A programming model in Cloud: MapReduce
|
|
|
- Muriel Collins
- 10 years ago
- Views:
Transcription
1 A programming model in Cloud: MapReduce Programming model and implementation developed by Google for processing large data sets Users specify a map function to generate a set of intermediate key/value pairs a reduce function that merges all intermediate values associated with the same intermediate key Programs can be automatically parallelized and executed on a large cluster of machines Partitioning input data Scheduling execution Handling machine failure Managing communication Allow users without much experience to utilize the resources of a large distributed system 1
2 An example: Count word frequency 2
3 MapReduce operations When the user program calls the MapReduce function, the following sequence of operations occurs Partition input date Split the input files into M pieces; Assign tasks starts up many copies of the program on a cluster of machines: one is master and others are workers Master assigns map tasks and reduce tasks to workers A Map worker does: reads input split, abstracts key/value pairs from the input data, passes each pair to the Map function, the Map function produces the intermediate key/value pairs Buffers the intermediate key/value pairs to the local disks; the disk locations of the data are passed back to the master; the master forwards the locations to the reduce workers 3
4 MapReduce operations The reduce workers does uses remote procedure calls to read the buffered intermediate key/value pairs from the local disks of the map workers. The reduce workers passes the intermediate key/value pairs to the Reduce function After all map and reduce tasks have been completed, the call of MapReduce returns to the user code 4
5 MapReduce execution flow 5
6 MapReduce library Partition the input data Startup and schedule execution Scheduing map and reduce workers Manage communication Reduce workers retrieve the intermediate results from Map workers Handle machine failure Ping every worker periodically If no response in a certain amount of time, mark the worker as failed Any map or reduce tasks in progress on a failed worker will be rescheduled The map tasks completed by the failed worker will be rescheduled The reduce tasks completed by the failed worker do not need to be rescheduled 6
7 Popular Cloud Systems Google Cloud Amazon Cloud 7
8 Google provides numerous online services 8
9 Google Cloud Computing: Focusing on User Data User data is stored in Cloud Data access is not constrained by geographic locations messages preferences contacts calendar news investments maps mailing lists s photo music phone numbers Data can be conveniently shared 9
10 Google Cloud Infrastructure Scheduler Chubby GFS master User Application Node Google Cloud Infrastructure Node Node Node MapReduce Job BigTable Server Scheduler slave GFS chunkserver Linux 10
11 Bigtable: : a distributed storage system in Google Cloud Resembles a database Aims to scale to a very large size: petabyte of data across thousands of nodes Provides a simple data model that Data is indexed using row and column names supports dynamic partition of the table Data is treated as strings 11
12 Bigtable: : a distributed storage system in Google Cloud A row key in a table is an arbitrary string Bigtable maintains data in lexicographic order by row key Web pages in the same domain are grouped together into contiguous rows by reversing the hostname components of the URLs A table is dynamically partitioned into row ranges Each row range is called a tablet The unit of distribution and load balancing Tablets are distributed and stored in mutiple machines 12
13 BigTable Timestamps API 64-bit integers Can be used to specify only new enough versions are kept creating and deleting tables and columns 13
14 Big picture of BigTable - A Bigtable cluster stores a number of tables. - Each table consists of a set of tablets - Each tablet contains all data associated with a row range. - Initially, each table consists of just one tablet. - As a table grows, it is automatically split into multiple tablets, each approximately MB in size by default 14
15 Infrastructure of BigTable - If a number of machines are needed to store the a BigTable One machine will be elected as the master; Other machines are called tablet servers - The master is responsible for assigning tablets to tablet servers, balancing tablet-server load - Each tablet server manages a set of tablets (typically we have somewhere between ten to a thousand tablets per tablet server) 15
16 Infrastructure of BigTable 16
