Technical Report. Automatic Identification and Semi-quantitative Analysis of Psychotropic Drugs in Serum Using GC/MS Forensic Toxicological Database
|
|
|
- Silvester Harrison
- 10 years ago
- Views:
Transcription
1 C146-E175A Technical Report Automatic Identification and Semi-quantitative Analysis of Psychotropic Drugs in Serum Using GC/MS Forensic Toxicological Database Hitoshi Tsuchihashi 1 Abstract: A sample consisting of serum extract from a patient administered with psychotropic drugs was analyzed by GC/MS; identification and semiquantitation of the substances were conducted using the GC/MS Forensic Toxicological Database. All three administered substances were identified, and their semi-quantitative values were calculated. The results indicated that it is possible to qualitatively and semi-quantitatively determine drugs using this database. Keywords: GC/MS, psychotropic drug, phenobarbital, semi-quantitation, forensic medicine, toxicology Introduction Accidental poisoning due to the abuse and excessive intake of stimulants and other illegal drugs or psychotropic drugs continues to be a troublesome social issue. In particular, when death occurs due to acute drug poisoning, identifying the specific drug responsible and determining its concentration in the blood are essential subjects in university forensic classrooms and critical activities in prefectural police department forensic laboratories. Identification and quantitative analysis of a drug substance in the blood can be very time-consuming, requiring a calibration curve for verification of retention times using a standard drug sample, and determination of the appropriate preparation and pretreatment of the actual sample. In addition to the automatic search algorithm built into the GC/MS Forensic Toxicological Database, a semi-quantitative analysis feature is also included which uses relative response factors for drugs that often lead to poisoning. These features allow identification of drugs for which standard samples are difficult to obtain, and evaluation based on estimated quantitation values (via semiquantitation) for these substances. Experiment Reagents The phenobarbital sodium, chlorpromazine hydrochloride, and promethazine hydrochloride were obtained from Wako Chemicals, and each was adjusted to a free-state concentration of 1 mg/ml (by using methanol for phenobarbital sodium and distilled water for chlorpromazine hydrochloride and promethazine hydrochloride). After preparing a mixed solution of these, each at a concentration of 1 µg/ml, the mixture was added to blank serum, and the concentration was adjusted to 1 µg/ml. This was then used as the analytical sample (spiked serum). In addition, after receiving informed consent from a psychiatric patient who had been administered these 3 substances, we used the received blood serum as the actual sample. In addition, two custom standard solutions were obtained from Shimadzu GLC, one an n-alkane C7 C33 sample (Custom Retention Time Index Standard, Restek Corp.) for retention time correction, and the other an internal standard (Custom Internal Standard, Restek Corp.) sample necessary for the semi-quantitation. In this Technical Report, we utilized the substance identification and semi-quantitation features included in the GC/MS Forensic Toxicological Database to identify 3 substances, including the barbiturate, (used to treat epilepsy), the antipsychotic, chlorpromazine, and the antihistamine antiemetic, promethazine (used to treat Parkinson's disease), in a spiked sample of actual serum. In addition, we verified the results using a serum sample from an actual patient administered these 3 substances. 1 Department of Legal Medicine, Osaka Medical College 1
2 Pretreatment Procedure Into 5 µl of each serum sample (spiked serum and actual sample), 2 µl of 1% hydrochloric acid was titrated to acidify, 1 µl of a chloroform-isopropanol mixture (3:1, v/v) was added, and after vigorously mixing, centrifuging was conducted for 15 minutes, and the organic layer (acidic fraction) was collected. After conducting this operation twice in succession, 2 µl of 28% aqueous ammonia was added to the aqueous layer to make the mixture basic. Then, 1 µl of a chloroform-isopropanol mixture (3:1, v/v) was added, and after conducting the mixing / centrifuging process described above, the organic layer (basic fraction) was collected. After combining the acidic and basic fractions, dewatering of the mixture was conducted using anhydrous sodium sulfate, and evaporative drying was performed at 4 C under nitrogen. The obtained residue was dissolved in 25 µl ethyl acetate, and this was used as the sample for GC/MS analysis. Equipment For the GC/MS analysis, the GCMS-QP21 Ultra was used, and GC- MSsolution software was used for data processing. Table 1 shows the analytical conditions that were used for the analyses. For retention time adjustment, the AART (Automatic Adjustment of Retention Time) feature included in GCMSsolution Postrun Analysis was used to calculate the retention times of the 162 substances (included in the free-state substance analytical method for psychiatric drugs) from the retention indices, and these were used as the standard retention times for identification. The retention time windows were set to ±.2 minutes, and the substances included in the samples were identified using the automatic identification feature. In addition, the internal standard used for quantitation was introduced automatically into the GC injection port simultaneously with the sample using the internal standard automatic addition feature of the AOC-2i+s. Table 