# ANOVA ANOVA. Two-Way ANOVA. One-Way ANOVA. When to use ANOVA ANOVA. Analysis of Variance. Chapter 16. A procedure for comparing more than two groups

Size: px
Start display at page:

Download "ANOVA ANOVA. Two-Way ANOVA. One-Way ANOVA. When to use ANOVA ANOVA. Analysis of Variance. Chapter 16. A procedure for comparing more than two groups"

Transcription

1 ANOVA ANOVA Analysis of Variance Chapter 6 A procedure for comparing more than two groups independent variable: smoking status non-smoking one pack a day > two packs a day dependent variable: number of coughs per day k number of conditions (in this case, 3) One-Way ANOVA One-Way ANOVA has one independent variable ( factor) with > conditions conditions levels treatments e.g., for a brand of cola factor, the levels are: Coke, Pepsi, RC Cola Independent variables factors Two-Way ANOVA Two-Way ANOVA has independent variables (factors) each can have multiple conditions Example Two Independent Variables (IV s) IV: Brand; and IV: Calories Three levels of Brand: Coke, Pepsi, RC Cola Two levels of Calories: Regular, Diet When to use ANOVA One-way ANOVA: you have more than two levels (conditions) of a single IV EXAMPLE: studying effectiveness of three types of pain reliever aspirin vs. tylenol vs. ibuprofen Two-way ANOVA: you have more than one IV (factor) EXAMPLE: studying pain relief based on pain reliever and type of pain Factor A: Pain reliever (aspirin vs. tylenol) Factor B: type of pain (headache vs. back pain) ANOVA When a factor uses independent samples in all conditions, it is called a betweensubjects factor between-subjects ANOVA When a factor uses related samples in all conditions, it is called a within-subjects factor within-subjects ANOVA PASW: referred to as repeated measures

2 ANOVA & PASW Why bother with ANOVA? 5 Independent Samples Related Samples samples Independent Samples t-test Paired Samples t-test or more samples Between Subjects ANOVA Repeated Measures ANOVA Mean Pain level 4 3 Tylenol Aspirin Ibuprofen Gin Pain Reliever Would require six t-tests, each with an associated Type I (false alarm) rate. Familywise rate Overall probability of making a Type I (false alarm) somewhere in an experiment One t-test, familywise rate is equal to α (e.g.,.05) Multiple t-tests result in a familywise rate much larger than the α we selected ANOVA keeps the familywise rate equal to α Post-hoc Tests If the ANOVA is significant at least one significant difference between conditions In that case, we follow the ANOVA with posthoc tests that compare two conditions at a time post-hoc comparisons identify the specific significant differences between each pair Mean Pain level Tylenol Aspirin Ibuprofen Gin Pain Reliever ANOVA Assumptions Partitioning Variance Homogeneity of variance σ σ σ 3 σ 4 σ 5 Normality scores in each population are normally distributed Mean Pain level Tylenol Aspirin Ibuprofen Gin Pain Reliever

3 Partitioning Variance Total Variance in Scores Partitioning Variance Total Variance in Scores Variance Within Groups () Variance Between Groups group (chance variance) (systematic variance: treatment effect) Mean Square; short for mean squared deviation Similar to variance (s x ) t obt F obt X X s X X difference between sample means difference expected by chance (standard ) variance between sample means variance expected by chance () systematic variance chance variance is an estimate of the variability as measured by differences within the conditions sometimes called the within group variance or the term chance variance (random + individual differences) Tylenol Aspirin Ibuprofen 5 Gin systematic variance.9.7 chance variance 3.3. Mean:.4.8. Pain level variance (within groups) Tylenol Aspirin Ibuprofen Gin Pain Reliever group is an estimate of the differences in scores that occurs between the levels in a factor also called between Treatment effect (systematic variance) Total Variance (variability among all the scores in the data set) X: Tylenol Aspirin Ibuprofen Gin Overall X. Between Groups Variance. Treatment effect (systematic). Chance (random + individual differences) Error Variance (within groups). Chance (random + individual differences) group variance between groups 3

4 F-Ratio When H 0 is TRUE (there is no treatment effect): F between group variance variance (within groups) Treatment effect + Chance F-Ratio Chance 0 + Chance Chance In ANOVA, variance Mean Square () between group variance F-Ratio variance (within groups) group When H 0 is FALSE (there is a treatment effect): F Treatment effect + Chance Chance > Signal-to Noise Ratio ANOVA is about looking at the signal relative to noise group is the signal is the noise We want to see if the between-group variance (signal), is comparable to the within-group variance (noise) Logic Behind ANOVA If there is no true difference between groups at the population level: the only differences we get between groups in the sample should be due to. if that s the case, differences between groups should be about the same as differences among individual scores within groups (). group and will be about the same. Logic Behind ANOVA If there are true differences between groups: variance between groups will exceed variance (within groups) F obt will be much greater than F obt F obt can also deviate from by chance alone we need a sampling distribution to tell how high F obt needs to be before we reject the H 0 compare F obt to critical value (e.g., F.05 ) group Logic Behind ANOVA The critical value (F.05 ) depends on degrees of freedom between groups: df group k - (within): df k ( n - ) Total: df total N - alpha (α) e.g.,.05,.0 4

