100BASE-TX Decoding Instructions
|
|
|
- Isaac Gibbs
- 10 years ago
- Views:
Transcription
1 100BASE-TX Decoding Instructions Note: These instructions assume the following: You have downloaded the descrambler key binary sequence file. You have printed the 100BASE-TX simulated frame (PDF document) General Instructions Decoding the 100BASE-TX waveform should not be attempted until you have first successfully decoded one or more of the 10Mbps waveforms. Performing a 10Mbps waveform decode will prepare you for the additional steps required with 100BASE- TX, so that you don't have to learn all the processes at once. As with the 10Mbps exercises, use a pencil. It is nearly impossible to do this without error the first time. A short summary of the steps required is presented first, and then a detailed example follows. 1. Use the MLT-3 encoding rules to derive a binary sequence from the waveform. 2. Align the descrambler key sequence with the waveform-derived binary, such that Idle code groups are discovered and decoded. See Steps 3 and 4. If Idle code groups are not found, move the descrambler key sequence over one bit and try again until you are successful. 3. Perform a logical XOR operation on the waveform-derived binary and the descrambler key sequence to produce bits that are used to group into 5-bit symbols. 4. Verify descrambler key alignment; trying again if necessary. 5. Referring to the 5B/4B Symbol decoding table, convert the 5-bit symbols into 4-bit nibbles. 6. Reorder groups of two nibbles back into MAC Layer octets. 7. Count octet groups into Ethernet Fields. For example, the Preamble is 7 octets, followed by the single-octet Start Frame Delimiter. Refer to the Ethernet Standard frame field definitions for octets required for each field. After the Ethernet frame is decoded, identify the protocol indicated by the Ethernet Length/Type field, and then look up the field definitions for that protocol. After the protocol identified by the Ethernet Length/Type field code is divided into fields and decoded, repeat the process using the next protocol identifier. This may continue until the entire frame is divided into the correct fields and decoded.
2 Generally, decoding up through OSI Layer 4 is comparatively rapid and satisfying. Decoding OSI Layers 5 7 protocols is more challenging, and might not provide enough benefit to be worthwhile. Detailed Decoding Instructions The brief summary decoding summary above is expanded to provide detailed directions and explanation in the following text. Step 1. Use the MLT-3 encoding rules to derive binary values from the waveform. MLT-3 encoding is accomplished by changing the voltage level by 1 volt for each binary 1, and by remaining at the same voltage for each binary 0. The voltage changes occur between +1 and 1 volts, and only a change of voltage is important not the voltage level itself. Each timing period in the MLT-3 encoding examples in Figure 1 is accompanied by the proper binary decoded value below the waveform. Figure 1 MLT-3 decoding examples. Apply the encoding/decoding example information in Figure 1 to the waveform to derive binary values for each timing interval.
3 Figure 2 Derive the binary values for the MLT-3 encoded waveform. Step 2. Align the descrambler key with the derived binary data. Once a reasonable sample of binary is available, take the descrambler key data and align it with the binary (above or below your derived binary) so that the next operation may be performed. Because it is almost certain that the descrambler key will have to move over, be careful to annotate the waveform document with the descrambler bits using pencil. Figure 3 Descrambler key aligned with derived binary (either above or below; below in this example) in preparation for the next step. Step 3. Apply a logical Exclusive-OR (XOR) conversion to each derived data bit and descrambler key bit. After you have a reasonably lengthy set of derived binary aligned with the descrambler key, use a logical XOR operation to descramble the MLT-3 binary back into 4B/5B encoded 5-bit symbols. XOR Figure 4 Logical XOR table of results.
4 Figure 5 Logical XOR results annotated below the derived binary and the descrambler key for a short sample of the waveform. Step 4. Look up the resulting symbol code to see whether the datastream converts to Idle symbols. A table of symbols for 4B/5B encoding may be found in Clause (PDF Section 2), and also at As long as the pilot program is funded, the standard may be downloaded from This simulated waveform sample begins with Idle symbols, so you should not have to slide your set of descrambler bits over more than five times to discover an Idle symbol. If this was raw data captured from a network, you could find yourself sliding the descrambler key sequence over as many as 8,000 times (assuming a full-sized 2,000-octet Ethernet envelope frame was being transmitted at the exact moment the data sample was gathered). You will know that you are properly aligned only if you decode Idle symbols, followed by a J/K symbol sequence. During the encoding process before transmission, the first two symbols from the Preamble are substituted for the J and K symbols (see Figure 6). Length Preamble SFD Destination Source Data Pad FCS Type to B/5B Conversion JK Data Code Groups TR { SSD { ESD Figure Ethernet frame fields, and the location of the J and K symbol substitutions.
