torres, UPC - BSC www.jorditorres.eu HDFS
How To Scale Out Of A Nosql Database
Firebird meets NoSQL (Apache HBase) Case Study Firebird Conference 2011 Luxembourg 25.11.2011 26.11.2011 Thomas Steinmaurer DI +43 7236 3343 896 [email protected] www.scch.at Michael Zwick DI
GraySort on Apache Spark by Databricks
GraySort on Apache Spark by Databricks Reynold Xin, Parviz Deyhim, Ali Ghodsi, Xiangrui Meng, Matei Zaharia Databricks Inc. Apache Spark Sorting in Spark Overview Sorting Within a Partition Range Partitioner
A Novel Optimized Mapreduce across Datacenter s Using Dache: a Data Aware Caching for BigData Applications
A Novel Optimized Mapreduce across Datacenter s Using Dache: a Data Aware Caching for BigData Applications M.Santhi 1, A.K. Punith Kumar 2 1 M.Tech., Scholar, Dept. of CSE, Siddhartha Educational Academy
Overview of Databases On MacOS. Karl Kuehn Automation Engineer RethinkDB
Overview of Databases On MacOS Karl Kuehn Automation Engineer RethinkDB Session Goals Introduce Database concepts Show example players Not Goals: Cover non-macos systems (Oracle) Teach you SQL Answer what
BENCHMARKING CLOUD DATABASES CASE STUDY on HBASE, HADOOP and CASSANDRA USING YCSB
BENCHMARKING CLOUD DATABASES CASE STUDY on HBASE, HADOOP and CASSANDRA USING YCSB Planet Size Data!? Gartner s 10 key IT trends for 2012 unstructured data will grow some 80% over the course of the next
Big Table A Distributed Storage System For Data
Big Table A Distributed Storage System For Data OSDI 2006 Fay Chang, Jeffrey Dean, Sanjay Ghemawat et.al. Presented by Rahul Malviya Why BigTable? Lots of (semi-)structured data at Google - - URLs: Contents,
Flash for Databases. September 22, 2015 Peter Zaitsev Percona
Flash for Databases September 22, 2015 Peter Zaitsev Percona In this Presentation Flash technology overview Review some of the available technology What does this mean for databases? Specific opportunities
Distributed Lucene : A distributed free text index for Hadoop
Distributed Lucene : A distributed free text index for Hadoop Mark H. Butler and James Rutherford HP Laboratories HPL-2008-64 Keyword(s): distributed, high availability, free text, parallel, search Abstract:
Big Data and Industrial Internet
Big Data and Industrial Internet Keijo Heljanko Department of Computer Science and Helsinki Institute for Information Technology HIIT School of Science, Aalto University [email protected] 16.6-2015
Xiaoming Gao Hui Li Thilina Gunarathne
Xiaoming Gao Hui Li Thilina Gunarathne Outline HBase and Bigtable Storage HBase Use Cases HBase vs RDBMS Hands-on: Load CSV file to Hbase table with MapReduce Motivation Lots of Semi structured data Horizontal
American International Journal of Research in Science, Technology, Engineering & Mathematics
American International Journal of Research in Science, Technology, Engineering & Mathematics Available online at http://www.iasir.net ISSN (Print): 2328-3491, ISSN (Online): 2328-3580, ISSN (CD-ROM): 2328-3629
Jeffrey D. Ullman slides. MapReduce for data intensive computing
Jeffrey D. Ullman slides MapReduce for data intensive computing Single-node architecture CPU Machine Learning, Statistics Memory Classical Data Mining Disk Commodity Clusters Web data sets can be very
Hadoop & its Usage at Facebook
Hadoop & its Usage at Facebook Dhruba Borthakur Project Lead, Hadoop Distributed File System [email protected] Presented at the Storage Developer Conference, Santa Clara September 15, 2009 Outline Introduction
Joining Cassandra. Luiz Fernando M. Schlindwein Computer Science Department University of Crete Heraklion, Greece [email protected].
