PSYC 381 Statistics Arlo Clark-Foos, Ph.D.
|
|
|
- Noah Robinson
- 10 years ago
- Views:
Transcription
1 One-Way Within- Groups ANOVA PSYC 381 Statistics Arlo Clark-Foos, Ph.D.
2 Comparing Designs Pros of Between No order or carryover effects Between-Groups Design Pros of Within More costly Higher variability between groups than within (i.e., individual differences)
3 Used A Lot in Market Research! Taste Tests Odor Tests
4 Within Groups Designs What about order/carryover effects? Counterbalance! All participants experience all conditions/treatments/levels
5 Counterbalancing Minimization of order effects by varying the order of presentation of different levels of the independent variable from one participant (or group) to the next. An example of a counterbalanced within-subjects design with 3 conditions: 3 Conditions/Levels of IV 3! = 3 x 2 x 1 = 6 orders What if your IV had more levels? Example: IV = Year in School (4 levels) 4 x 3 x 2 x 1 = 24 orders!! You need a Latin Square Design!
6 Latin Square Design A technique to control for order effects without having all possible orders. A limited set of orders is constructed to ensure that (1) each condition appears at each ordinal position and (2) each condition precedes and follows each condition one time.
7 Within Groups ANOVA New Terminology SS Subjects df Subjects n A few new formulas (along with the old ones)
8 An Example with Beer! Do you have a love of lagers? A journalist (Fallows, 1999) wanted to know if self-proclaimed beer snobs would be able to distinguish between three classes/qualties of beers. There are over 50+ styles of beer, many of which are not available in lower quality versions so he chose lagers because of their widespread availability. The results below are their taste ratings for each beer. Cheap Beers e.g., Mid-Range Beers e.g., Budweise High-End Beers e.g.,
9 One-Way Within Groups ANOVA: Beer Taste Testing Six Steps to Hypothesis Testing 1. Identify the populations, 1. People who drink cheap beer 2. People who drink mid-range beer 3. People who drink high-range beer Distribution, F distribution (>2 groups) One-Way Within-Groups ANOVA Assumptions 1. Participants not selected randomly, careful generalizing 2. Data do not appear skewed 3. Homoscedasticity it [(largest variance) ) (2 x smallest variance)] 4. Are there order effects? Not counterbalanced
10 One-Way Within Groups ANOVA: Beer Taste Testing 2. State null and research hypotheses Null: People who drink cheap, mid-range, and high-end beer rate their beers the same, on average. Research: People who drink cheap, mid-range, and high-end beer do not rate their beers the same, on average.
11 One-Way Within Groups ANOVA: Beer Taste Testing 3. Determine characteristics of comparison distribution df Within ( df )( df ) = ( 2 )( 4) = 8 = Between Subjects df N 1 = 3 1 = 2 = n 1 = 5 1 = 4 f f Subjects 14 Between = Groups df Subjects df Total = df Between + df Subjects + dfwithin = = df Total = N Total or 1 = 15 1 = 14
12 One-Way Within Groups ANOVA: Beer Taste Testing 4. Determine the critical values or cutoffs (p = 05). df Between = 2 df Within = 8 F Critical = 4.46
13 One-Way Within Groups ANOVA: Beer Taste Testing 5. Calculate the test statistic SS Total = ( X GM ) 2
14 One-Way Within Groups ANOVA: Beer Taste Testing 5. Calculate the test statistic SS Between = ( M GM ) 2
15 One-Way Within Groups ANOVA: Beer Taste Testing 5. Calculate the test statistic SS = Σ ( M GM ) 2 Sbj Subjects Participan i t
16 One-Way Within Groups ANOVA: Beer Taste Testing 5. Calculate the test statistic SS Within = SS Total SS Between SS Subjects =
17 One-Way Within Groups ANOVA: Beer Taste Testing 6. Make a decision People who dink cheap, mid-range, and high-end beers do not rate their beers the same, on average, F(2, 14) = 14.77, p <.05 ( F ( 2,14) 14.77) > ( F = 4.46) = Critical
18 Effect Size 2 SSBetween R = R = = ( SS SS ) ( ) Total Subjects.787
19 Summary Pros & Cons of Within & Between Subjects Designs Order Effects Counterbalancing & Latin Square New Sums of Squares and Degrees of Freedom (Subjects) New Source of Variability Effect Size