5 Between data transmissions, the 100BASE-TX link is filled with Idle symbols to maintain synchronization between link partners. Figure 7 Symbol groupings and table lookup is performed by groups of five bits. The proper sequence that should be seen is a series of some number of Idle symbols (11111 in binary), followed by the J and K symbols (11000 = J, = K in binary). If these symbols are not found, in that order, move the descrambler key data over one bit and try again. In Figure 7 the first symbol appears to be an Idle, but the second symbol is neither an Idle nor a J-symbol, so the descrambler key is misaligned. Move the descrambler key bits right one bit and try again. Repeat until a J-symbol is found to be following some number of Idles. Step 5. Convert the symbols to 4-bit nibbles. When the descramble key is properly aligned, the resulting sequence of 5-bit symbols for the entire waveform may be remapped back to 4-bit codes by symbol table lookup. The descrambler key repeats, so when all the bits of the descrambler key have been used, start over with the first bit again <Table lookup> Step 6. Reorder the 4-bit nibbles and convert back to hexadecimal. The process of encoding 4B/5B data to symbols reverses the order of the 4-bit nibbles within each octet. To restore the correct order, swap the position of each pair of 4-bit nibbles, starting with the conversion results of the J and K symbols. This will have no apparent effect until you reach the Start Frame Delimiter.
6 J K Preamble SFD D5 Step 7. Group according to the field size definitions. Refer to Figure 6 for a listing of the number of octets in each Ethernet field. Group the octets in the decoded waveform accordingly. At this time, the decoded data represents the MAC Layer request. Use the value found in the Length/Type field to discover what the next layer protocol is, and which fields are to be decoded next. The process for converting the remainder of the Ethernet frame is described in the Network Maintenance and Troubleshooting Guide, Appendix B (ISBN ).
Candidates should attempt FOUR questions. All questions carry 25 marks.
UNIVERSITY OF ABERDEEN Exam 2010 Degree Examination in ES 3567 Communications Engineering 1B Xday X Notes: 9.00 a.m. 12 Noon (i) CANDIDATES ARE PERMITTED TO USE APPROVED CALCULATORS (II) CANDIDATES ARE
TCP/IPv4 and Ethernet 10BASE-T/ 100BASE-TX Debugging with the MSO/DPO4000B Series Oscilloscopes
Presented by TestEquity - www.testequity.com TCP/IPv4 and Ethernet 10BASE-T/ 100BASE-TX Debugging with the MSO/DPO4000B Series Oscilloscopes Application Note Introduction The Internet changes the way we
Gigabit Ethernet MAC. (1000 Mbps Ethernet MAC core with FIFO interface) PRODUCT BRIEF
Gigabit Ethernet MAC (1000 Mbps Ethernet MAC core with FIFO interface) PRODUCT BRIEF 1. INTRODUCTION This document serves as a product info for the Gigabit Ethernet MAC from Hitek Systems. The core supports
CCNA R&S: Introduction to Networks. Chapter 5: Ethernet
CCNA R&S: Introduction to Networks Chapter 5: Ethernet 5.0.1.1 Introduction The OSI physical layer provides the means to transport the bits that make up a data link layer frame across the network media.
10/100 Mbps Ethernet MAC
XSV Board 1.0 HDL Interfaces and Example Designs 10/100 Mbps Ethernet MAC VLSI Research Group Electrical Engineering Bandung Institute of Technology, Bandung, Indonesia Last Modified: 20 September 2001
The Structure and Coding of Logical Link Control (LLC) Addresses: A Tutorial Guide
The Structure and Coding of Logical Link Control (LLC) Addresses: A Tutorial Guide Introduction The standards for local area networks (LANs) are generally comprised of the physical layer, the medium access
APPENDIX B. Routers route based on the network number. The router that delivers the data packet to the correct destination host uses the host ID.