5 ANOVA Example: Cell phones Research Question: Is your reaction time when driving slowed by a cell phone? Does it matter if it s a hands-free phone? Twelve participants went into a driving simulator.. A random subset of 4 drove while listening to the radio (control group).. Another 4 drove while talking on a cell phone. 3. Remaining 4 drove while talking on a hands-free cell phone. Every so often, participants would approach a traffic light that was turning red. The time it took for participants to hit the breaks was measured. A 6 Step Program for Hypothesis Testing. State your research question. Choose a statistical test 3. Select alpha which determines the critical value (F.05 ) 4. State your statistical hypotheses (as equations) 5. Collect data and calculate test statistic (F obt ) 6. Interpret results in terms of hypothesis Report results Explain in plain language A 6 Step Program for Hypothesis Testing. State your research question Is your reaction time when driving influenced by cell-phone usage?. Choose a statistical test three levels of a single independent variable (cell; hands-free; control) One-Way ANOVA, between subjects 3. Select α, which determines the critical value α.05 in this case See F-tables (page 543 in the Appendix) df group k 3 (numerator) df k (n - ) 3(4-) 9 (denominator) F.05? 4.6 F Distribution critical values (alpha.05) df group k 3 (numerator) 4. State Hypotheses df k (n - ) 3(4-) 9 (denominator) H 0 : μ μ μ 3 H : not all μ s are equal referred to as the omnibus null hypothesis When rejecting the Null in ANOVA, we can only conclude that there is at least one significant difference among conditions. If ANOVA significant pinpoint the actual difference(s), with post-hoc comparisons 5

6 Examine Data and Calculate F obt DV: Response time (seconds) X Control Is there at least one significant difference between conditions? X Normal Cell X 3 Hands-free Cell A Reminder about Variance Variance: the average squared deviation from the mean X, 4, 6 X 4 Sample Variance Definitional Formula s X (X - X) N- Sum of the squared deviation scores X X-X (X-X) (X - X) 8 s X 8/ 4 ANOVA Summary Table Source Sum of df Mean F Squares Squares Group SS group df group group F obt Error SS df Total SS total df total SS Sum of squared deviations or Sum of Squares ANOVA Summary Table Source Sum of df Mean F Squares Squares Group.07 df group group F obt Error.050 df Total. df total SS total SS + SS group SS total ANOVA Summary Table Source Sum of df Mean F Squares Squares Group.07 group F obt Error Total. df between groups k - df (within groups ) k (n -) df total N (the sum of df group and df ) Examine Data and Calculate F obt Compute the mean squares SS group df SS df group group

7 Examine Data and Calculate F obt ANOVA Summary Table Compute F obt F obt group Source Sum of df Mean F Squares Squares Group Error Total. ANOVA Example: Cell phones Interpret results in terms of hypothesis 6.45 > 4.6; Reject H 0 and accept H Report results F(, 9) 6.45, p <.05 Explain in plain language Among those three groups, there is at least one significant difference X Interpret F obt Figure 6.3 Probability of a Type I as a function of the number of pairwise comparisons where α.05 for any one comparison Post-hoc Comparisons Fisher s Least Signficant Difference Test (LSD) uses t-tests to perform all pairwise comparisons between group means. good with three groups, risky with > 3 this is a liberal test; i.e., it gives you high power to detect a difference if there is one, but at an increased risk of a Type I 7

8 Post-hoc Comparisons Bonferroni procedure uses t-tests to perform pairwise comparisons between group means, but controls overall rate by setting the rate for each test to the familywise rate divided by the total number of tests. Hence, the observed significance level is adjusted for the fact that multiple comparisons are being made. e.g., if six comparisons are being made (all possibilities for four groups), then alpha.05/ Post-hoc Comparisons Tukey HSD (Honestly Significant Difference) sets the familywise rate at the rate for the collection for all pairwise comparisons. very common test Other post-hoc tests also seen: e.g., Newman-Keuls, Duncan, Scheffe Effect Size: Partial Eta Squared Partial Eta squared (η ) indicates the proportion of variance attributable to a factor 0.0 small effect 0.50 medium effect 0.80 large effect Calculation: PASW Effect Size: Omega Squared A less biased indicator of variance explained in the population by a predictor variable SSgroup ( k ) ω SS total +.07 (3 )(.0056) ω % of the variability in response times can be attributed to group membership (medium effect) PASW: One-Way ANOVA (Between Subjects) Setup a one-way between subjects ANOVA as you would an independent samples t-test: Create two variables one variable contains levels of your independent variable (here called group ). there are three groups in this case numbered -3. second variable contains the scores of your dependent variable (here called time ) PASW : One-Way ANOVA (Between Subjects) 8

