THE ATLAS DISTRIBUTED DATA MANAGEMENT SYSTEM & DATABASES
|
|
|
- Abigayle Patricia May
- 10 years ago
- Views:
Transcription
1 THE ATLAS DISTRIBUTED DATA MANAGEMENT SYSTEM & DATABASES Vincent Garonne, Mario Lassnig, Martin Barisits, Thomas Beermann, Ralph Vigne, Cedric Serfon XLDB 2013 Workshop Europe
2 Overview 2 Distributed Data Management (DDM) Overview Architecture Relational Database Management Systems (RDBMS) & DDM Use cases & Experiences NoSQL & DDM Use cases & (operational) Experiences Present & Future: Rucio Conclusions
3 DDM Background 3 The Distributed Data Management project manages ATLAS data on the grid The current system is Don Quijote 2 (DQ2) 144 Petabytes 600k datasets 450 million files 800 active users 130 sites + History Data Taking Total Grid Usage (PB) Long Shutdown 1 (LS1)
4 DDM Implementation: DQ2 4 DQ2 In production since : Many updates RDBMS Oracle Critical dependency Proven technology Expertise@cern Great for enforcing data integrity Tool of choice for Online transaction processing applications (OLTP)
5 Oracle & DDM 5 Constant optimization over the years has allowed us to scale avg. 300 Hz, physical write 7 MB/s, physical read 30 MB/s Improvement with I/O, concurrency, front-end deployment, time partitioning, table space management, denormalization for performance, etc. Developing and maintaining an high availability service with Oracle requires some good knowledge and expertise Bind variables, index hint, oracle optimizer, pl/sql, execution plan, etc.
6 Concepts 6 RDBMS Vertical scalability ( scale up ) Few powerful nodes Shared state Explicit partitioning Resistant hardware ACID Implicit queries (WHAT) NoSQL (Structured storage) Horizontal scalability ( scale out ) Lots of interconnected low cost nodes Shared nothing architecture Implicit partitioning Reliability in software BASE Explicit data pipeline (HOW)
7 NoSQL & DDM 7 Data warehousing use cases & applications relevant for NoSQL Lot of data No transactions and relaxed consistency Multi dimensional queries Three technologies evaluated: MongoDB, Cassandra & Hadoop Many more available, but these were chosen with the following things in mind Large community available and widely installed In production in several larger companies with respectable data sizes Potential commercial support 12 node cluster located in CERN IT data center to evaluate technologies 96 CPU cores (Intel Xeon, 2.27GHz, 8/node) 288 GB RAM (24/node) 24 TB space (1 TB SATA each, 2/node) 1 GigE network
8 Data Models Structured Storage :: Technologies :: Data Models 8 7! Explicit row-key! Native datatypes! Everything indexable! Implicit row-keys! Data is byte streams! Column Families group row-keys! Implicit row-key! Data is byte streams! Row-keys group Column Families! Row-keys are sorted
9 Structured Storage :: Technologies :: Data Bases Architectures 9! Master/Slave! Smart client implements failover! Write-ahead log! Limited MapReduce! interleaved! bound to single thread! Keyed binary storage! Indexes! Table locking! Replica sets! Explicit partitioning! No single point of failure! ring of nodes! forwarding of requests! Write-ahead log! No MapReduce! can use Hadoop! No file storage! Bloom filter! Row locking! Snapshotting! Implicit partitioning! No single point of failure! multiple masters! Write-ahead log! MapReduce! File storage! Data on HDFS! Can be used as a source and sink within Hadoop! Bloom filter! Row locking! HDFS-backed redundancy! Implicit partitioning
10 Technology Selection Structured Storage :: Technology Selection 10 Installation/ Configuration MongoDB Cassandra Hadoop/HBase Download, unpack, run Download, unpack, configure, run Distribution, Complex config Buffered read /sec /sec /sec Random read /sec /sec /sec Relaxed write /sec /sec 9 000/sec Durable Write /sec 9 000/sec 6 000/sec Analytics Limited MapReduce Hadoop MapReduce MapReduce, Pig, Hive Durability support Full Full Full Native API Binary JSON Java Java Generic API None Thrift Thrift, REST
11 rage Structured Technology: :: Technologies Storage :: :: Technology Selection 11 mework for distributed data processing Installation/ Configuration MongoDB Cassandra Hadoop/HBase Download, unpack, run abase like MongoDB or Cassandra ents Download, unpack, configure, run Distribution, Complex config Buffered read /sec /sec /sec Random read /sec /sec /sec uted filesystem distributed processing of large data sets uted data base for structured storage Analytics ntend and warehouse w language for parallel execution oordination service Relaxed write /sec /sec 9 000/sec Durable Write /sec 9 000/sec 6 000/sec Limited MapReduce Hadoop MapReduce MapReduce, Pig, Hive Durability support Full Full Full Native API Binary JSON Java Java Generic API None Thrift Thrift, REST Hadoop is a framework for distributed data processing (not only a database) with many components: HDFS (distributed filesystem), MapReduce (distributed processing of large data sets), HBase (distributed data base for structured storage), Hive(SQL frontend), Pig: dataflow language for parallel execution,