1.5 Oneway Analysis of Variance
Statistics: Rosie Cornish. 200. 1.5 Oneway Analysis of Variance 1 Introduction Oneway analysis of variance (ANOVA) is used to compare several means. This method is often used in scientific or medical experiments
One-Way Analysis of Variance (ANOVA) Example Problem
One-Way Analysis of Variance (ANOVA) Example Problem Introduction Analysis of Variance (ANOVA) is a hypothesis-testing technique used to test the equality of two or more population (or treatment) means
One-Way Analysis of Variance: A Guide to Testing Differences Between Multiple Groups
One-Way Analysis of Variance: A Guide to Testing Differences Between Multiple Groups In analysis of variance, the main research question is whether the sample means are from different populations. The
12: Analysis of Variance. Introduction
1: Analysis of Variance Introduction EDA Hypothesis Test Introduction In Chapter 8 and again in Chapter 11 we compared means from two independent groups. In this chapter we extend the procedure to consider
ANOVA ANOVA. Two-Way ANOVA. One-Way ANOVA. When to use ANOVA ANOVA. Analysis of Variance. Chapter 16. A procedure for comparing more than two groups
ANOVA ANOVA Analysis of Variance Chapter 6 A procedure for comparing more than two groups independent variable: smoking status non-smoking one pack a day > two packs a day dependent variable: number of
Profile analysis is the multivariate equivalent of repeated measures or mixed ANOVA. Profile analysis is most commonly used in two cases:
Profile Analysis Introduction Profile analysis is the multivariate equivalent of repeated measures or mixed ANOVA. Profile analysis is most commonly used in two cases: ) Comparing the same dependent variables
Chapter 7. One-way ANOVA
Chapter 7 One-way ANOVA One-way ANOVA examines equality of population means for a quantitative outcome and a single categorical explanatory variable with any number of levels. The t-test of Chapter 6 looks
Recall this chart that showed how most of our course would be organized:
Chapter 4 One-Way ANOVA Recall this chart that showed how most of our course would be organized: Explanatory Variable(s) Response Variable Methods Categorical Categorical Contingency Tables Categorical
General Regression Formulae ) (N-2) (1 - r 2 YX
General Regression Formulae Single Predictor Standardized Parameter Model: Z Yi = β Z Xi + ε i Single Predictor Standardized Statistical Model: Z Yi = β Z Xi Estimate of Beta (Beta-hat: β = r YX (1 Standard
Effect Size and Power
Università di Trento DiSCoF Dipartimento di Scienze della Cognizione e Formazione Effect Size and Power [email protected] Methodological course (COBRAS-DiSCoF) A simple example of one-way anova.
Outline. Definitions Descriptive vs. Inferential Statistics The t-test - One-sample t-test
The t-test Outline Definitions Descriptive vs. Inferential Statistics The t-test - One-sample t-test - Dependent (related) groups t-test - Independent (unrelated) groups t-test Comparing means Correlation
Reporting Statistics in Psychology
This document contains general guidelines for the reporting of statistics in psychology research. The details of statistical reporting vary slightly among different areas of science and also among different
INTERPRETING THE ONE-WAY ANALYSIS OF VARIANCE (ANOVA)
INTERPRETING THE ONE-WAY ANALYSIS OF VARIANCE (ANOVA) As with other parametric statistics, we begin the one-way ANOVA with a test of the underlying assumptions. Our first assumption is the assumption of
Section 13, Part 1 ANOVA. Analysis Of Variance
Section 13, Part 1 ANOVA Analysis Of Variance Course Overview So far in this course we ve covered: Descriptive statistics Summary statistics Tables and Graphs Probability Probability Rules Probability
Statistics Review PSY379
Statistics Review PSY379 Basic concepts Measurement scales Populations vs. samples Continuous vs. discrete variable Independent vs. dependent variable Descriptive vs. inferential stats Common analyses
Business Statistics. Successful completion of Introductory and/or Intermediate Algebra courses is recommended before taking Business Statistics.