Luiz Fernando M. Schlindwein Computer Science Department University of Crete Heraklion, Greece [email protected] Joining Cassandra Binjiang Tao Computer Science Department University of Crete Heraklion,
Accelerating Enterprise Applications and Reducing TCO with SanDisk ZetaScale Software
WHITEPAPER Accelerating Enterprise Applications and Reducing TCO with SanDisk ZetaScale Software SanDisk ZetaScale software unlocks the full benefits of flash for In-Memory Compute and NoSQL applications
Sedna: A Memory Based Key-Value Storage System for Realtime Processing in Cloud
2012 IEEE International Conference on Cluster Computing Workshops Sedna: A Memory Based Key-Value Storage System for Realtime Processing in Cloud Dong Dai Computer Science College University of Science
Outline. High Performance Computing (HPC) Big Data meets HPC. Case Studies: Some facts about Big Data Technologies HPC and Big Data converging
Outline High Performance Computing (HPC) Towards exascale computing: a brief history Challenges in the exascale era Big Data meets HPC Some facts about Big Data Technologies HPC and Big Data converging
Rakam: Distributed Analytics API
Rakam: Distributed Analytics API Burak Emre Kabakcı May 30, 2014 Abstract Today, most of the big data applications needs to compute data in real-time since the Internet develops quite fast and the users
A Study on Workload Imbalance Issues in Data Intensive Distributed Computing
A Study on Workload Imbalance Issues in Data Intensive Distributed Computing Sven Groot 1, Kazuo Goda 1, and Masaru Kitsuregawa 1 University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan Abstract.
What is Analytic Infrastructure and Why Should You Care?
What is Analytic Infrastructure and Why Should You Care? Robert L Grossman University of Illinois at Chicago and Open Data Group [email protected] ABSTRACT We define analytic infrastructure to be the services,
Benchmarking Cassandra on Violin
Technical White Paper Report Technical Report Benchmarking Cassandra on Violin Accelerating Cassandra Performance and Reducing Read Latency With Violin Memory Flash-based Storage Arrays Version 1.0 Abstract
BIG DATA WEB ORGINATED TECHNOLOGY MEETS TELEVISION BHAVAN GHANDI, ADVANCED RESEARCH ENGINEER SANJEEV MISHRA, DISTINGUISHED ADVANCED RESEARCH ENGINEER
BIG DATA WEB ORGINATED TECHNOLOGY MEETS TELEVISION BHAVAN GHANDI, ADVANCED RESEARCH ENGINEER SANJEEV MISHRA, DISTINGUISHED ADVANCED RESEARCH ENGINEER TABLE OF CONTENTS INTRODUCTION WHAT IS BIG DATA?...
Can the Elephants Handle the NoSQL Onslaught?
Can the Elephants Handle the NoSQL Onslaught? Avrilia Floratou, Nikhil Teletia David J. DeWitt, Jignesh M. Patel, Donghui Zhang University of Wisconsin-Madison Microsoft Jim Gray Systems Lab Presented
Chapter 7: Distributed Systems: Warehouse-Scale Computing. Fall 2011 Jussi Kangasharju
Chapter 7: Distributed Systems: Warehouse-Scale Computing Fall 2011 Jussi Kangasharju Chapter Outline Warehouse-scale computing overview Workloads and software infrastructure Failures and repairs Note:
Department of Computer Science University of Cyprus EPL646 Advanced Topics in Databases. Lecture 14
Department of Computer Science University of Cyprus EPL646 Advanced Topics in Databases Lecture 14 Big Data Management IV: Big-data Infrastructures (Background, IO, From NFS to HFDS) Chapter 14-15: Abideboul
CSCI 5980 TOPICS IN DISTRIBUTED SYSTEMS FINAL REPORT 1. Locality-Aware Load Balancer for HBase
CSCI 5980 TOPICS IN DISTRIBUTED SYSTEMS FINAL REPORT 1 Locality-Aware Load Balancer for HBase Kewal Panchputre, Prashant Chaudhary, Rajat Garg University of Minnesota, Twin Cities {panchput, prashant,