12 12 Use Cases : Log File Aggregation 12 Use cases :: Log file aggregation! HDFS is mounted as a POSIX filesystem via FUSE HDFS! is mounted Daily copies as a of POSIX all the ATLAS filesystem DDM via log FUSE files are aggregated in a single place Daily! copies 8 months of of all logs the ATLAS accumulated, DDM log already files are using aggregated 3 TB of space in a single on HDFS place! 8 months Python of MapReduce logs accumulated jobs analyse ~ 3 TB of the space log on files HDFS Python! MapReduce Streaming API: jobs read analyse from stdin, the log write files to stdout! Streaming Processing API: the read data from takes stdin, about write to 70 stdout minutes Processing! Average the data IO at takes 70MB/s about 70 minutes Average! Potential IO at 70MB/s for 15% performance increase if re-written in pure Java Potential for 15% performance increase if re-written in pure Java " Better read patterns and reducing temporary network usage n Better read patterns and reducing temporary network usag Apache Apache Apache write log file FUSE HDFS MapReduce Apache
13 Use Cases : Trace Mining 13 Client interaction with ATLAS DDM generates traces E.g., downloading a dataset/file from a remote site Lots of information (25 attributes), time-based One month of traces uncompressed 80GB, compressed 25GB n Can be mapreduced in under 2 minutes Implemented in HBase as distributed atomic counters Previously developed in Cassandra At various granularities (minutes, hours, days) Size of HBase tables negligible Average rate at 300 insertions/s Migrated from Cassandra within 2 days Almost the same column-based data model Get extra Hadoop benefits for free (mature ecosystem with many tools) The single Cassandra benefit, HA, was implemented in Hadoop
14 Use cases :: DQ2Share Use Cases : DQ2Share 14! HTTP cache for for dataset/file downloads! Downloads via via ATLAS DDM DDM tools tools HDFS, to HDFS, serves serves via Apache via Apache! Get all the the features of of HDFS HDFS for for free, free, i.e., i.e., one one large large reliable reliable disk pool disk pool
15 ! (come and see the poster) 15 Use Cases : Accounting Use cases :: Accounting LAS 6 data Break contents down usage of ATLAS data contents data! queries Break Historical down usage free-form of ATLAS meta data queries contents ta10*, datatype=esd, location=cern*} {site, nbfiles, bytes} := {project=data10*, datatype=esd, location=cern*}!! Historical free-form meta data queries mmaries s about 8 minutes {site, nbfiles, bytes} := {project=data10*, datatype=esd, location=cern*} Non-relational periodic summaries! Non-relational periodic summaries A full accounting run takes about 8 minutes MapReduce jobs B of output data DFS! A full accounting run takes about 8 minutes Oracle " Pig data pipeline pipeline creates creates MapReduce MapReduce jobs jobs 7 GB of input data, 100 MB of output data " 7 GB of input data, 100 MB of output data Pig publish Apache periodic snapshot HDFS Pig publish Apache
16 Operational experiences: Hadoop 16 Cloudera distribution Tests and packages the Hadoop ecosystem Straightforward installation via Puppet/YUM But the configuration was... not so obvious with many parameters, extensive documentation, but bad default performance Disk failure is common and cannot be ignored Data centre annual disk replacement rate up to 13% (Google & CMU, 2011) Within one year we had: n 5 disk failures (20% failure rate!) Out of which 3 happened at the same time n 1 Mainboard failure together with the disk failure, but another node Worst case scenario experienced up to now: 4 nodes out of 12 dead within a few minutes Hadoop Reported erroneous nodes, blacklisted them and re-synced the remaining ones No manual intervention necessary Nothing was lost (but one node is still causing trouble, RAID controller?, cluster not affected)
17 The Next DDM Version: Rucio 17 DQ2 will simply not continue to scale Order(s) of magnitude more data with significant higher trigger rates and event pileup (after LS1) Extensibility issues Computing model and middleware changes Rucio is the new major version, anticipated for 2014, to ensure system scalability, remove unused concepts and support new use cases Rucio exploits commonalities between experiments (not just LHC) and other data intensive sciences (e.g., Cloud/Big data computing) Rucio & Databases Relational database management system n SQLAlchemy Object Relational Mapper(ORM) supporting Oracle, sqlite, mysql, n Use cases: Real-time data and transactional consistency n Test with representative data volume is ongoing n Evaluation of synchronization strategies between DQ2 and Rucio Non relational structured storage (Hadoop) n Use cases: Search functionality, realtime stats, monitoring, meta-data, complex analytical reports over large volumes
18 Conclusions 18 ATLAS Distributed Data Management delivered a working system to the collaboration in time for LHC data taking relying heavily on Oracle NoSQL: DDM use cases well covered Hadoop proved to be the correct choice: Stable reliable fast easy to work with We see Hadoop complementary to RDBMS, not as a replacement DDM team is currently developing and (stress-)testing a new DDM version called Rucio anticipated for 2014 Using both SQL and NoSQL
19 Thanks! 19