Business Course Text Bowerman, Bruce L., Richard T. O'Connell, J. B. Orris, and Dawn C. Porter. Essentials of Business, 2nd edition, McGraw-Hill/Irwin, 2008, ISBN: 978-0-07-331988-9. Required Computing
One-Way Analysis of Variance
One-Way Analysis of Variance Note: Much of the math here is tedious but straightforward. We ll skim over it in class but you should be sure to ask questions if you don t understand it. I. Overview A. We
Research Methods & Experimental Design
Research Methods & Experimental Design 16.422 Human Supervisory Control April 2004 Research Methods Qualitative vs. quantitative Understanding the relationship between objectives (research question) and
E10: Controlled Experiments
E10: Controlled Experiments Quantitative, empirical method Used to identify the cause of a situation or set of events X is responsible for Y Directly manipulate and control variables Correlation does not
Rank-Based Non-Parametric Tests
Rank-Based Non-Parametric Tests Reminder: Student Instructional Rating Surveys You have until May 8 th to fill out the student instructional rating surveys at https://sakai.rutgers.edu/portal/site/sirs
Testing Group Differences using T-tests, ANOVA, and Nonparametric Measures
Testing Group Differences using T-tests, ANOVA, and Nonparametric Measures Jamie DeCoster Department of Psychology University of Alabama 348 Gordon Palmer Hall Box 870348 Tuscaloosa, AL 35487-0348 Phone:
Elementary Statistics Sample Exam #3
Elementary Statistics Sample Exam #3 Instructions. No books or telephones. Only the supplied calculators are allowed. The exam is worth 100 points. 1. A chi square goodness of fit test is considered to
Unit 31: One-Way ANOVA
Unit 31: One-Way ANOVA Summary of Video A vase filled with coins takes center stage as the video begins. Students will be taking part in an experiment organized by psychology professor John Kelly in which
Course Text. Required Computing Software. Course Description. Course Objectives. StraighterLine. Business Statistics
Course Text Business Statistics Lind, Douglas A., Marchal, William A. and Samuel A. Wathen. Basic Statistics for Business and Economics, 7th edition, McGraw-Hill/Irwin, 2010, ISBN: 9780077384470 [This
STA-201-TE. 5. Measures of relationship: correlation (5%) Correlation coefficient; Pearson r; correlation and causation; proportion of common variance
Principles of Statistics STA-201-TE This TECEP is an introduction to descriptive and inferential statistics. Topics include: measures of central tendency, variability, correlation, regression, hypothesis
CHAPTER 12 TESTING DIFFERENCES WITH ORDINAL DATA: MANN WHITNEY U
CHAPTER 12 TESTING DIFFERENCES WITH ORDINAL DATA: MANN WHITNEY U Previous chapters of this text have explained the procedures used to test hypotheses using interval data (t-tests and ANOVA s) and nominal
Experimental Designs (revisited)
Introduction to ANOVA Copyright 2000, 2011, J. Toby Mordkoff Probably, the best way to start thinking about ANOVA is in terms of factors with levels. (I say this because this is how they are described
Randomized Block Analysis of Variance
Chapter 565 Randomized Block Analysis of Variance Introduction This module analyzes a randomized block analysis of variance with up to two treatment factors and their interaction. It provides tables of
An analysis method for a quantitative outcome and two categorical explanatory variables.
Chapter 11 Two-Way ANOVA An analysis method for a quantitative outcome and two categorical explanatory variables. If an experiment has a quantitative outcome and two categorical explanatory variables that
individualdifferences
1 Simple ANalysis Of Variance (ANOVA) Oftentimes we have more than two groups that we want to compare. The purpose of ANOVA is to allow us to compare group means from several independent samples. In general,
Multivariate Analysis of Variance (MANOVA)
Multivariate Analysis of Variance (MANOVA) Aaron French, Marcelo Macedo, John Poulsen, Tyler Waterson and Angela Yu Keywords: MANCOVA, special cases, assumptions, further reading, computations Introduction
Calculating P-Values. Parkland College. Isela Guerra Parkland College. Recommended Citation
Parkland College A with Honors Projects Honors Program 2014 Calculating P-Values Isela Guerra Parkland College Recommended Citation Guerra, Isela, "Calculating P-Values" (2014). A with Honors Projects.