9 Label the numbers you used to differentiate groups: Go to Variable View, then click on the Values box, then the gray box labeled Enter Value (in this case, or 3) and the Value Label (in this case: control, cell, hands) Click Add, and then add the next two variables. Performing Test Select from Menu: Analyze -> General Linear Model -> Univariate Select your dependent variable (here: time ) in the Dependent Variable box Select your independent variable (here: group ) in the Fixed Factor(s) box Click Options button, checkdescriptives (this will print the means for each of your levels) check Estimates of effect size for Partial Eta Squared Click the Post Hoc button for post hoc comparisons; move factor to Post Hoc Tests for box; then check LSD, Bonferroni, or Tukey Click OK Dependent Variable: rt Tukey HSD control and cell groups are significantly different if p <.05, then significant effect (I) condition control cell hands (J) condition cell hands control hands control cell *. The mean difference is significant at the.05 level. Mean Difference 95% Confidence Interval (I-J) Std. Error Sig. Lower Bound Upper Bound * * * * hands and cell groups are NOT significantly different Complete explanation Any kind of cell phone conversation can cause a longer reaction time compared to listening to the radio. There is no significant difference between reaction times in the normal cell phone and hands-free conditions. PASW and Effect Size Click Options menu; then check Estimates of effect size box This option produces partial eta squared Partial Eta Squared 9

10 PASW Data Example ANOVA Summary Three groups with three in each group (N 9) Fast Medium Slow X if p <.05, then significant effect Effect size Post Hoc Comparisons slow and medium groups are not significantly different slow and fast groups are significantly different Shamay-Tsoory SG, Tomer R, Aharon-Peretz J. (005) The neuroanatomical basis of understanding sarcasm and its relationship to social cognition. Neuropsychology. 9(3), A Sarcastic Version Item Joe came to work, and instead of beginning to work, he sat down to rest. His boss noticed his behavior and said, Joe, don t work too hard! A Neutral Version Item Joe came to work and immediately began to work. His boss noticed his behavior and said, Joe, don t work too hard! Following each story, participants were asked: Did the manager believe Joe was working hard? 0

### Chapter 5 Analysis of variance SPSS Analysis of variance

Chapter 5 Analysis of variance SPSS Analysis of variance Data file used: gss.sav How to get there: Analyze Compare Means One-way ANOVA To test the null hypothesis that several population means are equal,

### INTERPRETING THE ONE-WAY ANALYSIS OF VARIANCE (ANOVA)

INTERPRETING THE ONE-WAY ANALYSIS OF VARIANCE (ANOVA) As with other parametric statistics, we begin the one-way ANOVA with a test of the underlying assumptions. Our first assumption is the assumption of

### Analysis of Data. Organizing Data Files in SPSS. Descriptive Statistics

Analysis of Data Claudia J. Stanny PSY 67 Research Design Organizing Data Files in SPSS All data for one subject entered on the same line Identification data Between-subjects manipulations: variable to

### Section 13, Part 1 ANOVA. Analysis Of Variance

Section 13, Part 1 ANOVA Analysis Of Variance Course Overview So far in this course we ve covered: Descriptive statistics Summary statistics Tables and Graphs Probability Probability Rules Probability

### One-Way Analysis of Variance

One-Way Analysis of Variance Note: Much of the math here is tedious but straightforward. We ll skim over it in class but you should be sure to ask questions if you don t understand it. I. Overview A. We

### Study Guide for the Final Exam

Study Guide for the Final Exam When studying, remember that the computational portion of the exam will only involve new material (covered after the second midterm), that material from Exam 1 will make

### One-Way Analysis of Variance (ANOVA) Example Problem

One-Way Analysis of Variance (ANOVA) Example Problem Introduction Analysis of Variance (ANOVA) is a hypothesis-testing technique used to test the equality of two or more population (or treatment) means

### Randomized Block Analysis of Variance

Chapter 565 Randomized Block Analysis of Variance Introduction This module analyzes a randomized block analysis of variance with up to two treatment factors and their interaction. It provides tables of

### A Basic Guide to Analyzing Individual Scores Data with SPSS

A Basic Guide to Analyzing Individual Scores Data with SPSS Step 1. Clean the data file Open the Excel file with your data. You may get the following message: If you get this message, click yes. Delete