ATLAS Data Management Accounting with Hadoop Pig and HBase
ATLAS Data Management Accounting with Hadoop Pig and HBase Mario Lassnig, Vincent Garonne, Gancho Dimitrov, Luca Canali, on behalf of the ATLAS Collaboration European Organization for Nuclear Research
How To Scale Out Of A Nosql Database
Firebird meets NoSQL (Apache HBase) Case Study Firebird Conference 2011 Luxembourg 25.11.2011 26.11.2011 Thomas Steinmaurer DI +43 7236 3343 896 [email protected] www.scch.at Michael Zwick DI
Hadoop IST 734 SS CHUNG
Hadoop IST 734 SS CHUNG Introduction What is Big Data?? Bulk Amount Unstructured Lots of Applications which need to handle huge amount of data (in terms of 500+ TB per day) If a regular machine need to
Oracle s Big Data solutions. Roger Wullschleger. <Insert Picture Here>
s Big Data solutions Roger Wullschleger DBTA Workshop on Big Data, Cloud Data Management and NoSQL 10. October 2012, Stade de Suisse, Berne 1 The following is intended to outline
A Performance Analysis of Distributed Indexing using Terrier
A Performance Analysis of Distributed Indexing using Terrier Amaury Couste Jakub Kozłowski William Martin Indexing Indexing Used by search
CSE-E5430 Scalable Cloud Computing Lecture 2
CSE-E5430 Scalable Cloud Computing Lecture 2 Keijo Heljanko Department of Computer Science School of Science Aalto University [email protected] 14.9-2015 1/36 Google MapReduce A scalable batch processing
Introduction to Hadoop. New York Oracle User Group Vikas Sawhney
Introduction to Hadoop New York Oracle User Group Vikas Sawhney GENERAL AGENDA Driving Factors behind BIG-DATA NOSQL Database 2014 Database Landscape Hadoop Architecture Map/Reduce Hadoop Eco-system Hadoop
Chapter 11 Map-Reduce, Hadoop, HDFS, Hbase, MongoDB, Apache HIVE, and Related
Chapter 11 Map-Reduce, Hadoop, HDFS, Hbase, MongoDB, Apache HIVE, and Related Summary Xiangzhe Li Nowadays, there are more and more data everyday about everything. For instance, here are some of the astonishing
Scaling Up 2 CSE 6242 / CX 4242. Duen Horng (Polo) Chau Georgia Tech. HBase, Hive
CSE 6242 / CX 4242 Scaling Up 2 HBase, Hive Duen Horng (Polo) Chau Georgia Tech Some lectures are partly based on materials by Professors Guy Lebanon, Jeffrey Heer, John Stasko, Christos Faloutsos, Le
THE HADOOP DISTRIBUTED FILE SYSTEM
THE HADOOP DISTRIBUTED FILE SYSTEM Konstantin Shvachko, Hairong Kuang, Sanjay Radia, Robert Chansler Presented by Alexander Pokluda October 7, 2013 Outline Motivation and Overview of Hadoop Architecture,
HBase A Comprehensive Introduction. James Chin, Zikai Wang Monday, March 14, 2011 CS 227 (Topics in Database Management) CIT 367
HBase A Comprehensive Introduction James Chin, Zikai Wang Monday, March 14, 2011 CS 227 (Topics in Database Management) CIT 367 Overview Overview: History Began as project by Powerset to process massive
Hadoop & its Usage at Facebook
Hadoop & its Usage at Facebook Dhruba Borthakur Project Lead, Hadoop Distributed File System [email protected] Presented at the The Israeli Association of Grid Technologies July 15, 2009 Outline Architecture
Apache Hadoop. Alexandru Costan
1 Apache Hadoop Alexandru Costan Big Data Landscape No one-size-fits-all solution: SQL, NoSQL, MapReduce, No standard, except Hadoop 2 Outline What is Hadoop? Who uses it? Architecture HDFS MapReduce Open
Oracle Big Data SQL Technical Update
Oracle Big Data SQL Technical Update Jean-Pierre Dijcks Oracle Redwood City, CA, USA Keywords: Big Data, Hadoop, NoSQL Databases, Relational Databases, SQL, Security, Performance Introduction This technical
Performance and Scalability Overview
Performance and Scalability Overview This guide provides an overview of some of the performance and scalability capabilities of the Pentaho Business Analytics Platform. Contents Pentaho Scalability and
Performance Comparison of SQL based Big Data Analytics with Lustre and HDFS file systems
Performance Comparison of SQL based Big Data Analytics with Lustre and HDFS file systems Rekha Singhal and Gabriele Pacciucci * Other names and brands may be claimed as the property of others. Lustre File
Hadoop Distributed File System. Dhruba Borthakur Apache Hadoop Project Management Committee [email protected] [email protected]
Hadoop Distributed File System Dhruba Borthakur Apache Hadoop Project Management Committee [email protected] [email protected] Hadoop, Why? Need to process huge datasets on large clusters of computers
Data-Intensive Programming. Timo Aaltonen Department of Pervasive Computing
Data-Intensive Programming Timo Aaltonen Department of Pervasive Computing Data-Intensive Programming Lecturer: Timo Aaltonen University Lecturer [email protected] Assistants: Henri Terho and Antti
Introduction to Hadoop HDFS and Ecosystems. Slides credits: Cloudera Academic Partners Program & Prof. De Liu, MSBA 6330 Harvesting Big Data
Introduction to Hadoop HDFS and Ecosystems ANSHUL MITTAL Slides credits: Cloudera Academic Partners Program & Prof. De Liu, MSBA 6330 Harvesting Big Data Topics The goal of this presentation is to give
Hadoop. Apache Hadoop is an open-source software framework for storage and large scale processing of data-sets on clusters of commodity hardware.