1 Analytical Conditions Instruments GC-MS Auto-injector Column : GCMS-QP21 Ultra : AOC-2i + s : Rxi -5Sil MS (3 m.25 mm l.d. df=.25 µm, Restek Corporation) GC condition Column Temp. Carrier Gas Carrier Gas Velocity Injection Mode Sample injection volume IS injection volume : 6 C (1 min)-1 C/min-32 C (1 min) : He (Constant Linear Velocity Mode) : 45.6 cm/sec : Splitless : 1 µl : 1 µl MS condition Interface Temp. Ion Source Temp. Scan Interval Monitor ion for semi-quantitation : 28 C : 2 C :.3 sec : m/z 24 for phenobarbital : m/z 318 for chrolpromazine : m/z 72 for promethazine Results and Discussion Semi-Quantitation Results of Spiked Serum The total ion current chromatogram (TIC) obtained from analysis of the spiked serum using the abovementioned procedure is shown in Fig. 1. the 3 added substances were detected within ±.3 minutes of the expected calculated retention time, and accurate identification was achieved based on the retention times (Fig. 2). Since each substance is detected based on the extracted ion chromatogram (EIC) of multiple m/z values set beforehand, the EIC chromatogram can be detected even at trace concentrations or when a discrete chromatographic peak in the TIC cannot be detected due to matrix interferences. The detected chromatographic peak can be accurately identified automatically through confirmation of the degree of similarity with the standard mass spectrum (Fig. 3). In addition, the quantitation values were calculated from the obtained peak intensity ratio of each target substance and internal standard substance, and the relative response factor. 2
3 Thus, utilizing the automatic search feature of the GC/MS Forensic Toxicological Database, phenobarbital, chlorpromazine, and promethazine were all detected automatically, and semi-quantitation values were obtained for these 3 substances. The semi-quantitation values obtained using the semi-quantitation feature of the GC/MS Forensic Toxicological Database and the relative response factors (obtained from analysis of the standard solution) are shown in Table 2. As shown in Table 2, fairly good quantitative results were obtained for chlorpromazine and promethazine, but the quantitative results for phenobarbital indicate a value 1.8 times that of the added amount. The semi-quantitation feature of the GC/MS Forensic Toxicological Database generates a semi-quantitation value which is a rough estimate of "the drug concentration in the final sample" based on the response factor obtained from the previously-analyzed standard sample. Therefore, the semi-quantitation value can vary considerably depending on the drug recovery ratio and sample concentration during sample pretreatment, as well as the matrix effect. Especially, in the case of a serum sample, the recovery of a drug with high lipid solubility will decrease greatly, increasing the likelihood that the difference between the obtained semi-quantitation value and the true value will widen considerably. Thus, since the calculated quantitation value can be expected to vary depending on the pretreatment procedure, the GC injection port, and the column condition, it is necessary to regard it only as an approximate estimated value. For quantitative analysis requiring great accuracy, standard samples must be used. ( 1,,) Retention time (min) Fig. 1 Total Ion Current Chromatogram Obtained from Spiked Serum Fluoranthene-d1 (IS) Chrysene-d12 (IS) Fig. 2 Mass Chromatograms of 3 Added Substances and Principal Internal Standard Samples 3
4 % % m/z Fig. 3 Comparison of Measured Mass Spectrum of (above) and Standard Mass Spectrum (below) Table 2 Semi-Quantitated Results of Spiked Plasma Compounds Additive Amount Semi-quantitated Response Factor Semi-Quantitation Results for Actual Sample In the case of the actual sample, just as with the spiked serum, values calculated from the GC/MS Forensic Toxicological Database. Those data are shown in Table 3. the 3 substances were automatically detected by the automatic search algorithm, and the semi-quantitative results were obtained. The chromatogram obtained from analysis of the actual As with the spiked serum, the semi-quantitation values obtained for chlorpromazine and promethazine were relatively sample is shown in Fig. 4. Also, with respect to the actual close to the values obtained from the calibration curve, but the sample, the quantitation values obtained using the internal semi-quantitation value for phenobarbital indicated a value standard method were compared with the semi-quantitation that was about 3 times higher. 2. ( 1,,) TIC Retention time (min) Fig. 4 Total Ion Current Chromatogram Obtained Using Actual Sample 4
5 Table 3 Comparison of Quantitated Results and Semi-Quantitated of Real Specimen Compounds Quantitation* Semi-Quantitation * Determined from calibration curve generated using spiked serum. Conclusion Automatic qualitative and semi-quantitative analyses were conducted for 3 psychotropic drug substances (phenobarbital, chlorpromazine, and promethazine) in serum using the GC/MS Forensic Toxicological Database. Using a method which incorporated information on 162 psychiatric drugs, automatic identification of phenobarbital, chlorpromazine, and promethazine was possible using retention time correction via the AART feature of the GCMSsolution software. Relatively accurate quantitative results were obtained for chlorpromazine and promethazine, but the results obtained for phenobarbital tended to be 2 to 3 times higher than the spiked levels. Since the semi-quantitative values obtained using this feature of the GC/MS Forensic Toxicological Database are just quantitative estimates of the concentrations in the final sample, they should be considered as values subject to great variation, depending on such factors as the error in the drug recovery ratio or sample concentration in pretreatment, matrix effects, and instrument condition. However, since automatic quantitative analysis using this database can be conducted simultaneously with an automatic database search, it can certainly be useful for obtaining a rough estimate of a drug s concentration while conducting qualitative analysis, or for quickly estimating concentration of a specific drug when there is no time for preparing calibration standards. 5