17 Chubby - A lock service synchronize activities: e.g. two clients cannot update a cell at the same time, data consistency among different tablet servers Distributed consensus: e.g., electing a leader from a set of equivalent servers - A simple file system performs whole-file reads and writes, Both GFS and Bigtable use Chubby to store a small amount of metadata (e.g., root of their data structure) 17
18 Google File System Provide the traditional file system interface Files are divided into chunks, stored in chunkservers Consists of a single Master and multiple chunkservers Master stores the locations of the file chunks 18
19 Google App Engine - Complex Server structure: Apache, SQL, etc - Endless monitoring and debugging - Exhausting System upgrading and fault tolerance Concise development and running platform for web applications Running on the data centre provided by Google Managing the entire life cycle of web applications 19
20 Google App Engine Enable clients to run web applications on Google s infrastructure Clients do not have to maintain servers Users just upload the applications The applications can then serve the users of the web applications Supports Java and Python language You pay for what you use There are no set-up and maintenance costs 20
21 21
22 22
23 Amazon Elastic Computing Cloud (EC2) EC2 SQS EC2 User EBS EC2 EC2 EBS EBS EBS SimpleDB Developer S3 EC2: Running Instance of Virtual Machines S3: Simple Storage Service, SOAP, Object Interface SimpleDB: Simplified Database EBS: Elastic Block Service, Providing the Block Interface, Storing Virtual Machine Images SQS: Simple Queue Service 23
24 AWS is Production-level Cloud System 24
25 Amazon SimpleDB A web service for running queries on structured data in real time Data model Domain, Items, Attributes, Values 25
26 Amazon SimpleDB API CreateDomain, DeleteDomain, PutAttributes, Select, Consistency Keeps multiple copies of each domain 26
27 Amazon Simple Storage Service S3 has a simple web services interface that can be used to store and retrieve any amount of data, at any time, from anywhere on the web Buckets: a container for objects Objects Objects consist of object data and metadata The metadata is a set of name-value pairs that describe the object Keys Versioning An object consists of two components: a key and a version ID Operations Create a Bucket, write an object, listing keys provides a REST and a SOAP interface The REST API: use web browser to access S3 The SOAP API: write web service client to access S3 Regions: choose the region where S3 will store the bucket user create US, US-West, EU 27
28 Amazon Simple Storage Service Amazon S3 data consistency model High availability is achieved by replicating data across multiple servers within Amazon data centre A process write a new object to S3 and immediately attempts to read it. Until the change is fully propagated, S3 might return key does not exist 28
29 Reference papers Xen and the Art of Virtualization MapReduce: Simplied Data Processing on Large Clusters Bigtable: A Distributed Storage System for Structured Data The Chubby lock service for loosely-coupled distributed systems The Google File System 29
30 Summary Cloud computing Concepts Virtualization technology Programming model in Cloud Google Cloud Amazon Cloud 30
Cloud Computing at Google. Architecture
Cloud Computing at Google Google File System Web Systems and Algorithms Google Chris Brooks Department of Computer Science University of San Francisco Google has developed a layered system to handle webscale
Jeffrey D. Ullman slides. MapReduce for data intensive computing
Jeffrey D. Ullman slides MapReduce for data intensive computing Single-node architecture CPU Machine Learning, Statistics Memory Classical Data Mining Disk Commodity Clusters Web data sets can be very
2.1.5 Storing your application s structured data in a cloud database
30 CHAPTER 2 Understanding cloud computing classifications Table 2.3 Basic terms and operations of Amazon S3 Terms Description Object Fundamental entity stored in S3. Each object can range in size from
Cloud Application Development (SE808, School of Software, Sun Yat-Sen University) Yabo (Arber) Xu
Lecture 4 Introduction to Hadoop & GAE Cloud Application Development (SE808, School of Software, Sun Yat-Sen University) Yabo (Arber) Xu Outline Introduction to Hadoop The Hadoop ecosystem Related projects
Hadoop: A Framework for Data- Intensive Distributed Computing. CS561-Spring 2012 WPI, Mohamed Y. Eltabakh
1 Hadoop: A Framework for Data- Intensive Distributed Computing CS561-Spring 2012 WPI, Mohamed Y. Eltabakh 2 What is Hadoop? Hadoop is a software framework for distributed processing of large datasets
Cloud computing - Architecting in the cloud