### One-Way ANOVA using SPSS 11.0. SPSS ANOVA procedures found in the Compare Means analyses. Specifically, we demonstrate

1 One-Way ANOVA using SPSS 11.0 This section covers steps for testing the difference between three or more group means using the SPSS ANOVA procedures found in the Compare Means analyses. Specifically,

### COMPARISONS OF CUSTOMER LOYALTY: PUBLIC & PRIVATE INSURANCE COMPANIES.

277 CHAPTER VI COMPARISONS OF CUSTOMER LOYALTY: PUBLIC & PRIVATE INSURANCE COMPANIES. This chapter contains a full discussion of customer loyalty comparisons between private and public insurance companies

### Two Related Samples t Test

Two Related Samples t Test In this example 1 students saw five pictures of attractive people and five pictures of unattractive people. For each picture, the students rated the friendliness of the person

### Chapter 7. One-way ANOVA

Chapter 7 One-way ANOVA One-way ANOVA examines equality of population means for a quantitative outcome and a single categorical explanatory variable with any number of levels. The t-test of Chapter 6 looks

### Experimental Designs (revisited)

Introduction to ANOVA Copyright 2000, 2011, J. Toby Mordkoff Probably, the best way to start thinking about ANOVA is in terms of factors with levels. (I say this because this is how they are described

### Introduction to Analysis of Variance (ANOVA) Limitations of the t-test

Introduction to Analysis of Variance (ANOVA) The Structural Model, The Summary Table, and the One- Way ANOVA Limitations of the t-test Although the t-test is commonly used, it has limitations Can only

### Recall this chart that showed how most of our course would be organized:

Chapter 4 One-Way ANOVA Recall this chart that showed how most of our course would be organized: Explanatory Variable(s) Response Variable Methods Categorical Categorical Contingency Tables Categorical

### Statistiek II. John Nerbonne. October 1, 2010. Dept of Information Science j.nerbonne@rug.nl

Dept of Information Science j.nerbonne@rug.nl October 1, 2010 Course outline 1 One-way ANOVA. 2 Factorial ANOVA. 3 Repeated measures ANOVA. 4 Correlation and regression. 5 Multiple regression. 6 Logistic

### Data Analysis in SPSS. February 21, 2004. If you wish to cite the contents of this document, the APA reference for them would be

Data Analysis in SPSS Jamie DeCoster Department of Psychology University of Alabama 348 Gordon Palmer Hall Box 870348 Tuscaloosa, AL 35487-0348 Heather Claypool Department of Psychology Miami University

### An analysis method for a quantitative outcome and two categorical explanatory variables.

Chapter 11 Two-Way ANOVA An analysis method for a quantitative outcome and two categorical explanatory variables. If an experiment has a quantitative outcome and two categorical explanatory variables that

### 13: Additional ANOVA Topics. Post hoc Comparisons

13: Additional ANOVA Topics Post hoc Comparisons ANOVA Assumptions Assessing Group Variances When Distributional Assumptions are Severely Violated Kruskal-Wallis Test Post hoc Comparisons In the prior

### Using Microsoft Excel to Analyze Data

Entering and Formatting Data Using Microsoft Excel to Analyze Data Open Excel. Set up the spreadsheet page (Sheet 1) so that anyone who reads it will understand the page. For the comparison of pipets:

### Descriptive Statistics

Descriptive Statistics Primer Descriptive statistics Central tendency Variation Relative position Relationships Calculating descriptive statistics Descriptive Statistics Purpose to describe or summarize

### Two-sample hypothesis testing, II 9.07 3/16/2004

Two-sample hypothesis testing, II 9.07 3/16/004 Small sample tests for the difference between two independent means For two-sample tests of the difference in mean, things get a little confusing, here,

### Chapter 14: Repeated Measures Analysis of Variance (ANOVA)

Chapter 14: Repeated Measures Analysis of Variance (ANOVA) First of all, you need to recognize the difference between a repeated measures (or dependent groups) design and the between groups (or independent

### Multivariate Analysis of Variance. The general purpose of multivariate analysis of variance (MANOVA) is to determine

2 - Manova 4.3.05 25 Multivariate Analysis of Variance What Multivariate Analysis of Variance is The general purpose of multivariate analysis of variance (MANOVA) is to determine whether multiple levels

### 12: Analysis of Variance. Introduction

1: Analysis of Variance Introduction EDA Hypothesis Test Introduction In Chapter 8 and again in Chapter 11 we compared means from two independent groups. In this chapter we extend the procedure to consider

### STATISTICS FOR PSYCHOLOGISTS

STATISTICS FOR PSYCHOLOGISTS SECTION: STATISTICAL METHODS CHAPTER: REPORTING STATISTICS Abstract: This chapter describes basic rules for presenting statistical results in APA style. All rules come from