6 Gas Chromatograph Mass Spectrometer GCMS-QP21 Ultra Features 1. High sensitivity 2. Easy maintenance 3. Identification of compounds using retention indices The Shimadzu GCMS-QP21 series has optimum functions and performance for forensic toxicology. 1. The Shimadzu GCMS-QP21 series features an extremely high sensitivity and capability to measure forensic toxicology-related compounds down to low concentrations. 2. Urine and blood samples contain lots of contaminants. When samples such as these are measured by GC/MS, contamination of the ion source becomes problematic.the GCMS-QP21 series is less likely to become dirty, and, moreover, can be easily cleaned even if the ion source is contaminated. 3. It is difficult to obtain standard samples for forensic toxicology-related compounds. However, in the GC/MS Forensic Toxicological Database for the GCMS-QP21 series, the information of more than 5 medicinal toxicants is registered to method files together with optimum analysis conditions. GC/MS Forensic Toxicological Database (Drugs of Abuse / Medicines / Pesticides) The "GC/MS Forensic Toxicological Database" is exclusively for the GCMSsolution workstation software for GCMS-QP21 series gas chromatograph mass spectrometers. It is pre-registered with 111 mass spectra including free-, TMS- and TFA- body types for 52 compounds that are required in forensic toxicological analysis of drugs of abuse, drugs for psychiatric and neurological disease, and other medicines and pesticides. This database comprises the following: method files pre-registered with analytical conditions, mass spectra, retention indices, etc., compound information including CAS numbers, etc., libraries containing mass spectra and retention indices, and a handbook (printed version of library information). Spectra for 591 drugs of abuse, 274 drugs for psychiatric and neurological disease, 11 medicines, and 36 pesticides are registered to the methods and libraries. Use of this database enables high-precision identification of compounds based on the AART (Automatic Adjustment of Retention Time) that uses retention indices, and based on mass chromatograms compared with standard mass spectra and quantified/confirmed ions. Comparison with standard spectra without the need for registration Data analysis based on quantified/confirmed ions Methods pre-registered with retention indices, mass spectra and quantified/confirmed ions First Edition: December, 21 (Second Edition: June, 212) For Research Use Only. Not for use in diagnostic procedures. The content of this publication shall not be reproduced, altered or sold for any commercial purpose without the written approval of Shimadzu. The information contained herein is provided to you "as is" without warranty of any kind including without limitation warranties as to its accuracy or completeness. Shimadzu does not assume any responsibility or liability for any damage, whether direct or indirect, relating to the use of this publication. This publication is based upon the information available to Shimadzu on or before the date of publication, and subject to change without notice. Shimadzu Corporation, 212 Printed in Japan ANS
Analysis of Phthalate Esters in Children's Toys Using GC-MS
C146-E152 Analysis of Phthalate Esters in Children's Toys Using GC-MS GC/MS Technical Report No.4 Yuki Sakamoto, Katsuhiro Nakagawa, Haruhiko Miyagawa Abstract As of February 29, the US Consumer Product
Simultaneous Qualitative and Quantitative Data Acquisition for Research of Diabetes Drugs
Liquid Chromatography Mass Spectrometry SSI-LCMS-068 Simultaneous Qualitative and Quantitative Data Acquisition for Research of Diabetes Drugs LCMS-8050 Summary By utilizing the LCMS-8050 s ultrafast scan
Quantitative analysis of anabolic steroids in control samples from food-producing animals using a column-switching LC-HESI-MS/MS assay
PO-CON1484E Quantitative analysis of anabolic steroids in control samples from food-producing animals using a column-switching ASMS 014 TP85 David R. Baker 1, John Warrander 1, Neil Loftus 1, Simon Hird
Quantitative Analysis of Stable Isotopes of Glucose in Blood Plasma Using Quadrupole GC-MS GC/MS Technical Report No.2
IMD--037 Quantitative Analysis of Stable Isotopes of Glucose in Blood Plasma Using Quadrupole G-MS G/MS Technical Report o.2 G/MS Metabolomics & Life Science Project (Yuki Sakamoto, Katsuhiro akagawa,
SCREENING FOR THE PRESENCE OF PARA-METHYLTHIOAMPHETAMINE IN URINE BY SOME COMMERCIAL IMMUNOASSAYS AND CONFIRMATION BY GC/MS
SCREENING FOR THE PRESENCE OF PARA-METHYLTHIOAMPHETAMINE IN URINE BY SOME COMMERCIAL IMMUNOASSAYS AND CONFIRMATION BY GC/MS Ingrid J. BOSMAN 1, Douwe DE BOER 2, Robert A. A. MAES 1 1 Department of Human
Ultra Fast UHPLC-LCMSMS Method Development in Clinical Drug Monitoring
PO-CON1359E Ultra Fast UHPLC-LCMSMS Method Development in HPLC 2013 MASS-09 Anja Grüning 1 ; Brigitte Richrath 1 ; Klaus Bollig 2 ; Sven Vedder 1 ; Robert Ludwig 1 1 Shimadzu Europa GmbH, Duisburg, Germany;