Cloud computing - Architecting in the cloud [email protected] 1 Outline Cloud computing What is? Levels of cloud computing: IaaS, PaaS, SaaS Moving to the cloud? Architecting in the cloud Best practices
Hypertable Architecture Overview
WHITE PAPER - MARCH 2012 Hypertable Architecture Overview Hypertable is an open source, scalable NoSQL database modeled after Bigtable, Google s proprietary scalable database. It is written in C++ for
References. Introduction to Database Systems CSE 444. Motivation. Basic Features. Outline: Database in the Cloud. Outline
References Introduction to Database Systems CSE 444 Lecture 24: Databases as a Service YongChul Kwon Amazon SimpleDB Website Part of the Amazon Web services Google App Engine Datastore Website Part of
Introduction to Database Systems CSE 444
Introduction to Database Systems CSE 444 Lecture 24: Databases as a Service YongChul Kwon References Amazon SimpleDB Website Part of the Amazon Web services Google App Engine Datastore Website Part of
Where We Are. References. Cloud Computing. Levels of Service. Cloud Computing History. Introduction to Data Management CSE 344
Where We Are Introduction to Data Management CSE 344 Lecture 25: DBMS-as-a-service and NoSQL We learned quite a bit about data management see course calendar Three topics left: DBMS-as-a-service and NoSQL
Big Table A Distributed Storage System For Data
Big Table A Distributed Storage System For Data OSDI 2006 Fay Chang, Jeffrey Dean, Sanjay Ghemawat et.al. Presented by Rahul Malviya Why BigTable? Lots of (semi-)structured data at Google - - URLs: Contents,
Chapter 7. Using Hadoop Cluster and MapReduce
Chapter 7 Using Hadoop Cluster and MapReduce Modeling and Prototyping of RMS for QoS Oriented Grid Page 152 7. Using Hadoop Cluster and MapReduce for Big Data Problems The size of the databases used in
f...-. I enterprise Amazon SimpIeDB Developer Guide Scale your application's database on the cloud using Amazon SimpIeDB Prabhakar Chaganti Rich Helms
Amazon SimpIeDB Developer Guide Scale your application's database on the cloud using Amazon SimpIeDB Prabhakar Chaganti Rich Helms f...-. I enterprise 1 3 1 1 I ; i,acaessiouci' cxperhs;;- diotiilea PUBLISHING
Getting Started with Hadoop with Amazon s Elastic MapReduce
Getting Started with Hadoop with Amazon s Elastic MapReduce Scott Hendrickson [email protected] http://drskippy.net/projects/emr-hadoopmeetup.pdf Boulder/Denver Hadoop Meetup 8 July 2010 Scott Hendrickson
Analysis and Research of Cloud Computing System to Comparison of Several Cloud Computing Platforms
Volume 1, Issue 1 ISSN: 2320-5288 International Journal of Engineering Technology & Management Research Journal homepage: www.ijetmr.org Analysis and Research of Cloud Computing System to Comparison of
Open source large scale distributed data management with Google s MapReduce and Bigtable
Open source large scale distributed data management with Google s MapReduce and Bigtable Ioannis Konstantinou Email: [email protected] Web: http://www.cslab.ntua.gr/~ikons Computing Systems Laboratory
Data-Intensive Computing with Map-Reduce and Hadoop
Data-Intensive Computing with Map-Reduce and Hadoop Shamil Humbetov Department of Computer Engineering Qafqaz University Baku, Azerbaijan [email protected] Abstract Every day, we create 2.5 quintillion
CSE 590: Special Topics Course ( Supercomputing ) Lecture 10 ( MapReduce& Hadoop)
CSE 590: Special Topics Course ( Supercomputing ) Lecture 10 ( MapReduce& Hadoop) Rezaul A. Chowdhury Department of Computer Science SUNY Stony Brook Spring 2016 MapReduce MapReduce is a programming model
Introduction to Parallel Programming and MapReduce
Introduction to Parallel Programming and MapReduce Audience and Pre-Requisites This tutorial covers the basics of parallel programming and the MapReduce programming model. The pre-requisites are significant
Last time. Today. IaaS Providers. Amazon Web Services, overview
Last time General overview, motivation, expected outcomes, other formalities, etc. Please register for course Online (if possible), or talk to Yvonne@CS Course evaluation forgotten Please assign one volunteer
Parallel Processing of cluster by Map Reduce
Parallel Processing of cluster by Map Reduce Abstract Madhavi Vaidya, Department of Computer Science Vivekanand College, Chembur, Mumbai [email protected] MapReduce is a parallel programming model
Amazon Web Services Primer. William Strickland COP 6938 Fall 2012 University of Central Florida
Amazon Web Services Primer William Strickland COP 6938 Fall 2012 University of Central Florida AWS Overview Amazon Web Services (AWS) is a collection of varying remote computing provided by Amazon.com.