### Testing Group Differences using T-tests, ANOVA, and Nonparametric Measures

Testing Group Differences using T-tests, ANOVA, and Nonparametric Measures Jamie DeCoster Department of Psychology University of Alabama 348 Gordon Palmer Hall Box 870348 Tuscaloosa, AL 35487-0348 Phone:

### Main Effects and Interactions

Main Effects & Interactions page 1 Main Effects and Interactions So far, we ve talked about studies in which there is just one independent variable, such as violence of television program. You might randomly

### KSTAT MINI-MANUAL. Decision Sciences 434 Kellogg Graduate School of Management

KSTAT MINI-MANUAL Decision Sciences 434 Kellogg Graduate School of Management Kstat is a set of macros added to Excel and it will enable you to do the statistics required for this course very easily. To

### t Tests in Excel The Excel Statistical Master By Mark Harmon Copyright 2011 Mark Harmon

t-tests in Excel By Mark Harmon Copyright 2011 Mark Harmon No part of this publication may be reproduced or distributed without the express permission of the author. mark@excelmasterseries.com www.excelmasterseries.com

### Chapter 9. Two-Sample Tests. Effect Sizes and Power Paired t Test Calculation

Chapter 9 Two-Sample Tests Paired t Test (Correlated Groups t Test) Effect Sizes and Power Paired t Test Calculation Summary Independent t Test Chapter 9 Homework Power and Two-Sample Tests: Paired Versus

### Analysis of Variance. MINITAB User s Guide 2 3-1

3 Analysis of Variance Analysis of Variance Overview, 3-2 One-Way Analysis of Variance, 3-5 Two-Way Analysis of Variance, 3-11 Analysis of Means, 3-13 Overview of Balanced ANOVA and GLM, 3-18 Balanced

### SPSS Tests for Versions 9 to 13

SPSS Tests for Versions 9 to 13 Chapter 2 Descriptive Statistic (including median) Choose Analyze Descriptive statistics Frequencies... Click on variable(s) then press to move to into Variable(s): list

### January 26, 2009 The Faculty Center for Teaching and Learning

THE BASICS OF DATA MANAGEMENT AND ANALYSIS A USER GUIDE January 26, 2009 The Faculty Center for Teaching and Learning THE BASICS OF DATA MANAGEMENT AND ANALYSIS Table of Contents Table of Contents... i

### How To Run Statistical Tests in Excel

How To Run Statistical Tests in Excel Microsoft Excel is your best tool for storing and manipulating data, calculating basic descriptive statistics such as means and standard deviations, and conducting

### 1 Overview. Fisher s Least Significant Difference (LSD) Test. Lynne J. Williams Hervé Abdi

In Neil Salkind (Ed.), Encyclopedia of Research Design. Thousand Oaks, CA: Sage. 2010 Fisher s Least Significant Difference (LSD) Test Lynne J. Williams Hervé Abdi 1 Overview When an analysis of variance

### Statistics Review PSY379

Statistics Review PSY379 Basic concepts Measurement scales Populations vs. samples Continuous vs. discrete variable Independent vs. dependent variable Descriptive vs. inferential stats Common analyses

### " Y. Notation and Equations for Regression Lecture 11/4. Notation:

Notation: Notation and Equations for Regression Lecture 11/4 m: The number of predictor variables in a regression Xi: One of multiple predictor variables. The subscript i represents any number from 1 through

### 1.5 Oneway Analysis of Variance

Statistics: Rosie Cornish. 200. 1.5 Oneway Analysis of Variance 1 Introduction Oneway analysis of variance (ANOVA) is used to compare several means. This method is often used in scientific or medical experiments

### Multiple-Comparison Procedures

Multiple-Comparison Procedures References A good review of many methods for both parametric and nonparametric multiple comparisons, planned and unplanned, and with some discussion of the philosophical

### How To Check For Differences In The One Way Anova

MINITAB ASSISTANT WHITE PAPER This paper explains the research conducted by Minitab statisticians to develop the methods and data checks used in the Assistant in Minitab 17 Statistical Software. One-Way

### individualdifferences

1 Simple ANalysis Of Variance (ANOVA) Oftentimes we have more than two groups that we want to compare. The purpose of ANOVA is to allow us to compare group means from several independent samples. In general,

### CHAPTER 13. Experimental Design and Analysis of Variance

CHAPTER 13 Experimental Design and Analysis of Variance CONTENTS STATISTICS IN PRACTICE: BURKE MARKETING SERVICES, INC. 13.1 AN INTRODUCTION TO EXPERIMENTAL DESIGN AND ANALYSIS OF VARIANCE Data Collection

### Unit 31 A Hypothesis Test about Correlation and Slope in a Simple Linear Regression

Unit 31 A Hypothesis Test about Correlation and Slope in a Simple Linear Regression Objectives: To perform a hypothesis test concerning the slope of a least squares line To recognize that testing for a

### Regression step-by-step using Microsoft Excel

Step 1: Regression step-by-step using Microsoft Excel Notes prepared by Pamela Peterson Drake, James Madison University Type the data into the spreadsheet The example used throughout this How to is a regression

### Multiple Regression in SPSS This example shows you how to perform multiple regression. The basic command is regression : linear.