Hadoop Source Alessandro Rezzani, Big Data - Architettura, tecnologie e metodi per l utilizzo di grandi basi di dati, Apogeo Education, ottobre 2013 wikipedia Hadoop Apache Hadoop is an open-source software
Hadoop and Map-Reduce. Swati Gore
Hadoop and Map-Reduce Swati Gore Contents Why Hadoop? Hadoop Overview Hadoop Architecture Working Description Fault Tolerance Limitations Why Map-Reduce not MPI Distributed sort Why Hadoop? Existing Data
BIG DATA TRENDS AND TECHNOLOGIES
BIG DATA TRENDS AND TECHNOLOGIES THE WORLD OF DATA IS CHANGING Cloud WHAT IS BIG DATA? Big data are datasets that grow so large that they become awkward to work with using onhand database management tools.
Introduction to Apache Cassandra
Introduction to Apache Cassandra White Paper BY DATASTAX CORPORATION JULY 2013 1 Table of Contents Abstract 3 Introduction 3 Built by Necessity 3 The Architecture of Cassandra 4 Distributing and Replicating
How To Use Big Data For Telco (For A Telco)
ON-LINE VIDEO ANALYTICS EMBRACING BIG DATA David Vanderfeesten, Bell Labs Belgium ANNO 2012 YOUR DATA IS MONEY BIG MONEY! Your click stream, your activity stream, your electricity consumption, your call
MapReduce with Apache Hadoop Analysing Big Data
MapReduce with Apache Hadoop Analysing Big Data April 2010 Gavin Heavyside [email protected] About Journey Dynamics Founded in 2006 to develop software technology to address the issues
Big Data Analytics - Accelerated. stream-horizon.com
Big Data Analytics - Accelerated stream-horizon.com Legacy ETL platforms & conventional Data Integration approach Unable to meet latency & data throughput demands of Big Data integration challenges Based
Lecture 10: HBase! Claudia Hauff (Web Information Systems)! [email protected]
Big Data Processing, 2014/15 Lecture 10: HBase!! Claudia Hauff (Web Information Systems)! [email protected] 1 Course content Introduction Data streams 1 & 2 The MapReduce paradigm Looking behind the
Building Scalable Big Data Infrastructure Using Open Source Software. Sam William sampd@stumbleupon.
Building Scalable Big Data Infrastructure Using Open Source Software Sam William sampd@stumbleupon. What is StumbleUpon? Help users find content they did not expect to find The best way to discover new
Hadoop. http://hadoop.apache.org/ Sunday, November 25, 12
Hadoop http://hadoop.apache.org/ What Is Apache Hadoop? The Apache Hadoop software library is a framework that allows for the distributed processing of large data sets across clusters of computers using
Hadoop 只 支 援 用 Java 開 發 嘛? Is Hadoop only support Java? 總 不 能 全 部 都 重 新 設 計 吧? 如 何 與 舊 系 統 相 容? Can Hadoop work with existing software?