5 SCS Deployment Infrastructure in Use
5 SCS Deployment Infrastructure in Use Currently, an increasing adoption of cloud computing resources as the base to build IT infrastructures is enabling users to build flexible, scalable, and low-cost
DISTRIBUTED SYSTEMS [COMP9243] Lecture 9a: Cloud Computing WHAT IS CLOUD COMPUTING? 2
DISTRIBUTED SYSTEMS [COMP9243] Lecture 9a: Cloud Computing Slide 1 Slide 3 A style of computing in which dynamically scalable and often virtualized resources are provided as a service over the Internet.
Lecture Data Warehouse Systems
Lecture Data Warehouse Systems Eva Zangerle SS 2013 PART C: Novel Approaches in DW NoSQL and MapReduce Stonebraker on Data Warehouses Star and snowflake schemas are a good idea in the DW world C-Stores
Distributed File Systems
Distributed File Systems Paul Krzyzanowski Rutgers University October 28, 2012 1 Introduction The classic network file systems we examined, NFS, CIFS, AFS, Coda, were designed as client-server applications.
MapReduce (in the cloud)
MapReduce (in the cloud) How to painlessly process terabytes of data by Irina Gordei MapReduce Presentation Outline What is MapReduce? Example How it works MapReduce in the cloud Conclusion Demo Motivation:
Apache Hadoop. Alexandru Costan
1 Apache Hadoop Alexandru Costan Big Data Landscape No one-size-fits-all solution: SQL, NoSQL, MapReduce, No standard, except Hadoop 2 Outline What is Hadoop? Who uses it? Architecture HDFS MapReduce Open
Facebook: Cassandra. Smruti R. Sarangi. Department of Computer Science Indian Institute of Technology New Delhi, India. Overview Design Evaluation
Facebook: Cassandra Smruti R. Sarangi Department of Computer Science Indian Institute of Technology New Delhi, India Smruti R. Sarangi Leader Election 1/24 Outline 1 2 3 Smruti R. Sarangi Leader Election
Prepared By : Manoj Kumar Joshi & Vikas Sawhney
Prepared By : Manoj Kumar Joshi & Vikas Sawhney General Agenda Introduction to Hadoop Architecture Acknowledgement Thanks to all the authors who left their selfexplanatory images on the internet. Thanks
PLATFORM AND SOFTWARE AS A SERVICE THE MAPREDUCE PROGRAMMING MODEL AND IMPLEMENTATIONS
PLATFORM AND SOFTWARE AS A SERVICE THE MAPREDUCE PROGRAMMING MODEL AND IMPLEMENTATIONS By HAI JIN, SHADI IBRAHIM, LI QI, HAIJUN CAO, SONG WU and XUANHUA SHI Prepared by: Dr. Faramarz Safi Islamic Azad
HDFS. Hadoop Distributed File System
HDFS Kevin Swingler Hadoop Distributed File System File system designed to store VERY large files Streaming data access Running across clusters of commodity hardware Resilient to node failure 1 Large files
Lecture 6 Cloud Application Development, using Google App Engine as an example
Lecture 6 Cloud Application Development, using Google App Engine as an example 922EU3870 Cloud Computing and Mobile Platforms, Autumn 2009 (2009/10/19) http://code.google.com/appengine/ Ping Yeh ( 葉 平
Databases in the Cloud
Daniel Michel Databases in the Cloud HSR University of Applied Science Rapperswil MRU Software and Systems Advisor: Prof. Hansjörg Huser Rapperswil December 6, 2010 CONTENTS 1 Introduction 1 1.1 Cloud
Big Data Storage, Management and challenges. Ahmed Ali-Eldin
Big Data Storage, Management and challenges Ahmed Ali-Eldin (Ambitious) Plan What is Big Data? And Why talk about Big Data? How to store Big Data? BigTables (Google) Dynamo (Amazon) How to process Big
MapReduce. from the paper. MapReduce: Simplified Data Processing on Large Clusters (2004)
MapReduce from the paper MapReduce: Simplified Data Processing on Large Clusters (2004) What it is MapReduce is a programming model and an associated implementation for processing and generating large
Hadoop Parallel Data Processing