Multiple Regression in SPSS This example shows you how to perform multiple regression. The basic command is regression : linear. In the main dialog box, input the dependent variable and several predictors.

### Independent t- Test (Comparing Two Means)

Independent t- Test (Comparing Two Means) The objectives of this lesson are to learn: the definition/purpose of independent t-test when to use the independent t-test the use of SPSS to complete an independent

### NCSS Statistical Software Principal Components Regression. In ordinary least squares, the regression coefficients are estimated using the formula ( )

Chapter 340 Principal Components Regression Introduction is a technique for analyzing multiple regression data that suffer from multicollinearity. When multicollinearity occurs, least squares estimates

### Multivariate Analysis of Variance (MANOVA): I. Theory

Gregory Carey, 1998 MANOVA: I - 1 Multivariate Analysis of Variance (MANOVA): I. Theory Introduction The purpose of a t test is to assess the likelihood that the means for two groups are sampled from the

### Simple Tricks for Using SPSS for Windows

Simple Tricks for Using SPSS for Windows Chapter 14. Follow-up Tests for the Two-Way Factorial ANOVA The Interaction is Not Significant If you have performed a two-way ANOVA using the General Linear Model,

### UNDERSTANDING THE DEPENDENT-SAMPLES t TEST

UNDERSTANDING THE DEPENDENT-SAMPLES t TEST A dependent-samples t test (a.k.a. matched or paired-samples, matched-pairs, samples, or subjects, simple repeated-measures or within-groups, or correlated groups)

### Introduction to Statistics with GraphPad Prism (5.01) Version 1.1

Babraham Bioinformatics Introduction to Statistics with GraphPad Prism (5.01) Version 1.1 Introduction to Statistics with GraphPad Prism 2 Licence This manual is 2010-11, Anne Segonds-Pichon. This manual

### General Regression Formulae ) (N-2) (1 - r 2 YX

General Regression Formulae Single Predictor Standardized Parameter Model: Z Yi = β Z Xi + ε i Single Predictor Standardized Statistical Model: Z Yi = β Z Xi Estimate of Beta (Beta-hat: β = r YX (1 Standard

### ABSORBENCY OF PAPER TOWELS

ABSORBENCY OF PAPER TOWELS 15. Brief Version of the Case Study 15.1 Problem Formulation 15.2 Selection of Factors 15.3 Obtaining Random Samples of Paper Towels 15.4 How will the Absorbency be measured?

### 8. Comparing Means Using One Way ANOVA

8. Comparing Means Using One Way ANOVA Objectives Calculate a one-way analysis of variance Run various multiple comparisons Calculate measures of effect size A One Way ANOVA is an analysis of variance

### Using Microsoft Excel to Analyze Data from the Disk Diffusion Assay

Using Microsoft Excel to Analyze Data from the Disk Diffusion Assay Entering and Formatting Data Open Excel. Set up the spreadsheet page (Sheet 1) so that anyone who reads it will understand the page (Figure

### Unit 31: One-Way ANOVA

Unit 31: One-Way ANOVA Summary of Video A vase filled with coins takes center stage as the video begins. Students will be taking part in an experiment organized by psychology professor John Kelly in which

### Post-hoc comparisons & two-way analysis of variance. Two-way ANOVA, II. Post-hoc testing for main effects. Post-hoc testing 9.

Two-way ANOVA, II Post-hoc comparisons & two-way analysis of variance 9.7 4/9/4 Post-hoc testing As before, you can perform post-hoc tests whenever there s a significant F But don t bother if it s a main

### SPSS Explore procedure

SPSS Explore procedure One useful function in SPSS is the Explore procedure, which will produce histograms, boxplots, stem-and-leaf plots and extensive descriptive statistics. To run the Explore procedure,

### Profile analysis is the multivariate equivalent of repeated measures or mixed ANOVA. Profile analysis is most commonly used in two cases:

Profile Analysis Introduction Profile analysis is the multivariate equivalent of repeated measures or mixed ANOVA. Profile analysis is most commonly used in two cases: ) Comparing the same dependent variables

### UNDERSTANDING ANALYSIS OF COVARIANCE (ANCOVA)

UNDERSTANDING ANALYSIS OF COVARIANCE () In general, research is conducted for the purpose of explaining the effects of the independent variable on the dependent variable, and the purpose of research design