APPENDIX B IP Subnetting IP Addressing Routers route based on the network number. The router that delivers the data packet to the correct destination host uses the host ID. IP Classes An IP address is
ESSENTIALS. Understanding Ethernet Switches and Routers. April 2011 VOLUME 3 ISSUE 1 A TECHNICAL SUPPLEMENT TO CONTROL NETWORK
VOLUME 3 ISSUE 1 A TECHNICAL SUPPLEMENT TO CONTROL NETWORK Contemporary Control Systems, Inc. Understanding Ethernet Switches and Routers This extended article was based on a two-part article that was
2. What is the maximum value of each octet in an IP address? A. 28 B. 255 C. 256 D. None of the above
CCNA1 V3.0 Mod 10 (Ch 8) 1. How many bits are in an IP C. 64 2. What is the maximum value of each octet in an IP A. 28 55 C. 256 3. The network number plays what part in an IP A. It specifies the network
Networking Test 4 Study Guide
Networking Test 4 Study Guide True/False Indicate whether the statement is true or false. 1. IPX/SPX is considered the protocol suite of the Internet, and it is the most widely used protocol suite in LANs.
Fiber Optic Communications Educational Toolkit
Fiber Optic Communications Educational Toolkit ASEE National Conference Summer 2008 Dr. Akram Abu-aisheh & Dr. Jonathan Hill Introduction The main motive for this work was the need for a low cost laboratory
Lecture 3: Signaling and Clock Recovery. CSE 123: Computer Networks Stefan Savage
Lecture 3: Signaling and Clock Recovery CSE 123: Computer Networks Stefan Savage Last time Protocols and layering Application Presentation Session Transport Network Datalink Physical Application Transport
The OSI and TCP/IP Models. Lesson 2
The OSI and TCP/IP Models Lesson 2 Objectives Exam Objective Matrix Technology Skill Covered Exam Objective Exam Objective Number Introduction to the OSI Model Compare the layers of the OSI and TCP/IP
Data Communication Networks
Data Communication Networks Data communication networks typically do not send real time data As a result, packet switching is often used OPTI 500, Spring 2011, Lecture 6, Data Networks 1 Packet Switching
Ethernet Theory of Operation
Ethernet Theory of Operation AN1120 Author: INTRODUCTION This document specifies the theory and operation of the Ethernet technology found in PIC MCUs with integrated Ethernet and in stand-alone Ethernet
82555 10/100 Mbps LAN Physical Layer Interface
82555 10/100 Mbps LAN Physical Layer Interface Networking Silicon Product Features Datasheet Optimal integration for lower cost solutions Integrated 10/100 Mbps single chip physical layer interface solution
INTRODUCTION TO 100BASE-T: FAST (AND FASTER) ETHERNET
51-20-97 DATA COMMUNICATIONS MANAGEMENT INTRODUCTION TO 100BASE-T: FAST (AND FASTER) ETHERNET Colin Mick INSIDE How It Works: An Iso View, 100BASE-TX, 100BASE-T4, 100BASE-T2, Gigabit Ethernet, Impacts
Intel 82562V 10/100 Mbps Platform LAN Connect
Intel 82562V 10/100 Mbps Platform LAN Connect Product Features Datasheet n n n n n n n n n Additional Features n n n IEEE 802.3 10BASE-T/100BASE-TX compliant physical layer interface IEEE 802.3u Auto-Negotiation
Lecture 11: Number Systems
Lecture 11: Number Systems Numeric Data Fixed point Integers (12, 345, 20567 etc) Real fractions (23.45, 23., 0.145 etc.) Floating point such as 23. 45 e 12 Basically an exponent representation Any number
TECHNICAL MANUAL. L80227 10BASE-T/ 100BASE-TX Ethernet PHY
TECHNICAL MANUAL L80227 10BASE-T/ 100BASE-TX Ethernet PHY October 2002 This document contains proprietary information of LSI Logic Corporation. The information contained herein is not to be used by or
EE984 Laboratory Experiment 2: Protocol Analysis
EE984 Laboratory Experiment 2: Protocol Analysis Abstract This experiment provides an introduction to protocols used in computer communications. The equipment used comprises of four PCs connected via a
Protocol Data Units and Encapsulation
Chapter 2: Communicating over the 51 Protocol Units and Encapsulation For application data to travel uncorrupted from one host to another, header (or control data), which contains control and addressing
IEEE 802.11 frame format
IEEE 802.11 frame format Pietro Nicoletti www.studioreti.it 802-11-Frame - 1 P. Nicoletti: see note pag. 2 Copyright note These slides are protected by copyright and international treaties. The title and
Chapter 2 - The TCP/IP and OSI Networking Models
Chapter 2 - The TCP/IP and OSI Networking Models TCP/IP : Transmission Control Protocol/Internet Protocol OSI : Open System Interconnection RFC Request for Comments TCP/IP Architecture Layers Application
Computer Network. Interconnected collection of autonomous computers that are able to exchange information
Introduction Computer Network. Interconnected collection of autonomous computers that are able to exchange information No master/slave relationship between the computers in the network Data Communications.