MapReduce and Implementation Hadoop Parallel Data Processing Kai Shen A programming interface (two stage Map and Reduce) and system support such that: the interface is easy to program, and suitable for
Introduction to Hadoop HDFS and Ecosystems. Slides credits: Cloudera Academic Partners Program & Prof. De Liu, MSBA 6330 Harvesting Big Data
Introduction to Hadoop HDFS and Ecosystems ANSHUL MITTAL Slides credits: Cloudera Academic Partners Program & Prof. De Liu, MSBA 6330 Harvesting Big Data Topics The goal of this presentation is to give
How To Scale Out Of A Nosql Database
Firebird meets NoSQL (Apache HBase) Case Study Firebird Conference 2011 Luxembourg 25.11.2011 26.11.2011 Thomas Steinmaurer DI +43 7236 3343 896 [email protected] www.scch.at Michael Zwick DI
Big Data Primer. 1 Why Big Data? Alex Sverdlov [email protected]
Big Data Primer Alex Sverdlov [email protected] 1 Why Big Data? Data has value. This immediately leads to: more data has more value, naturally causing datasets to grow rather large, even at small companies.
HDFS Cluster Installation Automation for TupleWare
HDFS Cluster Installation Automation for TupleWare Xinyi Lu Department of Computer Science Brown University Providence, RI 02912 [email protected] March 26, 2014 Abstract TupleWare[1] is a C++ Framework
Chapter 11 Map-Reduce, Hadoop, HDFS, Hbase, MongoDB, Apache HIVE, and Related
Chapter 11 Map-Reduce, Hadoop, HDFS, Hbase, MongoDB, Apache HIVE, and Related Summary Xiangzhe Li Nowadays, there are more and more data everyday about everything. For instance, here are some of the astonishing
The Google File System
The Google File System By Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung (Presented at SOSP 2003) Introduction Google search engine. Applications process lots of data. Need good file system. Solution:
MASSIVE DATA PROCESSING (THE GOOGLE WAY ) 27/04/2015. Fundamentals of Distributed Systems. Inside Google circa 2015
7/04/05 Fundamentals of Distributed Systems CC5- PROCESAMIENTO MASIVO DE DATOS OTOÑO 05 Lecture 4: DFS & MapReduce I Aidan Hogan [email protected] Inside Google circa 997/98 MASSIVE DATA PROCESSING (THE
Distributed File System. MCSN N. Tonellotto Complements of Distributed Enabling Platforms
Distributed File System 1 How do we get data to the workers? NAS Compute Nodes SAN 2 Distributed File System Don t move data to workers move workers to the data! Store data on the local disks of nodes
Big Data and Apache Hadoop s MapReduce
Big Data and Apache Hadoop s MapReduce Michael Hahsler Computer Science and Engineering Southern Methodist University January 23, 2012 Michael Hahsler (SMU/CSE) Hadoop/MapReduce January 23, 2012 1 / 23
Lecture 5: GFS & HDFS! Claudia Hauff (Web Information Systems)! [email protected]
Big Data Processing, 2014/15 Lecture 5: GFS & HDFS!! Claudia Hauff (Web Information Systems)! [email protected] 1 Course content Introduction Data streams 1 & 2 The MapReduce paradigm Looking behind
Parallel & Distributed Data Management
Parallel & Distributed Data Management Kai Shen Data Management Data management Efficiency: fast reads/writes Durability and consistency: data is safe and sound despite failures Usability: convenient interfaces
Big Data With Hadoop
With Saurabh Singh [email protected] The Ohio State University February 11, 2016 Overview 1 2 3 Requirements Ecosystem Resilient Distributed Datasets (RDDs) Example Code vs Mapreduce 4 5 Source: [Tutorials
A Brief Outline on Bigdata Hadoop
A Brief Outline on Bigdata Hadoop Twinkle Gupta 1, Shruti Dixit 2 RGPV, Department of Computer Science and Engineering, Acropolis Institute of Technology and Research, Indore, India Abstract- Bigdata is
Hadoop IST 734 SS CHUNG