Daniel M. Mueller, Katharina M. Rentsch Institut für Klinische Chemie, Universitätsspital Zürich, CH-8091 Zürich, Schweiz
Toxichem Krimtech 211;78(Special Issue):324 Online extraction LC-MS n method for the detection of drugs in urine, serum and heparinized plasma Daniel M. Mueller, Katharina M. Rentsch Institut für Klinische
Overview. Introduction. AB SCIEX MPX -2 High Throughput TripleTOF 4600 LC/MS/MS System
Investigating the use of the AB SCIEX TripleTOF 4600 LC/MS/MS System for High Throughput Screening of Synthetic Cannabinoids/Metabolites in Human Urine AB SCIEX MPX -2 High Throughput TripleTOF 4600 LC/MS/MS
SIMULTANEOUS DETERMINATION OF NALTREXONE AND 6- -NALTREXOL IN SERUM BY HPLC
SIMULTANEOUS DETERMINATION OF NALTREXONE AND 6- -NALTREXOL IN SERUM BY HPLC Katja SÄRKKÄ, Kari ARINIEMI, Pirjo LILLSUNDE Laboratory of Substance Abuse, National Public Health Institute Manerheimintie,
Technical Procedure for the Solid Phase Extraction of Acidic, Neutral and Basic Drugs for GC-MS Analysis
Technical Procedure for the Solid Phase Extraction of Acidic, Neutral and Basic Drugs for GC-MS Analysis 1.0 Purpose - This procedure specifies the required elements for the solid phase extraction of acidic,
Extraction of Epinephrine, Norepinephrine and Dopamine from Human Plasma Using EVOLUTE EXPRESS WCX Prior to LC-MS/MS Analysis
Application Note AN844 Extraction of, and from Human Plasma Using EVOLUTE EXPRESS WCX Page 1 Extraction of, and from Human Plasma Using EVOLUTE EXPRESS WCX Prior to LC-MS/MS Analysis Introduction Catecholamines
Pesticide Analysis by Mass Spectrometry
Pesticide Analysis by Mass Spectrometry Purpose: The purpose of this assignment is to introduce concepts of mass spectrometry (MS) as they pertain to the qualitative and quantitative analysis of organochlorine
How To Test For Contamination In Large Volume Water
Automated Solid Phase Extraction (SPE) of EPA Method 1694 for Pharmaceuticals and Personal Care Products in Large Volume Water Samples Keywords Application Note ENV0212 This collaboration study was performed
Opiates in Urine by SAMHSA GC/MS
application Note Gas Chromatography/ Mass Spectrometry Author Timothy D. Ruppel PerkinElmer, Inc. Shelton, CT 06484 USA Opiates in Urine by SAMHSA GC/MS Introduction The United States Department of Health
LC-MS/MS Method for the Determination of Docetaxel in Human Serum for Clinical Research
LC-MS/MS Method for the Determination of Docetaxel in Human Serum for Clinical Research J. Jones, J. Denbigh, Thermo Fisher Scientific, Runcorn, Cheshire, UK Application Note 20581 Key Words SPE, SOLA,
CLEAN-UP PROCESS FOR MASS SPECTRAL STUDY OF AMPHETAMINES IN PUTREFIED BODY MATERIALS
CLEAN-UP PROCESS FOR MASS SPECTRAL STUDY OF AMPHETAMINES IN PUTREFIED BODY MATERIALS Kenji HARA, Seiichi KASHIMURA, Masayuki KASHIWAGI, Tomoko HAMANAKA, Mitsuyoshi KAGEURA Department of Forensic Medicine,
Extraction of Cannabinoids in Marijuana and Edibles by QuEChERS
Extraction of Cannabinoids in Marijuana and Edibles by QuEChERS UCT Part Numbers: ECQUEU750CT-MP - QuEChERS, Mylar packs containing 4 g magnesium sulfate, 1 g sodium chloride, 0.5 g sodium citrate dibasic
Determination of Pesticide Residues in Drinking Water Using Automated Solid-Phase Extraction and Gas Chromatography with Nitrogen Phosphorus Detection
Determination of Pesticide Residues in Drinking Water Using Automated Solid-Phase Extraction and Gas Chromatography with Nitrogen Phosphorus Detection Application Note 1097 Liu Qian, Zheng Hongguo and
C146-E087F. GCMS-QP2010 Plus. Shimadzu Gas Chromatograph Mass Spectrometer
C146-E087F GCMS-QP2010 Plus Shimadzu Gas Chromatograph Mass Spectrometer The performance you have been waiting for is here. GCMS-QP2010 Plus GCMS-QP2010 Plus Shimadzu Gas Chromatograph Mass Spectrometer
CONFIRMATION OF ZOLPIDEM BY LIQUID CHROMATOGRAPHY MASS SPECTROMETRY
CONFIRMATION OF ZOLPIDEM BY LIQUID CHROMATOGRAPHY MASS SPECTROMETRY 9.1 POLICY This test method may be used to confirm the presence of zolpidem (ZOL), with diazepam-d 5 (DZP-d 5 ) internal standard, in
Method development for analysis of formaldehyde in foodsimulant. melamine-ware by GC-MS and LC-MS/MS. Internal Technical Report
of melamine-ware by GC-MS and LC-MS/MS Page 1 of 15 Method development for analysis of formaldehyde in foodsimulant extracts of melamine-ware by GC-MS and LC-MS/MS December 2012 Contact Point: Chris Hopley
Simultaneous qualitative and quantitative analysis using the Agilent 6540 Accurate-Mass Q-TOF
Simultaneous qualitative and quantitative analysis using the Agilent 654 Accurate-Mass Q-TOF Technical Overview Authors Pat Perkins Anabel Fandino Lester Taylor Agilent Technologies, Inc. Santa Clara,
APPLICATIONS MANUAL. Ifosfamide in blood serum... 2. Ingredients in blood serum... 3. Organophosphorus pesticides in tea leaf... 5
1 APPLICATIONS MANUAL CONTENTS Ifosfamide in blood serum... 2 Ingredients in blood serum... 3 Organophosphorus pesticides in tea leaf... 5 Sudan i ii iii iv in chilli sauce... 6 Pah in water... 7 Phenols
Extraction, Derivatization and Ultra-Sensitive GC/Triple Quadrupole Analysis of Estrone and Estradiol in Human Serum
Extraction, Derivatization and Ultra-Sensitive GC/Triple Quadrupole Analysis of Estrone and Estradiol in uman Serum Technical verview Clinical Research Authors Anthony Macherone, Ph.D. Agilent Technologies,
Analysis of Free Bromate Ions in Tap Water using an ACQUITY UPLC BEH Amide Column
Analysis of Free Bromate Ions in Tap Water using an ACQUITY UPLC BEH Amide Column Sachiki Shimizu, FUJIFILM Fine Chemicals Co., Ltd., Kanagawa, Japan Kenneth J. Fountain, Kevin Jenkins, and Yoko Tsuda,