Hadoop 只 支 援 用 Java 開 發 嘛? Is Hadoop only support Java? 總 不 能 全 部 都 重 新 設 計 吧? 如 何 與 舊 系 統 相 容? Can Hadoop work with existing software? 可 以 跟 資 料 庫 結 合 嘛? Can Hadoop work with Databases? 開 發 者 們 有 聽 到
An Approach to Implement Map Reduce with NoSQL Databases
www.ijecs.in International Journal Of Engineering And Computer Science ISSN: 2319-7242 Volume 4 Issue 8 Aug 2015, Page No. 13635-13639 An Approach to Implement Map Reduce with NoSQL Databases Ashutosh
Prepared By : Manoj Kumar Joshi & Vikas Sawhney
Prepared By : Manoj Kumar Joshi & Vikas Sawhney General Agenda Introduction to Hadoop Architecture Acknowledgement Thanks to all the authors who left their selfexplanatory images on the internet. Thanks
DATA MINING WITH HADOOP AND HIVE Introduction to Architecture
DATA MINING WITH HADOOP AND HIVE Introduction to Architecture Dr. Wlodek Zadrozny (Most slides come from Prof. Akella s class in 2014) 2015-2025. Reproduction or usage prohibited without permission of
NoSQL Data Base Basics
NoSQL Data Base Basics Course Notes in Transparency Format Cloud Computing MIRI (CLC-MIRI) UPC Master in Innovation & Research in Informatics Spring- 2013 Jordi Torres, UPC - BSC www.jorditorres.eu HDFS
Cloudera Certified Developer for Apache Hadoop
Cloudera CCD-333 Cloudera Certified Developer for Apache Hadoop Version: 5.6 QUESTION NO: 1 Cloudera CCD-333 Exam What is a SequenceFile? A. A SequenceFile contains a binary encoding of an arbitrary number
Department of Computer Science University of Cyprus EPL646 Advanced Topics in Databases. Lecture 14
Department of Computer Science University of Cyprus EPL646 Advanced Topics in Databases Lecture 14 Big Data Management IV: Big-data Infrastructures (Background, IO, From NFS to HFDS) Chapter 14-15: Abideboul
Accelerating Enterprise Applications and Reducing TCO with SanDisk ZetaScale Software
WHITEPAPER Accelerating Enterprise Applications and Reducing TCO with SanDisk ZetaScale Software SanDisk ZetaScale software unlocks the full benefits of flash for In-Memory Compute and NoSQL applications
A REVIEW PAPER ON THE HADOOP DISTRIBUTED FILE SYSTEM
A REVIEW PAPER ON THE HADOOP DISTRIBUTED FILE SYSTEM Sneha D.Borkar 1, Prof.Chaitali S.Surtakar 2 Student of B.E., Information Technology, J.D.I.E.T, [email protected] Assistant Professor, Information
Cost-Effective Business Intelligence with Red Hat and Open Source
Cost-Effective Business Intelligence with Red Hat and Open Source Sherman Wood Director, Business Intelligence, Jaspersoft September 3, 2009 1 Agenda Introductions Quick survey What is BI?: reporting,
Take An Internal Look at Hadoop. Hairong Kuang Grid Team, Yahoo! Inc [email protected]
Take An Internal Look at Hadoop Hairong Kuang Grid Team, Yahoo! Inc [email protected] What s Hadoop Framework for running applications on large clusters of commodity hardware Scale: petabytes of data
INTRODUCTION TO APACHE HADOOP MATTHIAS BRÄGER CERN GS-ASE
INTRODUCTION TO APACHE HADOOP MATTHIAS BRÄGER CERN GS-ASE AGENDA Introduction to Big Data Introduction to Hadoop HDFS file system Map/Reduce framework Hadoop utilities Summary BIG DATA FACTS In what timeframe
Data Warehousing and Analytics Infrastructure at Facebook. Ashish Thusoo & Dhruba Borthakur athusoo,[email protected]
Data Warehousing and Analytics Infrastructure at Facebook Ashish Thusoo & Dhruba Borthakur athusoo,[email protected] Overview Challenges in a Fast Growing & Dynamic Environment Data Flow Architecture,
Infomatics. Big-Data and Hadoop Developer Training with Oracle WDP
Big-Data and Hadoop Developer Training with Oracle WDP What is this course about? Big Data is a collection of large and complex data sets that cannot be processed using regular database management tools
Comparison of the Frontier Distributed Database Caching System with NoSQL Databases
Comparison of the Frontier Distributed Database Caching System with NoSQL Databases Dave Dykstra [email protected] Fermilab is operated by the Fermi Research Alliance, LLC under contract No. DE-AC02-07CH11359
HDFS Under the Hood. Sanjay Radia. [email protected] Grid Computing, Hadoop Yahoo Inc.
HDFS Under the Hood Sanjay Radia [email protected] Grid Computing, Hadoop Yahoo Inc. 1 Outline Overview of Hadoop, an open source project Design of HDFS On going work 2 Hadoop Hadoop provides a framework
Introduction to Big data. Why Big data? Case Studies. Introduction to Hadoop. Understanding Features of Hadoop. Hadoop Architecture.