1 Theory: The General Linear Model
QMIN GLM Theory - 1.1 1 Theory: The General Linear Model 1.1 Introduction Before digital computers, statistics textbooks spoke of three procedures regression, the analysis of variance (ANOVA), and the
UNDERSTANDING THE TWO-WAY ANOVA
UNDERSTANDING THE e have seen how the one-way ANOVA can be used to compare two or more sample means in studies involving a single independent variable. This can be extended to two independent variables
Chapter 14: Repeated Measures Analysis of Variance (ANOVA)
Chapter 14: Repeated Measures Analysis of Variance (ANOVA) First of all, you need to recognize the difference between a repeated measures (or dependent groups) design and the between groups (or independent
Chapter 5 Analysis of variance SPSS Analysis of variance
Chapter 5 Analysis of variance SPSS Analysis of variance Data file used: gss.sav How to get there: Analyze Compare Means One-way ANOVA To test the null hypothesis that several population means are equal,
Biostatistics: DESCRIPTIVE STATISTICS: 2, VARIABILITY
Biostatistics: DESCRIPTIVE STATISTICS: 2, VARIABILITY 1. Introduction Besides arriving at an appropriate expression of an average or consensus value for observations of a population, it is important to
Using Microsoft Excel to Analyze Data
Entering and Formatting Data Using Microsoft Excel to Analyze Data Open Excel. Set up the spreadsheet page (Sheet 1) so that anyone who reads it will understand the page. For the comparison of pipets:
Introduction to Analysis of Variance (ANOVA) Limitations of the t-test
Introduction to Analysis of Variance (ANOVA) The Structural Model, The Summary Table, and the One- Way ANOVA Limitations of the t-test Although the t-test is commonly used, it has limitations Can only
CHAPTER 13. Experimental Design and Analysis of Variance
CHAPTER 13 Experimental Design and Analysis of Variance CONTENTS STATISTICS IN PRACTICE: BURKE MARKETING SERVICES, INC. 13.1 AN INTRODUCTION TO EXPERIMENTAL DESIGN AND ANALYSIS OF VARIANCE Data Collection
Class 19: Two Way Tables, Conditional Distributions, Chi-Square (Text: Sections 2.5; 9.1)
Spring 204 Class 9: Two Way Tables, Conditional Distributions, Chi-Square (Text: Sections 2.5; 9.) Big Picture: More than Two Samples In Chapter 7: We looked at quantitative variables and compared the
UNDERSTANDING ANALYSIS OF COVARIANCE (ANCOVA)
UNDERSTANDING ANALYSIS OF COVARIANCE () In general, research is conducted for the purpose of explaining the effects of the independent variable on the dependent variable, and the purpose of research design
When to use Excel. When NOT to use Excel 9/24/2014
Analyzing Quantitative Assessment Data with Excel October 2, 2014 Jeremy Penn, Ph.D. Director When to use Excel You want to quickly summarize or analyze your assessment data You want to create basic visual
A STUDY OF WHETHER HAVING A PROFESSIONAL STAFF WITH ADVANCED DEGREES INCREASES STUDENT ACHIEVEMENT MEGAN M. MOSSER. Submitted to
Advanced Degrees and Student Achievement-1 Running Head: Advanced Degrees and Student Achievement A STUDY OF WHETHER HAVING A PROFESSIONAL STAFF WITH ADVANCED DEGREES INCREASES STUDENT ACHIEVEMENT By MEGAN
Testing Research and Statistical Hypotheses
Testing Research and Statistical Hypotheses Introduction In the last lab we analyzed metric artifact attributes such as thickness or width/thickness ratio. Those were continuous variables, which as you
DISCRIMINANT FUNCTION ANALYSIS (DA)
DISCRIMINANT FUNCTION ANALYSIS (DA) John Poulsen and Aaron French Key words: assumptions, further reading, computations, standardized coefficents, structure matrix, tests of signficance Introduction Discriminant
SPSS Guide: Regression Analysis
SPSS Guide: Regression Analysis I put this together to give you a step-by-step guide for replicating what we did in the computer lab. It should help you run the tests we covered. The best way to get familiar
LAB 4 INSTRUCTIONS CONFIDENCE INTERVALS AND HYPOTHESIS TESTING
LAB 4 INSTRUCTIONS CONFIDENCE INTERVALS AND HYPOTHESIS TESTING In this lab you will explore the concept of a confidence interval and hypothesis testing through a simulation problem in engineering setting.