Hadoop IST 734 SS CHUNG Introduction What is Big Data?? Bulk Amount Unstructured Lots of Applications which need to handle huge amount of data (in terms of 500+ TB per day) If a regular machine need to
WOS Cloud. ddn.com. Personal Storage for the Enterprise. DDN Solution Brief
DDN Solution Brief Personal Storage for the Enterprise WOS Cloud Secure, Shared Drop-in File Access for Enterprise Users, Anytime and Anywhere 2011 DataDirect Networks. All Rights Reserved DDN WOS Cloud
Storing and Processing Sensor Networks Data in Public Clouds
UWB CSS 600 Storing and Processing Sensor Networks Data in Public Clouds Aysun Simitci Table of Contents Introduction... 2 Cloud Databases... 2 Advantages and Disadvantages of Cloud Databases... 3 Amazon
Cloud Computing. Up until now
Cloud Computing Lecture 20 Cloud Platform Comparison & Load Balancing 2010-2011 Up until now Introduction, Definition of Cloud Computing Pre-Cloud Large Scale Computing: Grid Computing Content Distribution
MapReduce, Hadoop and Amazon AWS
MapReduce, Hadoop and Amazon AWS Yasser Ganjisaffar http://www.ics.uci.edu/~yganjisa February 2011 What is Hadoop? A software framework that supports data-intensive distributed applications. It enables
A Comparative Study Of Cloud Environments and the Development of a Framework for the Automatic Deployment of Scalable Cloud-Based Applications
A Comparative Study Of Cloud Environments and the Development of a Framework for the Automatic Deployment of Scalable Cloud-Based Applications by Joyce Mlawanda Thesis presented in partial fulfilment of
Cloud Computing Now and the Future Development of the IaaS
2010 Cloud Computing Now and the Future Development of the IaaS Quanta Computer Division: CCASD Title: Project Manager Name: Chad Lin Agenda: What is Cloud Computing? Public, Private and Hybrid Cloud.
MapReduce. MapReduce and SQL Injections. CS 3200 Final Lecture. Introduction. MapReduce. Programming Model. Example
MapReduce MapReduce and SQL Injections CS 3200 Final Lecture Jeffrey Dean and Sanjay Ghemawat. MapReduce: Simplified Data Processing on Large Clusters. OSDI'04: Sixth Symposium on Operating System Design
Cloud Computing. Lecture 24 Cloud Platform Comparison 2014-2015
Cloud Computing Lecture 24 Cloud Platform Comparison 2014-2015 1 Up until now Introduction, Definition of Cloud Computing Pre-Cloud Large Scale Computing: Grid Computing Content Distribution Networks Cycle-Sharing
Weekly Report. Hadoop Introduction. submitted By Anurag Sharma. Department of Computer Science and Engineering. Indian Institute of Technology Bombay
Weekly Report Hadoop Introduction submitted By Anurag Sharma Department of Computer Science and Engineering Indian Institute of Technology Bombay Chapter 1 What is Hadoop? Apache Hadoop (High-availability
Challenges for Data Driven Systems
Challenges for Data Driven Systems Eiko Yoneki University of Cambridge Computer Laboratory Quick History of Data Management 4000 B C Manual recording From tablets to papyrus to paper A. Payberah 2014 2
CS246: Mining Massive Datasets Jure Leskovec, Stanford University. http://cs246.stanford.edu
CS246: Mining Massive Datasets Jure Leskovec, Stanford University http://cs246.stanford.edu 2 CPU Memory Machine Learning, Statistics Classical Data Mining Disk 3 20+ billion web pages x 20KB = 400+ TB
Big Data Processing in the Cloud. Shadi Ibrahim Inria, Rennes - Bretagne Atlantique Research Center
Big Data Processing in the Cloud Shadi Ibrahim Inria, Rennes - Bretagne Atlantique Research Center Data is ONLY as useful as the decisions it enables 2 Data is ONLY as useful as the decisions it enables
Open Cloud System. (Integration of Eucalyptus, Hadoop and AppScale into deployment of University Private Cloud)