Accurate Mass Screening Workflows for the Analysis of Novel Psychoactive Substances
Accurate Mass Screening Workflows for the Analysis of Novel Psychoactive Substances TripleTOF 5600 + LC/MS/MS System with MasterView Software Adrian M. Taylor AB Sciex Concord, Ontario (Canada) Overview
Alignment and Preprocessing for Data Analysis
Alignment and Preprocessing for Data Analysis Preprocessing tools for chromatography Basics of alignment GC FID (D) data and issues PCA F Ratios GC MS (D) data and issues PCA F Ratios PARAFAC Piecewise
A commitment to quality and continuous improvement
Guidance for the Validation of Analytical Methodology and Calibration of Equipment used for Testing of Illicit Drugs in Seized Materials and Biological Specimens A commitment to quality and continuous
Introduction. Methods. Sample Processing
PO-CON1656 High-sensitivity, high-throughput quantitation of catecholamines and metanephrine in plasma by automated WCX-SP coupled to LC/MS/MS for clinical research ASMS 2016 MP-080 Ichiro HIRANO 1, Atsuhiko
Determination of Anabolic Steroids in Horse Urine by SPE and LC-MS/MS
Summary: Determination of Anabolic Steroids in Horse Urine by SPE and LC-MS/MS UCT Part Numbers: CUNAX226 - Clean-Up C8+NAX, 2mg/6mL BETA-GLUC- ml Beta-Glucuronidase Enzyme, liquid form SLAQ1ID21-3UM -
UHPLC/MS: An Efficient Tool for Determination of Illicit Drugs
Application Note: 439 UHPLC/MS: An Efficient Tool for Determination of Illicit Drugs Guifeng Jiang, Thermo Fisher Scientific, San Jose, CA, USA Key Words Accela UHPLC System MSQ Plus MS Detector Drugs
SPE, LC-MS/MS Method for the Determination of Ethinyl Estradiol from Human Plasma
SPE, LC-MS/MS Method for the Determination of Ethinyl Estradiol from uman Plasma Krishna Rao Dara, Dr. Tushar N. Mehta, Asia Pacific Center of Excellence, Thermo Fisher Scientific, Ahmedabad, India Application
FORENSIC TOXICOLOGY LABORATORY OFFICE OF CHIEF MEDICAL EXAMINER CITY OF NEW YORK. VOLATILES ANALYSIS by GCMS HEADSPACE ANALYSIS
FORENSIC TOXICOLOGY LABORATORY OFFICE OF CHIEF MEDICAL EXAMINER CITY OF NEW YORK VOLATILES ANALYSIS by GCMS HEADSPACE ANALYSIS PRINCIPLE This method confirms the identity of volatile compounds in biological
Analysis of Organophosphorus Pesticides in Milk Using SPME and GC-MS/MS. No. GCMS-1603. No. SSI-GCMS-1603. Shilpi Chopra, Ph.D.
Gas Chromatograph Mass Spectrometer No. GCMS-1603 Analysis of Organophosphorus Pesticides in Milk Using SPME and GC-MS/MS Shilpi Chopra, Ph.D. Introduction Organophosphorus (OP) pesticides are a class
Enhancing GCMS analysis of trace compounds using a new dynamic baseline compensation algorithm to reduce background interference
Enhancing GCMS analysis of trace compounds using a new dynamic baseline compensation algorithm to reduce background interference Abstract The advantages of mass spectrometry (MS) in combination with gas
Overview. Triple quadrupole (MS/MS) systems provide in comparison to single quadrupole (MS) systems: Introduction
Advantages of Using Triple Quadrupole over Single Quadrupole Mass Spectrometry to Quantify and Identify the Presence of Pesticides in Water and Soil Samples André Schreiber AB SCIEX Concord, Ontario (Canada)
The Use of Micro Flow LC Coupled to MS/MS in Veterinary Drug Residue Analysis
The Use of Micro Flow LC Coupled to MS/MS in Veterinary Drug Residue Analysis Stephen Lock AB SCIEX Warrington (UK) Overview A rapid, robust, sensitive and specific LC-MS/MS method has been developed for
MASS SPECTROMETRIC IDENTIFICATION OF SOME SULPHUR CONTAINING PHENALKYLAMINE DESIGNER DRUGS *
MASS SPECTROMETRIC IDENTIFICATION OF SOME SULPHUR CONTAINING PHENALKYLAMINE DESIGNER DRUGS * Ingrid J. BOSMAN 1, Douwe DE BOER 2, Edwin B. SIDERIUS 1, Lesseps J. A. L. DOS REYS 2, Robert A. A. MAES 1 1
FATAL INTOXICATION BY CIBENZOLINE (CIPRALAN )
FATAL INTOXICATION BY CIBENZOLINE (CIPRALAN ) N. RICHARD, Marie H. GHYSEL, M. SAVART Laboratoire de Police Scientifique, Lille, France ABSTRACT: We report here a fatal case of intoxication by an antiarrythmic
Shimadzu Simulated Distillation Gas Chromatograph System C184-E030
Shimadzu Simulated Distillation Gas Chromatograph System C184-E030 Meets All Simulated Distillation Gas Chromatograph Standards - Provides Highly Accurate Analysis Results with Excellent Reproducibility-
Application Note # MS-14 Fast On-site Identification of Drugs with the mobile GC/MS system E²M
Bruker Daltonics Application Note # MS- Fast n-site Identification of Drugs with the mobile GC/MS system E²M For the detection of drugs a couple of quick tests are available which were used by the police
New drugs of abuse? A case study on Phenazepam & Methoxetamine
New drugs of abuse? A case study on Phenazepam & Methoxetamine Presenter: Nadia Wong Co authors: Dr Yao Yi Ju & Alex Low Xuan Kai Analytical Toxicology Laboratory Clinical & Forensic Toxicology Unit Applied
Analysis of the Vitamin B Complex in Infant Formula Samples by LC-MS/MS
Analysis of the Vitamin B Complex in Infant Formula Samples by LC-MS/MS Stephen Lock 1 and Matthew Noestheden 2 1 AB SCIEX Warrington, Cheshire (UK), 2 AB SCIEX Concord, Ontario (Canada) Overview A rapid,
Oasis HLB Cartridges and 96-Well Plates
CONTENTS I. INTRODUCTION II. SAMPLE PRE-TREATMENT a. Biological Samples b. Solid Samples: Soil, Whole Foods, Tissue c. Aqueous Samples: Water, Beverages d. Non-Aqueous Liquid III. SOLID PHASE EXTRACTION
Overview. Purpose. Methods. Results
A ovel Approach to Quantify Unbound Cisplatin, Carboplatin, and xaliplatin in Human Plasma Ultrafiltrate by Measuring Platinum-DDTC Complex Using LC/M/M Min Meng, Ryan Kuntz, Al Fontanet, and Patrick K.