Annex 25A Energy Efficient Ethernet for the 100BASE-TX PMD
Draft Amendment to IEEE Std 0.-0 IEEE 0.az Energy Efficient Ethernet Task Force August 0 Annex A Energy Efficient Ethernet for the 00BASE-TX PMD (normative) A. Introduction 00BASE-TX supports optional
CMA5000 SPECIFICATIONS. 5710 Gigabit Ethernet Module
CMA5000 5710 Gigabit Ethernet Module SPECIFICATIONS General Description The CMA5710 Gigabit Ethernet application is a single slot module that can be used in any CMA 5000. The Gigabit Ethernet test module
Aurora 8B/10B Protocol Specification. SP002 (v2.3) October 1, 2014
Aurora 8B/10B Protocol Specification R Xilinx is disclosing to you this Specification (hereinafter "the Specification") for use in the development of designs in connection with semiconductor devices. Xilinx
Number of bits needed to address hosts 8
Advanced Subnetting Example 1: Your ISP has assigned you a Class C network address of 198.47.212.0. You have 3 networks in your company with the largest containing 134 hosts. You need to figure out if
PART OF THE PICTURE: The TCP/IP Communications Architecture
PART OF THE PICTURE: The / Communications Architecture 1 PART OF THE PICTURE: The / Communications Architecture BY WILLIAM STALLINGS The key to the success of distributed applications is that all the terminals
RFC 2544 Testing of Ethernet Services in Telecom Networks
RFC 2544 Testing of Ethernet Services in Telecom Networks White Paper Nigel Burgess Agilent Technologies Introduction The object of this paper is to discuss the use and testing of Ethernet services in
Transport Layer. Chapter 3.4. Think about
Chapter 3.4 La 4 Transport La 1 Think about 2 How do MAC addresses differ from that of the network la? What is flat and what is hierarchical addressing? Who defines the IP Address of a device? What is
Notes Odom, Chapter 4 Flashcards Set: http://www.flashcardmachine.com/1162711/b41c
EDTECH 552 (SP11) Susan Ferdon Notes Odom, Chapter 4 Flashcards Set: http://www.flashcardmachine.com/1162711/b41c telco Leased Line CSU/DSU Local Telephone Company Owns the cables and has right of way
Cyber Security Workshop Encryption Reference Manual
Cyber Security Workshop Encryption Reference Manual May 2015 Basic Concepts in Encoding and Encryption Binary Encoding Examples Encryption Cipher Examples 1 P a g e Encoding Concepts Binary Encoding Basics
Local Area Networks transmission system private speedy and secure kilometres shared transmission medium hardware & software
Local Area What s a LAN? A transmission system, usually private owned, very speedy and secure, covering a geographical area in the range of kilometres, comprising a shared transmission medium and a set
Data Link Layer. Page 1. Ethernet
Sicherungsebene Network Categories Local Area Networks (LAN): 10m - few km, simple connection structure Ethernet/Fast Ethernet/Gigabit Ethernet Token Bus, Token Ring LAN Wireless LAN (WLAN, up to a few
Ring Local Area Network. Ring LANs
Ring Local Area Network Ring interface (1-bit buffer) Ring interface To station From station Ring LANs The ring is a series of bit repeaters, each connected by a unidirectional transmission link All arriving
Unit of Learning # 2 The Physical Layer. Sergio Guíñez Molinos [email protected] 2-2009
Unit of Learning # 2 The Physical Layer Sergio Guíñez Molinos [email protected] 2-2009 Local Area Network (LAN) Redes de Computadores 2 Historic topologies more used in LAN Ethernet Logical Bus and Physical
Intrusion Detection, Packet Sniffing
Intrusion Detection, Packet Sniffing By : Eng. Ayman Amaireh Supervisor :Dr.: Lo'ai Tawalbeh New York Institute of Technology (NYIT)- Jordan s s campus-2006 12/2/2006 eng Ayman 1 What is a "packet sniffer"?