Open Cloud System (Integration of Eucalyptus, Hadoop and into deployment of University Private Cloud) Thinn Thu Naing University of Computer Studies, Yangon 25 th October 2011 Open Cloud System University
Big Data Processing with Google s MapReduce. Alexandru Costan
1 Big Data Processing with Google s MapReduce Alexandru Costan Outline Motivation MapReduce programming model Examples MapReduce system architecture Limitations Extensions 2 Motivation Big Data @Google:
Parallel Databases. Parallel Architectures. Parallelism Terminology 1/4/2015. Increase performance by performing operations in parallel
Parallel Databases Increase performance by performing operations in parallel Parallel Architectures Shared memory Shared disk Shared nothing closely coupled loosely coupled Parallelism Terminology Speedup:
Monitis Project Proposals for AUA. September 2014, Yerevan, Armenia
Monitis Project Proposals for AUA September 2014, Yerevan, Armenia Distributed Log Collecting and Analysing Platform Project Specifications Category: Big Data and NoSQL Software Requirements: Apache Hadoop
Cloud Computing Summary and Preparation for Examination
Basics of Cloud Computing Lecture 8 Cloud Computing Summary and Preparation for Examination Satish Srirama Outline Quick recap of what we have learnt as part of this course How to prepare for the examination
Scalable Architecture on Amazon AWS Cloud
Scalable Architecture on Amazon AWS Cloud Kalpak Shah Founder & CEO, Clogeny Technologies [email protected] 1 * http://www.rightscale.com/products/cloud-computing-uses/scalable-website.php 2 Architect
Overview. Big Data in Apache Hadoop. - HDFS - MapReduce in Hadoop - YARN. https://hadoop.apache.org. Big Data Management and Analytics
Overview Big Data in Apache Hadoop - HDFS - MapReduce in Hadoop - YARN https://hadoop.apache.org 138 Apache Hadoop - Historical Background - 2003: Google publishes its cluster architecture & DFS (GFS)
A Service for Data-Intensive Computations on Virtual Clusters
A Service for Data-Intensive Computations on Virtual Clusters Executing Preservation Strategies at Scale Rainer Schmidt, Christian Sadilek, and Ross King [email protected] Planets Project Permanent
Map Reduce & Hadoop Recommended Text:
Big Data Map Reduce & Hadoop Recommended Text:! Large datasets are becoming more common The New York Stock Exchange generates about one terabyte of new trade data per day. Facebook hosts approximately
SQL VS. NO-SQL. Adapted Slides from Dr. Jennifer Widom from Stanford
SQL VS. NO-SQL Adapted Slides from Dr. Jennifer Widom from Stanford 55 Traditional Databases SQL = Traditional relational DBMS Hugely popular among data analysts Widely adopted for transaction systems
Session: Big Data get familiar with Hadoop to use your unstructured data Udo Brede Dell Software. 22 nd October 2013 10:00 Sesión B - DB2 LUW
Session: Big Data get familiar with Hadoop to use your unstructured data Udo Brede Dell Software 22 nd October 2013 10:00 Sesión B - DB2 LUW 1 Agenda Big Data The Technical Challenges Architecture of Hadoop
Getting Started with Cloud Computing: Amazon EC2 on Red Hat Enterprise Linux
Red Hat Reference Architecture Series Getting Started with Cloud Computing: Amazon EC2 on Red Hat Enterprise Linux Amazon Web Services (AWS) EC2 Instances User Application Red Hat Enterprise Linux Virtual
Comparison of Different Implementation of Inverted Indexes in Hadoop
Comparison of Different Implementation of Inverted Indexes in Hadoop Hediyeh Baban, S. Kami Makki, and Stefan Andrei Department of Computer Science Lamar University Beaumont, Texas (hbaban, kami.makki,
Background on Elastic Compute Cloud (EC2) AMI s to choose from including servers hosted on different Linux distros