Big Data Hadoop Administration and Developer Course This course is designed to understand and implement the concepts of Big data and Hadoop. This will cover right from setting up Hadoop environment in
Accelerating and Simplifying Apache
Accelerating and Simplifying Apache Hadoop with Panasas ActiveStor White paper NOvember 2012 1.888.PANASAS www.panasas.com Executive Overview The technology requirements for big data vary significantly
Performance and Scalability Overview
Performance and Scalability Overview This guide provides an overview of some of the performance and scalability capabilities of the Pentaho Business Analytics platform. PENTAHO PERFORMANCE ENGINEERING
Big Data With Hadoop
With Saurabh Singh [email protected] The Ohio State University February 11, 2016 Overview 1 2 3 Requirements Ecosystem Resilient Distributed Datasets (RDDs) Example Code vs Mapreduce 4 5 Source: [Tutorials
Xiaoming Gao Hui Li Thilina Gunarathne
Xiaoming Gao Hui Li Thilina Gunarathne Outline HBase and Bigtable Storage HBase Use Cases HBase vs RDBMS Hands-on: Load CSV file to Hbase table with MapReduce Motivation Lots of Semi structured data Horizontal
An Oracle White Paper November 2010. Leveraging Massively Parallel Processing in an Oracle Environment for Big Data Analytics
An Oracle White Paper November 2010 Leveraging Massively Parallel Processing in an Oracle Environment for Big Data Analytics 1 Introduction New applications such as web searches, recommendation engines,
Can High-Performance Interconnects Benefit Memcached and Hadoop?
Can High-Performance Interconnects Benefit Memcached and Hadoop? D. K. Panda and Sayantan Sur Network-Based Computing Laboratory Department of Computer Science and Engineering The Ohio State University,
Can the Elephants Handle the NoSQL Onslaught?
Can the Elephants Handle the NoSQL Onslaught? Avrilia Floratou, Nikhil Teletia David J. DeWitt, Jignesh M. Patel, Donghui Zhang University of Wisconsin-Madison Microsoft Jim Gray Systems Lab Presented
Realtime Apache Hadoop at Facebook. Jonathan Gray & Dhruba Borthakur June 14, 2011 at SIGMOD, Athens
Realtime Apache Hadoop at Facebook Jonathan Gray & Dhruba Borthakur June 14, 2011 at SIGMOD, Athens Agenda 1 Why Apache Hadoop and HBase? 2 Quick Introduction to Apache HBase 3 Applications of HBase at
Hadoop: A Framework for Data- Intensive Distributed Computing. CS561-Spring 2012 WPI, Mohamed Y. Eltabakh
1 Hadoop: A Framework for Data- Intensive Distributed Computing CS561-Spring 2012 WPI, Mohamed Y. Eltabakh 2 What is Hadoop? Hadoop is a software framework for distributed processing of large datasets
Big Data? Definition # 1: Big Data Definition Forrester Research
Big Data Big Data? Definition # 1: Big Data Definition Forrester Research Big Data? Definition # 2: Quote of Tim O Reilly brings it all home: Companies that have massive amounts of data without massive
Getting Started with Hadoop. Raanan Dagan Paul Tibaldi
Getting Started with Hadoop Raanan Dagan Paul Tibaldi What is Apache Hadoop? Hadoop is a platform for data storage and processing that is Scalable Fault tolerant Open source CORE HADOOP COMPONENTS Hadoop
Scalable Architecture on Amazon AWS Cloud
Scalable Architecture on Amazon AWS Cloud Kalpak Shah Founder & CEO, Clogeny Technologies [email protected] 1 * http://www.rightscale.com/products/cloud-computing-uses/scalable-website.php 2 Architect
Dominik Wagenknecht Accenture
Dominik Wagenknecht Accenture Improving Mainframe Performance with Hadoop October 17, 2014 Organizers General Partner Top Media Partner Media Partner Supporters About me Dominik Wagenknecht Accenture Vienna
Complete Java Classes Hadoop Syllabus Contact No: 8888022204
1) Introduction to BigData & Hadoop What is Big Data? Why all industries are talking about Big Data? What are the issues in Big Data? Storage What are the challenges for storing big data? Processing What
Big Data and Analytics: A Conceptual Overview. Mike Park Erik Hoel
Big Data and Analytics: A Conceptual Overview Mike Park Erik Hoel In this technical workshop This presentation is for anyone that uses ArcGIS and is interested in analyzing large amounts of data We will
Hadoop & its Usage at Facebook
Hadoop & its Usage at Facebook Dhruba Borthakur Project Lead, Hadoop Distributed File System [email protected] Presented at the Storage Developer Conference, Santa Clara September 15, 2009 Outline Introduction
Hadoop Ecosystem B Y R A H I M A.