INTERNATIONAL TELECOMMUNICATION UNION
INTERNATIONAL TELECOMMUNICATION UNION )454 6 TER TELECOMMUNICATION STANDARDIZATION SECTOR OF ITU $!4! #/--5.)#!4)/. /6%2 4(% 4%,%0(/.%.%47/2+ ")43 0%2 3%#/.$ $50,%8 -/$%- 53).' 4(% %#(/ #!.#%,,!4)/. 4%#(.)15%
8B/10B Coding 64B/66B Coding
8B/10B Coding 64B/66B Coding 1. Transmission Systems 2. 8B/10B Coding 3. 64B/66B Coding 4. CIP Demonstrator Test Setup PeterJ Slide 1 Transmission system General Data Clock D C Flip Flop Q @ 1 Gbps = 1
IP Addressing and Subnetting. 2002, Cisco Systems, Inc. All rights reserved.
IP Addressing and Subnetting 2002, Cisco Systems, Inc. All rights reserved. 1 Objectives Upon completion, you will be able to: Discuss the Types of Network Addressing Explain the Form of an IP Address
Network Categories. Network Types for the Local Range. Ethernet. Carrier Sense Multiple Access
Sicherungsebene Network Categories Local Area Networks (LAN): 0m - few km, simple connection structure Ethernet/Fast Ethernet/Gigabit Ethernet Token Bus, Token Ring LAN Wireless LAN (WLAN, up to a few
2. What is the maximum value of each octet in an IP address? A. 128 B. 255 C. 256 D. None of the above
1. How many bits are in an IP address? A. 16 B. 32 C. 64 2. What is the maximum value of each octet in an IP address? A. 128 B. 255 C. 256 3. The network number plays what part in an IP address? A. It
Network Security: Workshop
Network Security: Workshop Protocol Analyzer Network analysis is the process of capturing network traffic and inspecting it closely to determine what is happening on the network decodes,, or dissects,,
Fiber Distributed Data Interface
CHPTER 8 Chapter Goals Provide background information about FDDI technology. Explain how FDDI works. Describe the differences between FDDI and Copper Distributed Data Interface (CDDI). Describe how CDDI
Mobile IP Network Layer Lesson 01 OSI (open systems interconnection) Seven Layer Model and Internet Protocol Layers
Mobile IP Network Layer Lesson 01 OSI (open systems interconnection) Seven Layer Model and Internet Protocol Layers Oxford University Press 2007. All rights reserved. 1 OSI (open systems interconnection)
Written examination in Computer Networks
Written examination in Computer Networks February 14th 2014 Last name: First name: Student number: Provide on all sheets (including the cover sheet) your last name, rst name and student number. Use the
Using FPGAs to Design Gigabit Serial Backplanes. April 17, 2002
Using FPGAs to Design Gigabit Serial Backplanes April 17, 2002 Outline System Design Trends Serial Backplanes Architectures Building Serial Backplanes with FPGAs A1-2 Key System Design Trends Need for.
Data Link Protocols. TCP/IP Suite and OSI Reference Model
Data Link Protocols Relates to Lab. This module covers data link layer issues, such as local area networks (LANs) and point-to-point links, Ethernet, and the Point-to-Point Protocol (PPP). 1 TCP/IP Suite
4m. MONITORING OF ETHERNET/IP NETWORK TRAFFIC.