Quantitation of Drugs in Dried Bloodstains. Thomas Meyer Anna Gomenyuk Nadiah Lester
Quantitation of Drugs in Dried Bloodstains Thomas Meyer Anna Gomenyuk Nadiah Lester Objective To find the quantitative value of drugs in dried bloodstains Currently Cloth With Dried Bloodstain Containing
A High Throughput Automated Sample Preparation and Analysis Workflow for Comprehensive Forensic Toxicology Screening using LC/MS/MS
A High Throughput Automated Sample Preparation and Analysis Workflow for Comprehensive Forensic Toxicology Screening using LC/MS/MS AB SCIEX QTRAP 4500 LC/MS/MS System and Gerstel, Inc. MultiPurpose Sampler
Application Note # LCMS-92 Interlaboratory Tests Demonstrate the Robustness and Transferability of the Toxtyper Workflow
Application Note # LCMS-92 Interlaboratory Tests Demonstrate the Robustness and Transferability of the Toxtyper Workflow Abstract There is high demand in clinical research and forensic toxicology for comprehensive,
SUCRALOSE. White to off-white, practically odourless crystalline powder
SUCRALOSE Prepared at the 41st JECFA (1993), published in FNP 52 Add 2 (1993). Metals and arsenic specifications revised at the 63rd JECFA (2004). An ADI of 0-15 mg/kg bw was established at the 37th JECFA
GENERAL UNKNOWN SCREENING FOR DRUGS IN BIOLOGICAL SAMPLES BY LC/MS Luc Humbert1, Michel Lhermitte 1, Frederic Grisel 2 1
GENERAL UNKNOWN SCREENING FOR DRUGS IN BIOLOGICAL SAMPLES BY LC/MS Luc Humbert, Michel Lhermitte, Frederic Grisel Laboratoire de Toxicologie & Génopathologie, CHRU Lille, France Waters Corporation, Guyancourt,
Chemistry 321, Experiment 8: Quantitation of caffeine from a beverage using gas chromatography
Chemistry 321, Experiment 8: Quantitation of caffeine from a beverage using gas chromatography INTRODUCTION The analysis of soft drinks for caffeine was able to be performed using UV-Vis. The complex sample
Multi Pesticides Residue analysis in Ayurvedic cough Syrup by GCMS/MS using QuEChERS extraction method
PO-CON679E Multi Pesticides Residue analysis in Ayurvedic cough Syrup by GCMS/MS using QuEChERS extraction method ASMS 206 ThP 47 Durvesh Sawant (), Ankush Bhone (), Dheeraj Handique (), Prashant Hase
Expectations for GC-MS Lab
Expectations for GC-MS Lab Since this is the first year for GC-MS to be used in Dr. Lamp s CHEM 322, the lab experiment is somewhat unstructured. As you move through the two weeks, I expect that you will
Multifunctional Autosampler AOC-6000 C146-E272A
Multifunctional Autosampler C146-E272A Multifunctional Autosampler Multifunctional Autosampler Dramatically Improves GC/MS Analysis Productivity Automatic Switching Between Three GC/MS Sample Injection
AMD Analysis & Technology AG
AMD Analysis & Technology AG Application Note 120419 Author: Karl-Heinz Maurer APCI-MS Trace Analysis of volatile organic compounds in ambient air A) Introduction Trace analysis of volatile organic compounds
MEPS - Micro Extraction by Packed Sorbent Online SPE for GC and LC sample preparation - Extraction to injection in a single process
- Micro Extraction by Packed Sorbent Online SPE for GC and LC sample preparation - Extraction to injection in a single process Save Hours in Sample Preparation Reduce the time to prepare and inject samples
Fast, Reproducible LC-MS/MS Analysis of Dextromethorphan and Dextrorphan
Fast, Reproducible LC-MS/MS Analysis of and Kimberly Phipps, Thermo Fisher Scientific, Runcorn, Cheshire, UK Application Note 685 Key Words Accucore C18, dextromethorphan, dextrorphan, SOLA CX Abstract
Bruker ToxScreener TM. Innovation with Integrity. A Comprehensive Screening Solution for Forensic Toxicology UHR-TOF MS
Bruker ToxScreener TM A Comprehensive Screening Solution for Forensic Toxicology Innovation with Integrity UHR-TOF MS ToxScreener - Get the Complete Picture Forensic laboratories are frequently required
SCREENING FOR DRUGS IN SERUM AND URINE BY LC/ESI/CID-MS AND MS/MS WITH LIBRARY SEARCHING *
SCREENING FOR DRUGS IN SERUM AND URINE BY LC/ESI/CID-MS AND MS/MS WITH LIBRARY SEARCHING * Wolfgang WEINMANN 1, Natalie LEHMANN 1, Michaela RENZ 1, Alexander WIEDEMANN 1, Michal SVOBODA 2 1 Institute of
# LCMS-35 esquire series. Application of LC/APCI Ion Trap Tandem Mass Spectrometry for the Multiresidue Analysis of Pesticides in Water
Application Notes # LCMS-35 esquire series Application of LC/APCI Ion Trap Tandem Mass Spectrometry for the Multiresidue Analysis of Pesticides in Water An LC-APCI-MS/MS method using an ion trap system
MultiQuant Software Version 3.0 for Accurate Quantification of Clinical Research and Forensic Samples
MultiQuant Software Version 3.0 for Accurate Quantification of Clinical Research and Forensic Samples Fast and Efficient Data Review, with Automatic Flagging of Outlier Results Adrian M. Taylor and Michael
Background Information
1 Gas Chromatography/Mass Spectroscopy (GC/MS/MS) Background Information Instructions for the Operation of the Varian CP-3800 Gas Chromatograph/ Varian Saturn 2200 GC/MS/MS See the Cary Eclipse Software
Simultaneous determination of L-ascorbic acid and D-iso-ascorbic acid (erythorbic acid) in wine by HPLC and UV-detection (Resolution Oeno 11/2008)
Method OIV-MA-AS313-22 Type II method Simultaneous determination of L-ascorbic acid and D-iso-ascorbic acid (erythorbic acid) in wine by HPLC and UV-detection (Resolution Oeno 11/2008) 1. Introduction
Guide to Reverse Phase SpinColumns Chromatography for Sample Prep
Guide to Reverse Phase SpinColumns Chromatography for Sample Prep www.harvardapparatus.com Contents Introduction...2-3 Modes of Separation...4-6 Spin Column Efficiency...7-8 Fast Protein Analysis...9 Specifications...10
Setting up a Quantitative Analysis MS ChemStation