Multivariate Analysis of Variance (MANOVA): I. Theory
Gregory Carey, 1998 MANOVA: I - 1 Multivariate Analysis of Variance (MANOVA): I. Theory Introduction The purpose of a t test is to assess the likelihood that the means for two groups are sampled from the
Descriptive Statistics
Descriptive Statistics Primer Descriptive statistics Central tendency Variation Relative position Relationships Calculating descriptive statistics Descriptive Statistics Purpose to describe or summarize
Statistical Models in R
Statistical Models in R Some Examples Steven Buechler Department of Mathematics 276B Hurley Hall; 1-6233 Fall, 2007 Outline Statistical Models Linear Models in R Regression Regression analysis is the appropriate
Friedman's Two-way Analysis of Variance by Ranks -- Analysis of k-within-group Data with a Quantitative Response Variable
Friedman's Two-way Analysis of Variance by Ranks -- Analysis of k-within-group Data with a Quantitative Response Variable Application: This statistic has two applications that can appear very different,
August 2012 EXAMINATIONS Solution Part I
August 01 EXAMINATIONS Solution Part I (1) In a random sample of 600 eligible voters, the probability that less than 38% will be in favour of this policy is closest to (B) () In a large random sample,
Chapter 9. Two-Sample Tests. Effect Sizes and Power Paired t Test Calculation
Chapter 9 Two-Sample Tests Paired t Test (Correlated Groups t Test) Effect Sizes and Power Paired t Test Calculation Summary Independent t Test Chapter 9 Homework Power and Two-Sample Tests: Paired Versus
STATISTICS FOR PSYCHOLOGISTS
STATISTICS FOR PSYCHOLOGISTS SECTION: STATISTICAL METHODS CHAPTER: REPORTING STATISTICS Abstract: This chapter describes basic rules for presenting statistical results in APA style. All rules come from
Unit 31 A Hypothesis Test about Correlation and Slope in a Simple Linear Regression
Unit 31 A Hypothesis Test about Correlation and Slope in a Simple Linear Regression Objectives: To perform a hypothesis test concerning the slope of a least squares line To recognize that testing for a
CHAPTER 14 NONPARAMETRIC TESTS
CHAPTER 14 NONPARAMETRIC TESTS Everything that we have done up until now in statistics has relied heavily on one major fact: that our data is normally distributed. We have been able to make inferences
Difference of Means and ANOVA Problems
Difference of Means and Problems Dr. Tom Ilvento FREC 408 Accounting Firm Study An accounting firm specializes in auditing the financial records of large firm It is interested in evaluating its fee structure,particularly
" Y. Notation and Equations for Regression Lecture 11/4. Notation:
Notation: Notation and Equations for Regression Lecture 11/4 m: The number of predictor variables in a regression Xi: One of multiple predictor variables. The subscript i represents any number from 1 through
THE UNIVERSITY OF TEXAS AT TYLER COLLEGE OF NURSING COURSE SYLLABUS NURS 5317 STATISTICS FOR HEALTH PROVIDERS. Fall 2013
THE UNIVERSITY OF TEXAS AT TYLER COLLEGE OF NURSING 1 COURSE SYLLABUS NURS 5317 STATISTICS FOR HEALTH PROVIDERS Fall 2013 & Danice B. Greer, Ph.D., RN, BC [email protected] Office BRB 1115 (903) 565-5766
PSYCHOLOGY 320L Problem Set #3: One-Way ANOVA and Analytical Comparisons
PSYCHOLOGY 30L Problem Set #3: One-Way ANOVA and Analytical Comparisons Name: Score:. You and Dr. Exercise have decided to conduct a study on exercise and its effects on mood ratings. Many studies (Babyak
Regression Analysis: A Complete Example
Regression Analysis: A Complete Example This section works out an example that includes all the topics we have discussed so far in this chapter. A complete example of regression analysis. PhotoDisc, Inc./Getty