### Chapter 7. Comparing Means in SPSS (t-tests) Compare Means analyses. Specifically, we demonstrate procedures for running Dependent-Sample (or

1 Chapter 7 Comparing Means in SPSS (t-tests) This section covers procedures for testing the differences between two means using the SPSS Compare Means analyses. Specifically, we demonstrate procedures

### THE UNIVERSITY OF TEXAS AT TYLER COLLEGE OF NURSING COURSE SYLLABUS NURS 5317 STATISTICS FOR HEALTH PROVIDERS. Fall 2013

THE UNIVERSITY OF TEXAS AT TYLER COLLEGE OF NURSING 1 COURSE SYLLABUS NURS 5317 STATISTICS FOR HEALTH PROVIDERS Fall 2013 & Danice B. Greer, Ph.D., RN, BC dgreer@uttyler.edu Office BRB 1115 (903) 565-5766

### SPSS Guide: Regression Analysis

SPSS Guide: Regression Analysis I put this together to give you a step-by-step guide for replicating what we did in the computer lab. It should help you run the tests we covered. The best way to get familiar

### PSYCHOLOGY 320L Problem Set #3: One-Way ANOVA and Analytical Comparisons

PSYCHOLOGY 30L Problem Set #3: One-Way ANOVA and Analytical Comparisons Name: Score:. You and Dr. Exercise have decided to conduct a study on exercise and its effects on mood ratings. Many studies (Babyak

### Chapter 2 Probability Topics SPSS T tests

Chapter 2 Probability Topics SPSS T tests Data file used: gss.sav In the lecture about chapter 2, only the One-Sample T test has been explained. In this handout, we also give the SPSS methods to perform

### UNDERSTANDING THE TWO-WAY ANOVA

UNDERSTANDING THE e have seen how the one-way ANOVA can be used to compare two or more sample means in studies involving a single independent variable. This can be extended to two independent variables

### Part 2: Analysis of Relationship Between Two Variables

Part 2: Analysis of Relationship Between Two Variables Linear Regression Linear correlation Significance Tests Multiple regression Linear Regression Y = a X + b Dependent Variable Independent Variable

### Regression Analysis: A Complete Example

Regression Analysis: A Complete Example This section works out an example that includes all the topics we have discussed so far in this chapter. A complete example of regression analysis. PhotoDisc, Inc./Getty

### Lesson 1: Comparison of Population Means Part c: Comparison of Two- Means

Lesson : Comparison of Population Means Part c: Comparison of Two- Means Welcome to lesson c. This third lesson of lesson will discuss hypothesis testing for two independent means. Steps in Hypothesis

### PSYC 381 Statistics Arlo Clark-Foos, Ph.D.

One-Way Within- Groups ANOVA PSYC 381 Statistics Arlo Clark-Foos, Ph.D. Comparing Designs Pros of Between No order or carryover effects Between-Groups Design Pros of Within More costly Higher variability

### Module 4 (Effect of Alcohol on Worms): Data Analysis

Module 4 (Effect of Alcohol on Worms): Data Analysis Michael Dunn Capuchino High School Introduction In this exercise, you will first process the timelapse data you collected. Then, you will cull (remove)

### An Introduction to Statistics Course (ECOE 1302) Spring Semester 2011 Chapter 10- TWO-SAMPLE TESTS

The Islamic University of Gaza Faculty of Commerce Department of Economics and Political Sciences An Introduction to Statistics Course (ECOE 130) Spring Semester 011 Chapter 10- TWO-SAMPLE TESTS Practice

### Multivariate analyses

14 Multivariate analyses Learning objectives By the end of this chapter you should be able to: Recognise when it is appropriate to use multivariate analyses (MANOVA) and which test to use (traditional

### Introduction to Regression and Data Analysis

Statlab Workshop Introduction to Regression and Data Analysis with Dan Campbell and Sherlock Campbell October 28, 2008 I. The basics A. Types of variables Your variables may take several forms, and it

### Two-Sample T-Tests Assuming Equal Variance (Enter Means)

Chapter 4 Two-Sample T-Tests Assuming Equal Variance (Enter Means) Introduction This procedure provides sample size and power calculations for one- or two-sided two-sample t-tests when the variances of

### Reporting Statistics in Psychology

This document contains general guidelines for the reporting of statistics in psychology research. The details of statistical reporting vary slightly among different areas of science and also among different

### Two-Sample T-Tests Allowing Unequal Variance (Enter Difference)

Chapter 45 Two-Sample T-Tests Allowing Unequal Variance (Enter Difference) Introduction This procedure provides sample size and power calculations for one- or two-sided two-sample t-tests when no assumption