Setting up a Quantitative Analysis MS ChemStation Getting Ready 1. Use the tutorial section "Quant Reports" on the MSD Reference Collection CD-ROM that came with your ChemStation software. 2. Know what
Making the Leap to LC/MS/MS: Enhancing and Accelerating Clinical Research and Forensic Toxicology Applications
Making the Leap to LC/MS/MS: Enhancing and Accelerating Clinical Research and Forensic Toxicology Applications Introduction The resolving power of chromatography combined with the sensitivity and selectivity
MassHunter for Agilent GC/MS & GC/MS/MS
MassHunter for Agilent GC/MS & GC/MS/MS Next Generation Data Analysis Software Presented by : Terry Harper GC/MS Product Specialist 1 Outline of Topics Topic 1: Introduction to MassHunter Topic 2: Data
Strategies for Developing Optimal Synchronous SIM-Scan Acquisition Methods AutoSIM/Scan Setup and Rapid SIM. Technical Overview.
Strategies for Developing Optimal Synchronous SIM-Scan Acquisition Methods AutoSIM/Scan Setup and Rapid SIM Technical Overview Introduction The 5975A and B series mass selective detectors (MSDs) provide
Using Natural Products Application Solution with UNIFI for the Identification of Chemical Ingredients of Green Tea Extract
Using Natural Products Application Solution with UNIFI for the Identification of Chemical Ingredients of Green Tea Extract Lirui Qiao, 1 Rob Lewis, 2 Alex Hooper, 2 James Morphet, 2 Xiaojie Tan, 1 Kate
Glyphosate and AMPA. Medical Laboratory Bremen, Haferwende 12, 28357 Bremen, Germany. BUND, FoE
Document Title Test Compound Determination of Glyphosate residues in human urine samples from 18 European countries Glyphosate and AMPA Study Initiation Date March 2013 Study Completion Date June 6, 2013
The First Quantitative Analysis of Alkylated PAH and PASH by GCxGC/MS and its Implications on Weathering Studies
The First Quantitative Analysis of Alkylated PAH and PASH by GCxGC/MS and its Implications on Weathering Studies INEF Penn State Conference 2013 Albert Robbat, Jr. and Patrick Antle Tufts University, Chemistry
Introduction. The following definitions may help you better understand the components of the data report.
Introduction This document is designed to help our clients understand the quality control requirements and limitations of data reporting. There are three sections to this document. The first section will
A Navigation through the Tracefinder Software Structure and Workflow Options. Frans Schoutsen Pesticide Symposium Prague 27 April 2015
A Navigation through the Tracefinder Software Structure and Workflow Options Frans Schoutsen Pesticide Symposium Prague 27 April 2015 Kings day in The Netherlands 1 Index Introduction Acquisition, Method
Fipronil Analysis By GC/XSD following Post-Extraction Gel Permeation Chromatography Cleanup
Application Note 25570306 Fipronil Analysis By GC/XSD following Post-Extraction Gel Permeation Chromatography Cleanup Keywords Gel Permeation Chromatography GPC AutoPrep 2000 Pesticides RapidVap N2 System
Simultaneous Quantitation of 43 Drugs in Human Urine with a Dilute-and-Shoot LC-MS/MS Method
Simultaneous Quantitation of 4 Drugs in Human Urine with a Dilute-and-Shoot LC-MS/MS Method Xiang He and Marta Kozak, Thermo Fisher Scientific, San Jose, CA Application Note 76 Key Words TSQ Quantum Access
Chemical analysis service, Turner s Green Technology Group
Chemical analysis service, Turner s Green Technology Group Hourly costs, Academic collaborations leading to co-publications: 627 SEK/hr (excl. VAT) Hourly costs, Industry/Academic collaborations, no publications:
Analysis of Liquid Samples on the Agilent GC-MS
Analysis of Liquid Samples on the Agilent GC-MS I. Sample Preparation A. Solvent selection. 1. Boiling point. Low boiling solvents (i.e. b.p. < 30 o C) may be problematic. High boiling solvents (b.p. >
Analyzing Small Molecules by EI and GC-MS. July 2014
Analyzing Small Molecules by EI and GC-MS July 2014 Samples Appropriate for GC-MS Volatile and semi-volatile organic compounds Rule of thumb,
How To Analyze Pesticide Levels In Lemon Oil
AppNote 9/2006 Target GC-MS Analysis using Accelerated Column Heating and Interactive Deconvolution Software Albert Robbat Tufts University, Chemistry Department, Medford, MA 02155, USA Andreas Hoffmann
VALIDATION OF ANALYTICAL PROCEDURES: TEXT AND METHODOLOGY Q2(R1)
INTERNATIONAL CONFERENCE ON HARMONISATION OF TECHNICAL REQUIREMENTS FOR REGISTRATION OF PHARMACEUTICALS FOR HUMAN USE ICH HARMONISED TRIPARTITE GUIDELINE VALIDATION OF ANALYTICAL PROCEDURES: TEXT AND METHODOLOGY
Agilent Enhanced Matrix Removal Lipid LOSE THE LIPIDS, FIND YOUR ANALYTES
Agilent Enhanced Matrix Removal Lipid LOSE THE LIPIDS, FIND YOUR ANALYTES AGILENT ENHANCED MATRIX REMOVAL LIPID ARE LIPIDS WEIGHING YOUR SAMPLES DOWN? Interference from lipids is a problem for labs measuring
Therapeutic Drug Monitoring of Antiretroviral Drugs with HPLC-MS
Therapeutic Drug Monitoring of Antiretroviral Drugs with PLC-M Ursula Gutteck-Amsler, Katharina M. Rentsch Abstract Prospective and retrospective studies have provided some evidence of the clinical and
Step-by-Step Analytical Methods Validation and Protocol in the Quality System Compliance Industry
Step-by-Step Analytical Methods Validation and Protocol in the Quality System Compliance Industry BY GHULAM A. SHABIR Introduction Methods Validation: Establishing documented evidence that provides a high
Application of TargetView software within the food industry - the identi cation of pyrazine compounds in potato crisps
Application Note: ANTV10 Application of TargetView software within the food industry - the identi cation of pyrazine compounds in potato crisps Abstract In order to regulate product safety and quality
1.1 This test method covers the qualitative and quantitative determination of the content of benzene and toluene in hydrocarbon wax.