Hadoop Ecosystem B Y R A H I M A. History of Hadoop Hadoop was created by Doug Cutting, the creator of Apache Lucene, the widely used text search library. Hadoop has its origins in Apache Nutch, an open
Database Scalability and Oracle 12c
Database Scalability and Oracle 12c Marcelle Kratochvil CTO Piction ACE Director All Data/Any Data [email protected] Warning I will be covering topics and saying things that will cause a rethink in
Hadoop & Spark Using Amazon EMR
Hadoop & Spark Using Amazon EMR Michael Hanisch, AWS Solutions Architecture 2015, Amazon Web Services, Inc. or its Affiliates. All rights reserved. Agenda Why did we build Amazon EMR? What is Amazon EMR?
Implement Hadoop jobs to extract business value from large and varied data sets
Hadoop Development for Big Data Solutions: Hands-On You Will Learn How To: Implement Hadoop jobs to extract business value from large and varied data sets Write, customize and deploy MapReduce jobs to
HDFS. Hadoop Distributed File System
HDFS Kevin Swingler Hadoop Distributed File System File system designed to store VERY large files Streaming data access Running across clusters of commodity hardware Resilient to node failure 1 Large files
Big Data Management and Security
Big Data Management and Security Audit Concerns and Business Risks Tami Frankenfield Sr. Director, Analytics and Enterprise Data Mercury Insurance What is Big Data? Velocity + Volume + Variety = Value
BIG DATA What it is and how to use?
BIG DATA What it is and how to use? Lauri Ilison, PhD Data Scientist 21.11.2014 Big Data definition? There is no clear definition for BIG DATA BIG DATA is more of a concept than precise term 1 21.11.14
BIG DATA CAN DRIVE THE BUSINESS AND IT TO EVOLVE AND ADAPT RALPH KIMBALL BUSSUM 2014
BIG DATA CAN DRIVE THE BUSINESS AND IT TO EVOLVE AND ADAPT RALPH KIMBALL BUSSUM 2014 Ralph Kimball Associates 2014 The Data Warehouse Mission Identify all possible enterprise data assets Select those assets
Big Fast Data Hadoop acceleration with Flash. June 2013
Big Fast Data Hadoop acceleration with Flash June 2013 Agenda The Big Data Problem What is Hadoop Hadoop and Flash The Nytro Solution Test Results The Big Data Problem Big Data Output Facebook Traditional
Open source large scale distributed data management with Google s MapReduce and Bigtable
Open source large scale distributed data management with Google s MapReduce and Bigtable Ioannis Konstantinou Email: [email protected] Web: http://www.cslab.ntua.gr/~ikons Computing Systems Laboratory
Navigating the Big Data infrastructure layer Helena Schwenk
mwd a d v i s o r s Navigating the Big Data infrastructure layer Helena Schwenk A special report prepared for Actuate May 2013 This report is the second in a series of four and focuses principally on explaining
News and trends in Data Warehouse Automation, Big Data and BI. Johan Hendrickx & Dirk Vermeiren
News and trends in Data Warehouse Automation, Big Data and BI Johan Hendrickx & Dirk Vermeiren Extreme Agility from Source to Analysis DWH Appliances & DWH Automation Typical Architecture 3 What Business
Hypertable Goes Realtime at Baidu. Yang Dong [email protected] Sherlock Yang(http://weibo.com/u/2624357843)
Hypertable Goes Realtime at Baidu Yang Dong [email protected] Sherlock Yang(http://weibo.com/u/2624357843) Agenda Motivation Related Work Model Design Evaluation Conclusion 2 Agenda Motivation Related
Using MySQL for Big Data Advantage Integrate for Insight Sastry Vedantam [email protected]
Using MySQL for Big Data Advantage Integrate for Insight Sastry Vedantam [email protected] Agenda The rise of Big Data & Hadoop MySQL in the Big Data Lifecycle MySQL Solutions for Big Data Q&A
A Brief Outline on Bigdata Hadoop
A Brief Outline on Bigdata Hadoop Twinkle Gupta 1, Shruti Dixit 2 RGPV, Department of Computer Science and Engineering, Acropolis Institute of Technology and Research, Indore, India Abstract- Bigdata is
MADOCA II Data Logging System Using NoSQL Database for SPring-8
MADOCA II Data Logging System Using NoSQL Database for SPring-8 A.Yamashita and M.Kago SPring-8/JASRI, Japan NoSQL WED3O03 OR: How I Learned to Stop Worrying and Love Cassandra Outline SPring-8 logging
So What s the Big Deal?