THE HADOOP DISTRIBUTED FILE SYSTEM
THE HADOOP DISTRIBUTED FILE SYSTEM Konstantin Shvachko, Hairong Kuang, Sanjay Radia, Robert Chansler Presented by Alexander Pokluda October 7, 2013 Outline Motivation and Overview of Hadoop Architecture,
CSE-E5430 Scalable Cloud Computing P Lecture 5
CSE-E5430 Scalable Cloud Computing P Lecture 5 Keijo Heljanko Department of Computer Science School of Science Aalto University [email protected] 12.10-2015 1/34 Fault Tolerance Strategies for Storage
SSD Performance Tips: Avoid The Write Cliff
ebook 100% KBs/sec 12% GBs Written SSD Performance Tips: Avoid The Write Cliff An Inexpensive and Highly Effective Method to Keep SSD Performance at 100% Through Content Locality Caching Share this ebook
Hosting Transaction Based Applications on Cloud
Proc. of Int. Conf. on Multimedia Processing, Communication& Info. Tech., MPCIT Hosting Transaction Based Applications on Cloud A.N.Diggikar 1, Dr. D.H.Rao 2 1 Jain College of Engineering, Belgaum, India
MinCopysets: Derandomizing Replication In Cloud Storage
MinCopysets: Derandomizing Replication In Cloud Storage Asaf Cidon, Ryan Stutsman, Stephen Rumble, Sachin Katti, John Ousterhout and Mendel Rosenblum Stanford University [email protected], {stutsman,rumble,skatti,ouster,mendel}@cs.stanford.edu
Hadoop: Embracing future hardware
Hadoop: Embracing future hardware Suresh Srinivas @suresh_m_s Page 1 About Me Architect & Founder at Hortonworks Long time Apache Hadoop committer and PMC member Designed and developed many key Hadoop
How To Scale Myroster With Flash Memory From Hgst On A Flash Flash Flash Memory On A Slave Server
White Paper October 2014 Scaling MySQL Deployments Using HGST FlashMAX PCIe SSDs An HGST and Percona Collaborative Whitepaper Table of Contents Introduction The Challenge Read Workload Scaling...1 Write
Petabyte Scale Data at Facebook. Dhruba Borthakur, Engineer at Facebook, UC Berkeley, Nov 2012
Petabyte Scale Data at Facebook Dhruba Borthakur, Engineer at Facebook, UC Berkeley, Nov 2012 Agenda 1 Types of Data 2 Data Model and API for Facebook Graph Data 3 SLTP (Semi-OLTP) and Analytics data 4
An Overview of Flash Storage for Databases
An Overview of Flash Storage for Databases Vadim Tkachenko Morgan Tocker http://percona.com MySQL CE Apr 2010 -2- Introduction Vadim Tkachenko Percona Inc, CTO and Lead of Development Morgan Tocker Percona
RAMCloud and the Low- Latency Datacenter. John Ousterhout Stanford University
RAMCloud and the Low- Latency Datacenter John Ousterhout Stanford University Most important driver for innovation in computer systems: Rise of the datacenter Phase 1: large scale Phase 2: low latency Introduction
White paper. QNAP Turbo NAS with SSD Cache
White paper QNAP Turbo NAS with SSD Cache 1 Table of Contents Introduction... 3 Audience... 3 Terminology... 3 SSD cache technology... 4 Applications and benefits... 5 Limitations... 6 Performance Test...
Accelerating Cassandra Workloads using SanDisk Solid State Drives
WHITE PAPER Accelerating Cassandra Workloads using SanDisk Solid State Drives February 2015 951 SanDisk Drive, Milpitas, CA 95035 2015 SanDIsk Corporation. All rights reserved www.sandisk.com Table of
Big Data Primer. 1 Why Big Data? Alex Sverdlov [email protected]
Big Data Primer Alex Sverdlov [email protected] 1 Why Big Data? Data has value. This immediately leads to: more data has more value, naturally causing datasets to grow rather large, even at small companies.