Standard Method for Analysis of Benzene and Toluene Content in Hydrocarbon Waxes by Headspace Gas Chromatography EWF METHOD 002/03 (Version 1 Reviewed 2015) 1 Scope 1.1 This test method covers the qualitative
Determination of Haloacetic Acids and Dalapon in Drinking Water by SPE and GC/ECD*
Method 552.1 Revision 1.0 Determination of Haloacetic Acids and Dalapon in Drinking Water by SPE and GC/ECD* UCT Products: EUQAX156 (quaternary amine with Cl - counter ion, 6 ml cartridge)** CLTTP050 (CLEAN-THRU
Guidance for Industry
Guidance for Industry Q2B Validation of Analytical Procedures: Methodology November 1996 ICH Guidance for Industry Q2B Validation of Analytical Procedures: Methodology Additional copies are available from:
Version 1.0 September, 2008. Jean W. Munch and Paul E. Grimmett
EPA/600/R-08/101 METHOD 522 DETERMINATION OF 1,4-DIOXANE IN DRINKING WATER BY SOLID PHASE EXTRACTION (SPE) AND GAS CHROMATOGRAPHY/ MASS SPECTROMETRY (GC/MS) WITH SELECTED ION MONITORING (SIM) Version 1.0
Unique Software Tools to Enable Quick Screening and Identification of Residues and Contaminants in Food Samples using Accurate Mass LC-MS/MS
Unique Software Tools to Enable Quick Screening and Identification of Residues and Contaminants in Food Samples using Accurate Mass LC-MS/MS Using PeakView Software with the XIC Manager to Get the Answers
Hydrophilic-Interaction Chromatography (HILIC) for LC-MS/MS Analysis of Monoamine Neurotransmitters using XBridge BEH Amide XP Columns
Hydrophilic-Interaction Chromatography (HILIC) for LC-MS/MS Analysis of Monoamine Neurotransmitters using XBridge BEH Amide XP Columns Jonathan P. Danaceau, Kenneth J. Fountain, and Erin E. Chambers Waters
Factors Influencing LC/MS/MS Moving into Clinical and Research Laboratories
Factors Influencing LC/MS/MS Moving into Clinical and Research Laboratories Matthew Clabaugh, Market Development AACC Workshop St. Louis, MO September 17,18 2013 Factors Influencing LCMSMS Moving into
UPLC-MS/MS Analysis of Aldosterone in Plasma for Clinical Research
UPLC-MS/MS Analysis of in Plasma for Clinical Research Dominic Foley and Lisa Calton Waters Corporation, Wilmslow, UK APPLICATION BENEFITS Analytical selectivity improves reproducibility through removal
One Source Toxicology Laboratory, 1213 Genoa Red Bluff, Pasadena, Texas 77504
Validation of Analysis of Amphetamines, Opiates, Phencyclidine, Cocaine, and Benzoylecgonine in Oral Fluids by Liquid Chromatography Tandem Mass Spectrometry Subbarao V. Kala*, Steve E. Harris, Tom D.
1.2 This TAP is applicable to concrete, charcoal, coral, debris, wipes and soil.
March 2012 8 1 of 17 1.0 SCOPE 1.1 This procedure describes the preparation and analysis of solid matrices and wipe samples. 1.2 This TAP is applicable to concrete, charcoal, coral, debris, wipes and soil.
How To Get Blood Test Records From A Blood Alcohol Test
CAUSE NO. THE STATE OF TEXAS IN THE COUNTY CRIMINAL V. COURT AT LAW NO. HARRIS COUNTY, TEXAS STANDING DISCOVERY ORDER ON COPYING AND PRODUCTION OF BLOOD TESTING RECORDS THE COURT ORDERS the District Attorney
LUMEFANTRINE Draft proposal for The International Pharmacopoeia (October 2006)
October 2006 RESTRICTED LUMEFANTRINE Draft proposal for The International Pharmacopoeia (October 2006) DRAFT FOR DISCUSSION World Health Organization 2006 All rights reserved. This draft is intended for
GUIDELINES FOR THE VALIDATION OF ANALYTICAL METHODS FOR ACTIVE CONSTITUENT, AGRICULTURAL AND VETERINARY CHEMICAL PRODUCTS.
GUIDELINES FOR THE VALIDATION OF ANALYTICAL METHODS FOR ACTIVE CONSTITUENT, AGRICULTURAL AND VETERINARY CHEMICAL PRODUCTS October 2004 APVMA PO Box E240 KINGSTON 2604 AUSTRALIA http://www.apvma.gov.au