So What s the Big Deal? Presentation Agenda Introduction What is Big Data? So What is the Big Deal? Big Data Technologies Identifying Big Data Opportunities Conducting a Big Data Proof of Concept Big Data
Overview. Big Data in Apache Hadoop. - HDFS - MapReduce in Hadoop - YARN. https://hadoop.apache.org. Big Data Management and Analytics
Overview Big Data in Apache Hadoop - HDFS - MapReduce in Hadoop - YARN https://hadoop.apache.org 138 Apache Hadoop - Historical Background - 2003: Google publishes its cluster architecture & DFS (GFS)
Analytics March 2015 White paper. Why NoSQL? Your database options in the new non-relational world
Analytics March 2015 White paper Why NoSQL? Your database options in the new non-relational world 2 Why NoSQL? Contents 2 New types of apps are generating new types of data 2 A brief history of NoSQL 3
Real Time Big Data Processing
Real Time Big Data Processing Cloud Expo 2014 Ian Meyers Amazon Web Services Global Infrastructure Deployment & Administration App Services Analytics Compute Storage Database Networking AWS Global Infrastructure
Hadoop implementation of MapReduce computational model. Ján Vaňo
Hadoop implementation of MapReduce computational model Ján Vaňo What is MapReduce? A computational model published in a paper by Google in 2004 Based on distributed computation Complements Google s distributed
NoSQL for SQL Professionals William McKnight
NoSQL for SQL Professionals William McKnight Session Code BD03 About your Speaker, William McKnight President, McKnight Consulting Group Frequent keynote speaker and trainer internationally Consulted to
Hadoop: Distributed Data Processing. Amr Awadallah Founder/CTO, Cloudera, Inc. ACM Data Mining SIG Thursday, January 25 th, 2010
Hadoop: Distributed Data Processing Amr Awadallah Founder/CTO, Cloudera, Inc. ACM Data Mining SIG Thursday, January 25 th, 2010 Outline Scaling for Large Data Processing What is Hadoop? HDFS and MapReduce
Managing Big Data with Hadoop & Vertica. A look at integration between the Cloudera distribution for Hadoop and the Vertica Analytic Database
Managing Big Data with Hadoop & Vertica A look at integration between the Cloudera distribution for Hadoop and the Vertica Analytic Database Copyright Vertica Systems, Inc. October 2009 Cloudera and Vertica
Practical Cassandra. Vitalii Tymchyshyn [email protected] @tivv00
Practical Cassandra NoSQL key-value vs RDBMS why and when Cassandra architecture Cassandra data model Life without joins or HDD space is cheap today Hardware requirements & deployment hints Vitalii Tymchyshyn
Big Data Explained. An introduction to Big Data Science.
Big Data Explained An introduction to Big Data Science. 1 Presentation Agenda What is Big Data Why learn Big Data Who is it for How to start learning Big Data When to learn it Objective and Benefits of
Big Data & QlikView. Democratizing Big Data Analytics. David Freriks Principal Solution Architect
Big Data & QlikView Democratizing Big Data Analytics David Freriks Principal Solution Architect TDWI Vancouver Agenda What really is Big Data? How do we separate hype from reality? How does that relate
An Industrial Perspective on the Hadoop Ecosystem. Eldar Khalilov Pavel Valov
An Industrial Perspective on the Hadoop Ecosystem Eldar Khalilov Pavel Valov agenda 03.12.2015 2 agenda Introduction 03.12.2015 2 agenda Introduction Research goals 03.12.2015 2 agenda Introduction Research
Hadoop MapReduce over Lustre* High Performance Data Division Omkar Kulkarni April 16, 2013
Hadoop MapReduce over Lustre* High Performance Data Division Omkar Kulkarni April 16, 2013 * Other names and brands may be claimed as the property of others. Agenda Hadoop Intro Why run Hadoop on Lustre?
Scaling Up HBase, Hive, Pegasus
CSE 6242 A / CS 4803 DVA Mar 7, 2013 Scaling Up HBase, Hive, Pegasus Duen Horng (Polo) Chau Georgia Tech Some lectures are partly based on materials by Professors Guy Lebanon, Jeffrey Heer, John Stasko,
Workshop on Hadoop with Big Data
Workshop on Hadoop with Big Data Hadoop? Apache Hadoop is an open source framework for distributed storage and processing of large sets of data on commodity hardware. Hadoop enables businesses to quickly
A survey of big data architectures for handling massive data
CSIT 6910 Independent Project A survey of big data architectures for handling massive data Jordy Domingos - [email protected] Supervisor : Dr David Rossiter Content Table 1 - Introduction a - Context
BIG DATA TECHNOLOGY. Hadoop Ecosystem
BIG DATA TECHNOLOGY Hadoop Ecosystem Agenda Background What is Big Data Solution Objective Introduction to Hadoop Hadoop Ecosystem Hybrid EDW Model Predictive Analysis using Hadoop Conclusion What is Big
Large scale processing using Hadoop. Ján Vaňo
Large scale processing using Hadoop Ján Vaňo What is Hadoop? Software platform that lets one easily write and run applications that process vast amounts of data Includes: MapReduce offline computing engine
Using distributed technologies to analyze Big Data
Using distributed technologies to analyze Big Data Abhijit Sharma Innovation Lab BMC Software 1 Data Explosion in Data Center Performance / Time Series Data Incoming data rates ~Millions of data points/