Study Guide for the Final Exam
Study Guide for the Final Exam When studying, remember that the computational portion of the exam will only involve new material (covered after the second midterm), that material from Exam 1 will make
Statistiek II. John Nerbonne. October 1, 2010. Dept of Information Science [email protected]
Dept of Information Science [email protected] October 1, 2010 Course outline 1 One-way ANOVA. 2 Factorial ANOVA. 3 Repeated measures ANOVA. 4 Correlation and regression. 5 Multiple regression. 6 Logistic
Analysis of Variance. MINITAB User s Guide 2 3-1
3 Analysis of Variance Analysis of Variance Overview, 3-2 One-Way Analysis of Variance, 3-5 Two-Way Analysis of Variance, 3-11 Analysis of Means, 3-13 Overview of Balanced ANOVA and GLM, 3-18 Balanced
Chapter 23. Two Categorical Variables: The Chi-Square Test
Chapter 23. Two Categorical Variables: The Chi-Square Test 1 Chapter 23. Two Categorical Variables: The Chi-Square Test Two-Way Tables Note. We quickly review two-way tables with an example. Example. Exercise
Recommend Continued CPS Monitoring. 63 (a) 17 (b) 10 (c) 90. 35 (d) 20 (e) 25 (f) 80. Totals/Marginal 98 37 35 170
Work Sheet 2: Calculating a Chi Square Table 1: Substance Abuse Level by ation Total/Marginal 63 (a) 17 (b) 10 (c) 90 35 (d) 20 (e) 25 (f) 80 Totals/Marginal 98 37 35 170 Step 1: Label Your Table. Label
How to calculate an ANOVA table
How to calculate an ANOVA table Calculations by Hand We look at the following example: Let us say we measure the height of some plants under the effect of different fertilizers. Treatment Measures Mean
Final Exam Practice Problem Answers
Final Exam Practice Problem Answers The following data set consists of data gathered from 77 popular breakfast cereals. The variables in the data set are as follows: Brand: The brand name of the cereal
2013 MBA Jump Start Program. Statistics Module Part 3
2013 MBA Jump Start Program Module 1: Statistics Thomas Gilbert Part 3 Statistics Module Part 3 Hypothesis Testing (Inference) Regressions 2 1 Making an Investment Decision A researcher in your firm just
CHAPTER 11 CHI-SQUARE AND F DISTRIBUTIONS
CHAPTER 11 CHI-SQUARE AND F DISTRIBUTIONS CHI-SQUARE TESTS OF INDEPENDENCE (SECTION 11.1 OF UNDERSTANDABLE STATISTICS) In chi-square tests of independence we use the hypotheses. H0: The variables are independent
Multivariate Analysis. Overview
Multivariate Analysis Overview Introduction Multivariate thinking Body of thought processes that illuminate the interrelatedness between and within sets of variables. The essence of multivariate thinking
Simple Linear Regression Inference
Simple Linear Regression Inference 1 Inference requirements The Normality assumption of the stochastic term e is needed for inference even if it is not a OLS requirement. Therefore we have: Interpretation
15. Analysis of Variance
15. Analysis of Variance A. Introduction B. ANOVA Designs C. One-Factor ANOVA (Between-Subjects) D. Multi-Factor ANOVA (Between-Subjects) E. Unequal Sample Sizes F. Tests Supplementing ANOVA G. Within-Subjects
Module 5: Multiple Regression Analysis
Using Statistical Data Using to Make Statistical Decisions: Data Multiple to Make Regression Decisions Analysis Page 1 Module 5: Multiple Regression Analysis Tom Ilvento, University of Delaware, College
Chapter Four. Data Analyses and Presentation of the Findings
Chapter Four Data Analyses and Presentation of the Findings The fourth chapter represents the focal point of the research report. Previous chapters of the report have laid the groundwork for the project.