David Moses January 2014 Paper on Cloud Computing I Background on Tools and Technologies in Amazon Web Services (AWS) In this paper I will highlight the technologies from the AWS cloud which enable you
Data Management in the Cloud
Data Management in the Cloud Ryan Stern [email protected] : Advanced Topics in Distributed Systems Department of Computer Science Colorado State University Outline Today Microsoft Cloud SQL Server
Leveraging BlobSeer to boost up the deployment and execution of Hadoop applications in Nimbus cloud environments on Grid 5000
Leveraging BlobSeer to boost up the deployment and execution of Hadoop applications in Nimbus cloud environments on Grid 5000 Alexandra Carpen-Amarie Diana Moise Bogdan Nicolae KerData Team, INRIA Outline
Viswanath Nandigam Sriram Krishnan Chaitan Baru
Viswanath Nandigam Sriram Krishnan Chaitan Baru Traditional Database Implementations for large-scale spatial data Data Partitioning Spatial Extensions Pros and Cons Cloud Computing Introduction Relevance
Introduction to Hadoop
Introduction to Hadoop 1 What is Hadoop? the big data revolution extracting value from data cloud computing 2 Understanding MapReduce the word count problem more examples MCS 572 Lecture 24 Introduction
16.1 MAPREDUCE. For personal use only, not for distribution. 333
For personal use only, not for distribution. 333 16.1 MAPREDUCE Initially designed by the Google labs and used internally by Google, the MAPREDUCE distributed programming model is now promoted by several
Public Cloud Offerings and Private Cloud Options. Week 2 Lecture 4. M. Ali Babar
Public Cloud Offerings and Private Cloud Options Week 2 Lecture 4 M. Ali Babar Lecture Outline Public and private clouds Some key public cloud providers (More details in the lab) Private clouds Main Aspects
LARGE-SCALE DATA PROCESSING USING MAPREDUCE IN CLOUD COMPUTING ENVIRONMENT
LARGE-SCALE DATA PROCESSING USING MAPREDUCE IN CLOUD COMPUTING ENVIRONMENT Samira Daneshyar 1 and Majid Razmjoo 2 1,2 School of Computer Science, Centre of Software Technology and Management (SOFTEM),
Map Reduce / Hadoop / HDFS
Chapter 3: Map Reduce / Hadoop / HDFS 97 Overview Outline Distributed File Systems (re-visited) Motivation Programming Model Example Applications Big Data in Apache Hadoop HDFS in Hadoop YARN 98 Overview
marlabs driving digital agility WHITEPAPER Big Data and Hadoop
marlabs driving digital agility WHITEPAPER Big Data and Hadoop Abstract This paper explains the significance of Hadoop, an emerging yet rapidly growing technology. The prime goal of this paper is to unveil
Log Mining Based on Hadoop s Map and Reduce Technique
Log Mining Based on Hadoop s Map and Reduce Technique ABSTRACT: Anuja Pandit Department of Computer Science, [email protected] Amruta Deshpande Department of Computer Science, [email protected]
Backup and Recovery of SAP Systems on Windows / SQL Server
Backup and Recovery of SAP Systems on Windows / SQL Server Author: Version: Amazon Web Services sap- on- [email protected] 1.1 May 2012 2 Contents About this Guide... 4 What is not included in this guide...
Cloud Computing: Computing as a Service. Prof. Daivashala Deshmukh Maharashtra Institute of Technology, Aurangabad
Cloud Computing: Computing as a Service Prof. Daivashala Deshmukh Maharashtra Institute of Technology, Aurangabad Abstract: Computing as a utility. is a dream that dates from the beginning from the computer
Sriram Krishnan, Ph.D. [email protected]
Sriram Krishnan, Ph.D. [email protected] (Re-)Introduction to cloud computing Introduction to the MapReduce and Hadoop Distributed File System Programming model Examples of MapReduce Where/how to run MapReduce