4m. MONITORING OF ETHERNET/IP NETWORK TRAFFIC. Wireshark (see Section 6) is a network packet analyser. It is used to: troubleshoot network problems, examine security problems, debug protocol implementations,
MAC Address Issues in IEEE 802.1
MAC Address Issues in IEEE 802.1 Don Pannell Principal Systems Architect [email protected] San Antonio, TX IEEE 802.1 Meeting November 2014 Agenda Start out with my The Looming Ethernet MAC Address
Lab Exercise 802.11. Objective. Requirements. Step 1: Fetch a Trace
Lab Exercise 802.11 Objective To explore the physical layer, link layer, and management functions of 802.11. It is widely used to wireless connect mobile devices to the Internet, and covered in 4.4 of
- T-Carrier Technologies -
1 T-Carrier Fundamentals - T-Carrier Technologies - T-Carrier systems provide digitized communication for voice or data traffic across a telephone provider s network. The T-Carrier specification defines
802.3bj FEC Overview and Status. 400GbE PCS Options DRAFT. IEEE P802.3bs 400 Gb/s Ethernet Task Force. November 2014 San Antonio
802.3bj FEC Overview and Status 400GbE PCS Options DRAFT IEEE P802.3bs 400 Gb/s Ethernet Task Force November 2014 San Antonio Mark Gustlin Xilinx Gary Nicholl Cisco Dave Ofelt Juniper Steve Trowbridge
Network Discovery Protocol LLDP and LLDP- MED
Network LLDP and LLDP- MED Prof. Vahida Z. Attar College of Engineering, Pune Wellesely Road, Shivajinagar, Pune-411 005. Maharashtra, INDIA Piyush chandwadkar College of Engineering, Pune Wellesely Road,
point to point and point to multi point calls over IP
Helsinki University of Technology Department of Electrical and Communications Engineering Jarkko Kneckt point to point and point to multi point calls over IP Helsinki 27.11.2001 Supervisor: Instructor:
Zarząd (7 osób) F inanse (13 osób) M arketing (7 osób) S przedaż (16 osób) K adry (15 osób)
QUESTION NO: 8 David, your TestKing trainee, asks you about basic characteristics of switches and hubs for network connectivity. What should you tell him? A. Switches take less time to process frames than
Protocols and Architecture. Protocol Architecture.
Protocols and Architecture Protocol Architecture. Layered structure of hardware and software to support exchange of data between systems/distributed applications Set of rules for transmission of data between
SolarWinds. Understanding SolarWinds Charts and Graphs Technical Reference
SolarWinds Understanding SolarWinds Charts and Graphs Technical Reference Copyright 1995-2015 SolarWinds Worldwide, LLC. All rights reserved worldwide. No part of this document may be reproduced by any
Small Footprint MII/RMII 10/100 Ethernet Transceiver for Automotive Applications
LAN88730 Small Footprint MII/RMII 10/100 Ethernet Transceiver for Automotive Applications PRODUCT FEATURES Highlights Designed and tested for automotive applications Single-Chip Ethernet Physical Layer
Network Discovery Protocol LLDP and LLDP- MED
Network LLDP and LLDP- MED Prof. Vahida Z. Attar College of Engineering, Pune Wellesely Road, Shivajinagar, Pune-411 005. Maharashtra, INDIA Piyush chandwadkar College of Engineering, Pune Wellesely Road,
A DNP3 Protocol Primer
A Protocol Primer Introduction This is a primer for people who want a quick understanding of without having to comb through the tedious details of a complex specification. The writing style is meant to
11/22/2013 1. komwut@siit
11/22/2013 1 Week3-4 Point-to-Point, LAN, WAN Review 11/22/2013 2 What will you learn? Representatives for Point-to-Point Network LAN Wired Ethernet Wireless Ethernet WAN ATM (Asynchronous Transfer Mode)
Chapter 4 Connecting to the Internet through an ISP
Chapter 4 Connecting to the Internet through an ISP 1. According to Cisco what two things are essential to gaining access to the internet? a. ISPs are essential to gaining access to the Internet. b. No
Network Categories. Network Types for the Local Range. Ethernet
Sicherungsebene Network Categories Chapter 2: Computer Networks 2.1: Physical Layer: representation of digital signals 2.2: Data Link Layer: error protection and access control 2.3: Network infrastructure
2011, The McGraw-Hill Companies, Inc. Chapter 3
Chapter 3 3.1 Decimal System The radix or base of a number system determines the total number of different symbols or digits used by that system. The decimal system has a base of 10 with the digits 0 through
The OSI Model and the TCP/IP Protocol Suite