### research/scientific includes the following: statistical hypotheses: you have a null and alternative you accept one and reject the other

1 Hypothesis Testing Richard S. Balkin, Ph.D., LPC-S, NCC 2 Overview When we have questions about the effect of a treatment or intervention or wish to compare groups, we use hypothesis testing Parametric

### UNDERSTANDING THE INDEPENDENT-SAMPLES t TEST

UNDERSTANDING The independent-samples t test evaluates the difference between the means of two independent or unrelated groups. That is, we evaluate whether the means for two independent groups are significantly

### Univariate Regression

Univariate Regression Correlation and Regression The regression line summarizes the linear relationship between 2 variables Correlation coefficient, r, measures strength of relationship: the closer r is

### Guide to Microsoft Excel for calculations, statistics, and plotting data

Page 1/47 Guide to Microsoft Excel for calculations, statistics, and plotting data Topic Page A. Writing equations and text 2 1. Writing equations with mathematical operations 2 2. Writing equations with

### One-Way Analysis of Variance: A Guide to Testing Differences Between Multiple Groups

One-Way Analysis of Variance: A Guide to Testing Differences Between Multiple Groups In analysis of variance, the main research question is whether the sample means are from different populations. The

### EXCEL Analysis TookPak [Statistical Analysis] 1. First of all, check to make sure that the Analysis ToolPak is installed. Here is how you do it:

EXCEL Analysis TookPak [Statistical Analysis] 1 First of all, check to make sure that the Analysis ToolPak is installed. Here is how you do it: a. From the Tools menu, choose Add-Ins b. Make sure Analysis

### 15. Analysis of Variance

15. Analysis of Variance A. Introduction B. ANOVA Designs C. One-Factor ANOVA (Between-Subjects) D. Multi-Factor ANOVA (Between-Subjects) E. Unequal Sample Sizes F. Tests Supplementing ANOVA G. Within-Subjects

### 1. What is the critical value for this 95% confidence interval? CV = z.025 = invnorm(0.025) = 1.96

1 Final Review 2 Review 2.1 CI 1-propZint Scenario 1 A TV manufacturer claims in its warranty brochure that in the past not more than 10 percent of its TV sets needed any repair during the first two years

### The Statistics Tutor s Quick Guide to

statstutor community project encouraging academics to share statistics support resources All stcp resources are released under a Creative Commons licence The Statistics Tutor s Quick Guide to Stcp-marshallowen-7

### CHAPTER 11 CHI-SQUARE AND F DISTRIBUTIONS

CHAPTER 11 CHI-SQUARE AND F DISTRIBUTIONS CHI-SQUARE TESTS OF INDEPENDENCE (SECTION 11.1 OF UNDERSTANDABLE STATISTICS) In chi-square tests of independence we use the hypotheses. H0: The variables are independent

### THE KRUSKAL WALLLIS TEST

THE KRUSKAL WALLLIS TEST TEODORA H. MEHOTCHEVA Wednesday, 23 rd April 08 THE KRUSKAL-WALLIS TEST: The non-parametric alternative to ANOVA: testing for difference between several independent groups 2 NON

### Linear Models in STATA and ANOVA

Session 4 Linear Models in STATA and ANOVA Page Strengths of Linear Relationships 4-2 A Note on Non-Linear Relationships 4-4 Multiple Linear Regression 4-5 Removal of Variables 4-8 Independent Samples

### Two-sample t-tests. - Independent samples - Pooled standard devation - The equal variance assumption

Two-sample t-tests. - Independent samples - Pooled standard devation - The equal variance assumption Last time, we used the mean of one sample to test against the hypothesis that the true mean was a particular

### Chapter 7 Section 7.1: Inference for the Mean of a Population

Chapter 7 Section 7.1: Inference for the Mean of a Population Now let s look at a similar situation Take an SRS of size n Normal Population : N(, ). Both and are unknown parameters. Unlike what we used

### Chi Square Distribution

17. Chi Square A. Chi Square Distribution B. One-Way Tables C. Contingency Tables D. Exercises Chi Square is a distribution that has proven to be particularly useful in statistics. The first section describes

### Introduction to. Hypothesis Testing CHAPTER LEARNING OBJECTIVES. 1 Identify the four steps of hypothesis testing.

Introduction to Hypothesis Testing CHAPTER 8 LEARNING OBJECTIVES After reading this chapter, you should be able to: 1 Identify the four steps of hypothesis testing. 2 Define null hypothesis, alternative

### Chapter 13 Introduction to Linear Regression and Correlation Analysis

Chapter 3 Student Lecture Notes 3- Chapter 3 Introduction to Linear Regression and Correlation Analsis Fall 2006 Fundamentals of Business Statistics Chapter Goals To understand the methods for displaing