Petabyte Scale Data at Facebook. Dhruba Borthakur, Engineer at Facebook, XLDB Conference at Stanford University, Sept 2012
Petabyte Scale Data at Facebook Dhruba Borthakur, Engineer at Facebook, XLDB Conference at Stanford University, Sept 2012 Agenda 1 Types of Data 2 Data Model and API for Facebook Graph Data 3 SLTP (Semi-OLTP)
CSE 590: Special Topics Course ( Supercomputing ) Lecture 10 ( MapReduce& Hadoop)
CSE 590: Special Topics Course ( Supercomputing ) Lecture 10 ( MapReduce& Hadoop) Rezaul A. Chowdhury Department of Computer Science SUNY Stony Brook Spring 2016 MapReduce MapReduce is a programming model
Four Orders of Magnitude: Running Large Scale Accumulo Clusters. Aaron Cordova Accumulo Summit, June 2014
Four Orders of Magnitude: Running Large Scale Accumulo Clusters Aaron Cordova Accumulo Summit, June 2014 Scale, Security, Schema Scale to scale 1 - (vt) to change the size of something let s scale the
CSE-E5430 Scalable Cloud Computing. Lecture 4
Lecture 4 Keijo Heljanko Department of Computer Science School of Science Aalto University [email protected] 5.10-2015 1/23 Hadoop - Linux of Big Data Hadoop = Open Source Distributed Operating System
Lecture 6 Cloud Application Development, using Google App Engine as an example
Lecture 6 Cloud Application Development, using Google App Engine as an example 922EU3870 Cloud Computing and Mobile Platforms, Autumn 2009 (2009/10/19) http://code.google.com/appengine/ Ping Yeh ( 葉 平
Data-Intensive Computing with Map-Reduce and Hadoop
Data-Intensive Computing with Map-Reduce and Hadoop Shamil Humbetov Department of Computer Engineering Qafqaz University Baku, Azerbaijan [email protected] Abstract Every day, we create 2.5 quintillion
Scaling Out With Apache Spark. DTL Meeting 17-04-2015 Slides based on https://www.sics.se/~amir/files/download/dic/spark.pdf
Scaling Out With Apache Spark DTL Meeting 17-04-2015 Slides based on https://www.sics.se/~amir/files/download/dic/spark.pdf Your hosts Mathijs Kattenberg Technical consultant Jeroen Schot Technical consultant
BIG DATA What it is and how to use?
BIG DATA What it is and how to use? Lauri Ilison, PhD Data Scientist 21.11.2014 Big Data definition? There is no clear definition for BIG DATA BIG DATA is more of a concept than precise term 1 21.11.14
Large-Scale Data Processing
Large-Scale Data Processing Eiko Yoneki [email protected] http://www.cl.cam.ac.uk/~ey204 Systems Research Group University of Cambridge Computer Laboratory 2010s: Big Data Why Big Data now? Increase
Hadoop & its Usage at Facebook
Hadoop & its Usage at Facebook Dhruba Borthakur Project Lead, Hadoop Distributed File System [email protected] Presented at the The Israeli Association of Grid Technologies July 15, 2009 Outline Architecture
Snapshots in Hadoop Distributed File System
Snapshots in Hadoop Distributed File System Sameer Agarwal UC Berkeley Dhruba Borthakur Facebook Inc. Ion Stoica UC Berkeley Abstract The ability to take snapshots is an essential functionality of any
MySQL performance in a cloud. Mark Callaghan
MySQL performance in a cloud Mark Callaghan Special thanks Eric Hammond (http://www.anvilon.com) provided documentation that made all of my work much easier. What is this thing called a cloud? Deployment
Chapter 11 Map-Reduce, Hadoop, HDFS, Hbase, MongoDB, Apache HIVE, and Related
Chapter 11 Map-Reduce, Hadoop, HDFS, Hbase, MongoDB, Apache HIVE, and Related Summary Xiangzhe Li Nowadays, there are more and more data everyday about everything. For instance, here are some of the astonishing
Solid State Storage in Massive Data Environments Erik Eyberg
Solid State Storage in Massive Data Environments Erik Eyberg Senior Analyst Texas Memory Systems, Inc. Agenda Taxonomy Performance Considerations Reliability Considerations Q&A Solid State Storage Taxonomy
Cloudera Enterprise Reference Architecture for Google Cloud Platform Deployments
Cloudera Enterprise Reference Architecture for Google Cloud Platform Deployments Important Notice 2010-2015 Cloudera, Inc. All rights reserved. Cloudera, the Cloudera logo, Cloudera Impala, Impala, and
Design and Evolution of the Apache Hadoop File System(HDFS)
Design and Evolution of the Apache Hadoop File System(HDFS) Dhruba Borthakur Engineer@Facebook Committer@Apache HDFS SDC, Sept 19 2011 Outline Introduction Yet another file-system, why? Goals of Hadoop