The OSI Model and the TCP/IP Protocol Suite To discuss the idea of multiple layering in data communication and networking and the interrelationship between layers. To discuss the OSI model and its layer
Data Link Layer Overview
Data Link Layer Overview Date link layer deals with two basic issues: Part I How data frames can be reliably transmitted, and Part II How a shared communication medium can be accessed In many networks,
Special Topics in Security and Privacy of Medical Information. Reminders. Medical device security. Sujata Garera
Special Topics in Security and Privacy of Medical Information Sujata Garera Reminders Assignment due today Project part 1 due on next Tuesday Assignment 2 will be online today evening 2nd Discussion session
Protocol Overhead in IP/ATM Networks
Protocol Overhead in IP/ATM Networks John David Cavanaugh * Minnesota Supercomputer Center, Inc. This paper discusses the sources of protocol overhead in an IP/ATM protocol stack. It quantifies the amount
Example: Multiple OFDM Downstream Channels and Examining Backwards Compatibility. Mark Laubach, Avi Kliger Broadcom
Example: Multiple OFDM Downstream Channels and Examining Backwards Compatibility Mark Laubach, Avi Kliger Broadcom 1 Big Fat Downstream Pipe MULTIPLE DOWNSTREAM OFDM CHANNELS 2 Intent of this Presentation
Tutorial. www.ccontrols.com
Tutorial 1 Tutorial CONTROLLER AREA NETWORK CAN was designed by Bosch and is currently described by ISO 11898 1. In terms of the Open Systems Interconnection model (OSI), CAN partially defines the services
Chapter 9. IP Secure
Chapter 9 IP Secure 1 Network architecture is usually explained as a stack of different layers. Figure 1 explains the OSI (Open System Interconnect) model stack and IP (Internet Protocol) model stack.
TCP/IP Network Communication in Physical Access Control
TCP/IP Network Communication in Physical Access Control The way it's done: The security industry has adopted many standards over time which have gone on to prove as solid foundations for product development
6 3 4 9 = 6 10 + 3 10 + 4 10 + 9 10
Lesson The Binary Number System. Why Binary? The number system that you are familiar with, that you use every day, is the decimal number system, also commonly referred to as the base- system. When you
examines the ideas related to Class A, Class B, and Class C networks (in other words, classful IP networks).
This chapter covers the following subjects: Classful Network Concepts: This section examines the ideas related to Class A, Class B, and Class C networks (in other words, classful IP networks). Practice
Ethernet/IEEE 802.3 evolution
Ethernet/IEEE 802.3 evolution Pietro Nicoletti www.studioreti.it 8023-Evolution-Engl - 1 P. Nicoletti: see note pag. 2 Copyright note These slides are protected by copyright and international treaties.
VoIP Bandwidth Calculation
VoIP Bandwidth Calculation AI0106A VoIP Bandwidth Calculation Executive Summary Calculating how much bandwidth a Voice over IP call occupies can feel a bit like trying to answer the question; How elastic
Voice over IP: RTP/RTCP The transport layer
Advanced Networking Voice over IP: /RTCP The transport layer Renato Lo Cigno Requirements For Real-Time Transmission Need to emulate conventional telephone system Isochronous output timing same with input
Introduction to Routing and Packet Forwarding. Routing Protocols and Concepts Chapter 1
Introduction to Routing and Packet Forwarding Routing Protocols and Concepts Chapter 1 1 1 Objectives Identify a router as a computer with an OS and hardware designed for the routing process. Demonstrate
Fast Ethernet and Gigabit Ethernet. Computer Networks: Fast and Gigabit Ethernet
Fast Ethernet and Gigabit Ethernet 1 Fast Ethernet (100BASE-T) How to achieve 100 Mbps capacity? MII LLC MAC Convergence Sublayer Media Independent Interface Media Dependent Sublayer Data Link Layer Physical
Note monitors controlled by analog signals CRT monitors are controlled by analog voltage. i. e. the level of analog signal delivered through the
DVI Interface The outline: The reasons for digital interface of a monitor the transfer from VGA to DVI. DVI v. analog interface. The principles of LCD control through DVI interface. The link between DVI
Sniffer s Network Packet Analyzer. Basics
Sniffer s Network Packet Analyzer Basics Sniffer Network Analysis Range of techniques that network engineers and designers employ to study the properties of networks, including connectivity, capacity and
Objectives. Lecture 4. How do computers communicate? How do computers communicate? Local asynchronous communication. How do computers communicate?