Analysis of Data. Organizing Data Files in SPSS. Descriptive Statistics
Analysis of Data Claudia J. Stanny PSY 67 Research Design Organizing Data Files in SPSS All data for one subject entered on the same line Identification data Between-subjects manipulations: variable to
Example: Boats and Manatees
Figure 9-6 Example: Boats and Manatees Slide 1 Given the sample data in Table 9-1, find the value of the linear correlation coefficient r, then refer to Table A-6 to determine whether there is a significant
9.63 Laboratory in Cognitive Science. Interaction: memory experiment
9.63 Laboratory in Cognitive Science Fall 25 Lecture 6 Factorial Design: Complex design Aude Oliva Ben Balas, Charles Kemp Interaction: memory experiment Goal: In an experiment, you compare the explicit
research/scientific includes the following: statistical hypotheses: you have a null and alternative you accept one and reject the other
1 Hypothesis Testing Richard S. Balkin, Ph.D., LPC-S, NCC 2 Overview When we have questions about the effect of a treatment or intervention or wish to compare groups, we use hypothesis testing Parametric
ELEMENTARY STATISTICS
ELEMENTARY STATISTICS Study Guide Dr. Shinemin Lin Table of Contents 1. Introduction to Statistics. Descriptive Statistics 3. Probabilities and Standard Normal Distribution 4. Estimates and Sample Sizes
Hypothesis testing - Steps
Hypothesis testing - Steps Steps to do a two-tailed test of the hypothesis that β 1 0: 1. Set up the hypotheses: H 0 : β 1 = 0 H a : β 1 0. 2. Compute the test statistic: t = b 1 0 Std. error of b 1 =
Outline. Dispersion Bush lupine survival Quasi-Binomial family
Outline 1 Three-way interactions 2 Overdispersion in logistic regression Dispersion Bush lupine survival Quasi-Binomial family 3 Simulation for inference Why simulations Testing model fit: simulating the
Regression step-by-step using Microsoft Excel
Step 1: Regression step-by-step using Microsoft Excel Notes prepared by Pamela Peterson Drake, James Madison University Type the data into the spreadsheet The example used throughout this How to is a regression
13: Additional ANOVA Topics. Post hoc Comparisons
13: Additional ANOVA Topics Post hoc Comparisons ANOVA Assumptions Assessing Group Variances When Distributional Assumptions are Severely Violated Kruskal-Wallis Test Post hoc Comparisons In the prior
DATA INTERPRETATION AND STATISTICS
PholC60 September 001 DATA INTERPRETATION AND STATISTICS Books A easy and systematic introductory text is Essentials of Medical Statistics by Betty Kirkwood, published by Blackwell at about 14. DESCRIPTIVE
Using Microsoft Excel to Analyze Data from the Disk Diffusion Assay
Using Microsoft Excel to Analyze Data from the Disk Diffusion Assay Entering and Formatting Data Open Excel. Set up the spreadsheet page (Sheet 1) so that anyone who reads it will understand the page (Figure
First-year Statistics for Psychology Students Through Worked Examples. 3. Analysis of Variance
First-year Statistics for Psychology Students Through Worked Examples 3. Analysis of Variance by Charles McCreery, D.Phil Formerly Lecturer in Experimental Psychology Magdalen College Oxford Copyright
1. What is the critical value for this 95% confidence interval? CV = z.025 = invnorm(0.025) = 1.96
1 Final Review 2 Review 2.1 CI 1-propZint Scenario 1 A TV manufacturer claims in its warranty brochure that in the past not more than 10 percent of its TV sets needed any repair during the first two years
UNDERSTANDING THE INDEPENDENT-SAMPLES t TEST
UNDERSTANDING The independent-samples t test evaluates the difference between the means of two independent or unrelated groups. That is, we evaluate whether the means for two independent groups are significantly
How To Check For Differences In The One Way Anova
MINITAB ASSISTANT WHITE PAPER This paper explains the research conducted by Minitab statisticians to develop the methods and data checks used in the Assistant in Minitab 17 Statistical Software. One-Way
Two-sample t-tests. - Independent samples - Pooled standard devation - The equal variance assumption
Two-sample t-tests. - Independent samples - Pooled standard devation - The equal variance assumption Last time, we used the mean of one sample to test against the hypothesis that the true mean was a particular
Nonparametric tests these test hypotheses that are not statements about population parameters (e.g.,
CHAPTER 13 Nonparametric and Distribution-Free Statistics Nonparametric tests these test hypotheses that are not statements about population parameters (e.g., 2 tests for goodness of fit and independence).
NCSS Statistical Software
Chapter 06 Introduction This procedure provides several reports for the comparison of two distributions, including confidence intervals for the difference in means, two-sample t-tests, the z-test, the
Chi Square Distribution
17. Chi Square A. Chi Square Distribution B. One-Way Tables C. Contingency Tables D. Exercises Chi Square is a distribution that has proven to be particularly useful in statistics. The first section describes
Solutions to Homework 10 Statistics 302 Professor Larget
s to Homework 10 Statistics 302 Professor Larget Textbook Exercises 7.14 Rock-Paper-Scissors (Graded for Accurateness) In Data 6.1 on page 367 we see a table, reproduced in the table below that shows the
The F distribution and the basic principle behind ANOVAs. Situating ANOVAs in the world of statistical tests
Tutorial The F distribution and the basic principle behind ANOVAs Bodo Winter 1 Updates: September 21, 2011; January 23, 2014; April 24, 2014; March 2, 2015 This tutorial focuses on understanding rather