Lecture 4 Continuation of transmission basics Chapter 3, pages 75-96 Dave Novak School of Business University of Vermont Objectives Line coding Modulation AM, FM, Phase Shift Multiplexing FDM, TDM, WDM
3201 Computer Networks 2014/2015 Handout: Subnetting Question
Subnetting Questions with Answers Question1: Given the following: Network address: 192.168.10.0 Subnet mask: 255.255.255.224 1. How many subnets? Ans: 6 2. How many hosts? Ans: 30 3. What are the valid
Understanding Ethernet and Fibre Channel Standard-Based Test Patterns An explanation of IEEE 802.3 and NCITS standard test patterns By Todd Rapposelli
White Paper Understanding Ethernet and Fibre Channel Standard-Based Test Patterns An explanation of IEEE 802.3 and NCITS standard test patterns By Todd Rapposelli Overview The IEEE 802.3 standards for
The Effect of Network Cabling on Bit Error Rate Performance. By Paul Kish NORDX/CDT
The Effect of Network Cabling on Bit Error Rate Performance By Paul Kish NORDX/CDT Table of Contents Introduction... 2 Probability of Causing Errors... 3 Noise Sources Contributing to Errors... 4 Bit Error
How To Encode Data From A Signal To A Signal (Wired) To A Bitcode (Wired Or Coaxial)
Physical Layer Part 2 Data Encoding Techniques Networks: Data Encoding 1 Analog and Digital Transmissions Figure 2-23.The use of both analog and digital transmissions for a computer to computer call. Conversion
Fulvio Risso Politecnico di Torino
Quality of Service in IEEE 802 LANs Fulvio Risso Politecnico di Torino 1 Based on chapter 8 of M. Baldi, P. Nicoletti, Switched LAN, MG McGraw-Hill, 2002, ISBN 88-386-3426-2 3426 2 and on an existing presentation
APPLICATION NOTE 211 MPLS BASICS AND TESTING NEEDS. Label Switching vs. Traditional Routing
MPLS BASICS AND TESTING NEEDS By Thierno Diallo, Product Specialist Protocol Business Unit The continuing expansion and popularity of the Internet is forcing routers in the core network to support the
Expert Reference Series of White Papers. Basics of IP Address Subnetting
Expert Reference Series of White Papers Basics of IP Address Subnetting 1-800-COURSES www.globalknowledge.com Basics of IP Address Subnetting Norbert Gregorio, Global Knowledge Instructor Introduction
Serial Communications
April 2014 7 Serial Communications Objectives - To be familiar with the USART (RS-232) protocol. - To be able to transfer data from PIC-PC, PC-PIC and PIC-PIC. - To test serial communications with virtual
Physical Layer, Part 2 Digital Transmissions and Multiplexing
Physical Layer, Part 2 Digital Transmissions and Multiplexing These slides are created by Dr. Yih Huang of George Mason University. Students registered in Dr. Huang's courses at GMU can make a single machine-readable
SIM CARD PROTOCOLS. This paper attempts in broad strokes to outline the construction of these protocols and how they are used.
SIM CARD PROTOCOLS Though rarely thought about by most users their mobile phone contains a remarkable computing device that enables them to go about their business of making calls, text messaging or playing
TCOM 370 NOTES 99-12 LOCAL AREA NETWORKS AND THE ALOHA PROTOCOL
1. Local Area Networks TCOM 370 NOTES 99-12 LOCAL AREA NETWORKS AND THE ALOHA PROTOCOL These are networks spanning relatively short distances (e.g. within one building) for local point-to-point and point-to-multipoint
