Exam Introduction Mathematical Finance and Insurance
|
|
|
- Conrad Wilkins
- 10 years ago
- Views:
Transcription
1 Exam Introduction Mathematical Finance and Insurance Date: January 8, Duration: 3 hours. This is a closed-book exam. The exam does not use scrap cards. Simple calculators are allowed. The questions may be answered in English or in Dutch. This exam has 5 pages. 1. After the exam period, you will go on a holiday to the US. You are looking to buy a travel insurance policy. The risk X you face has the following distribution: x P [X = x] Your utility is driven by power utility with parameter 2/3, u(w) = w 2/3. The travel insurance company has an exponential utility function with parameter α = The initial wealth equals w 0 = and W 0, respectively. a. When you run an insurance company you face several risks. What are the main risks used in the supervision of insurance companies (Solvency II)? b. Under the assumptions described above and using the equilibrium equation from using expected utility, determine the minimum premium P the insurer wants to receive. c. Under the assumptions described above and using the equilibrium equation from using expected utility, what would be the maximum premium P + you are willing to pay to the insurer? Does this result in a transaction? d. On the basis of the formulas used in the derivation in b., show that P can be approximated by α. Do we have a 1
2 transaction when using this approximation? What do you learn from this? e. The travel insurer is considering to buy reinsurance where the reinsurance premium is based on the expected value premium principle with safety loading λ. Would you recommend a proportional or a stop-loss reinsurance contract? Why? 2. A bonus-malus scale with n steps is often used in car insurance. In the case of no claims during the past year, a driver will go up one step on the scale. In the case of claims during the past year, the driver will go down the scale with at least one step. The bonus-malus scale can be modeled using Markov Chains. The state space is 1,..., n and X t denotes the (random) state at time t for t = 0, 1,.... Assume that the sequence of random variables X 0, X 1, X 2,... is a stationary, discrete time Markov Chain. Also assume that the random variables C t = number of claims for a driver in year t for t = 1, 2,... are i.i.d. Furthermore, denote the number of rides in each year by m, constant through time. On each ride, the probability of a claim equals p. a. If we assume that the rides are independent, what would be a suitable distribution for modeling C t? Furthermore, we assume that n = 2 and the bonus malus scale is as follows: New step after... claims Step Premium b. Express the transition matrix P in terms of m and p. c. Compute the steady state distribution in terms of m and p. d. The steady state premium b(m, p) is a function of m and p. Determine b(m, p). e. For b(m, p) it holds that for a given m, b(m, p) is increasing in p. Similarly, for a given p, b(m, p) is increasing in m. Please explain. Note: you do not need to prove these relationships. 3. Suppose you run an insurance company and you face a non-negative risk X. To try to avoid a bankruptcy, you are risk averse. When 2
3 considering the premium you charge for the risk X, several premium principles are available. We focus on the variance premium principle, so π[x] = E[X] + αvar[x] with α > 0. a. Define the following four desirable properties: non-negative loading, no rip-off, consistency and additivity. b. Check whether the variance premium principle satisfies the no rip-off property for all values of α. If so, prove it. If not, provide a counterexample or disprove it. After meeting with several other insurers, you decide to underwrite policies by a pool of insurers (co-insurance). Losses are shared according to a predetermined ratio. The total risk is denoted by S and each insurer i = 1,..., n accepts a proportion r i of the risk, S i = r i S, where 0 r i 1 and r i = 1. Each insurer employs the variance premium principle with parameter α i, i = 1,..., n. c. Show that minimizing the total premium results in proportions r i that are inversely proportional to α i. Interpret. 4. The equations below describe competitive equilibrium in a singleperiod market with uncertainty. The notation is as follows: k is the number of agents, u i (x) (i = 1,..., k) are their utility functions, n is the number of possible future states, and p j (j = 1,..., n) are the objective probabilities of these states. Moreover, the initial payoff of agent i in state j before trading is given by ω j i (i = 1,..., k; j = 1,..., n), whereas the payoffs in equilibrium are denoted by x j i (i = 1,..., k; j = 1,..., n). The utility functions satisfy the standard properties u i(x) > 0 and u i (x) < 0 for all x. q j x j i = q j ω j i (i = 1,..., k) (1) q j u i(x j i ) = λ i p j (i = 1,..., k; j = 1,..., n) (2) k k x j i = ω j i (j = 1,..., n) (3) q j = 1 (4) a. Explain the reasons why these equations are imposed. Also explain the meaning of the variables that appear in the equations and that were 3
4 not already mentioned above. [8 pts.] b. Show the following property: if there are two states j 1 and j 2 such that k k ω j 1 i = ω j 2 i then the equilibrium allocation satisfies x j 1 i = x j 2 i for all i = 1,..., k. [8 pts.] c. Describe the meaning of the property in part b. in words. 5. Let a single-period market with two possible future states and two assets be given as follows: current price in price in price up state down state S 0 S u S d B 0 B u B d Assume that the following inequalities hold: S u S 0 > B u B 0 > B d B 0 > S d S 0. Prove that this market does not allow arbitrage. [8 pts.] 6. Consider the following tree model for the price of a risky asset: Assume that the discretely compounded riskfree interest rate is 2% per period. One period corresponds to one step in the tree. a. Determine the price of a European put option with strike K = 60. b. Determine the price of an American put option with the same strike. 4
5 7. Consider a market that is given by a geometric tree model with parameters u, d, and r. In other words, there are two assets called S and B which have initial values S 0 and B 0 respectively and whose prices evolve according to the rules S γu = us γ, S γd = ds γ, B γu = B γd = (1 + r)b γ where γ denotes a general node in the tree. It is assumed that u > 1 + r > d > 0. a. Prove that the implied probability q of an up move is the same for every node in the tree. b. Let p be a given number such that 0 < p < 1. Prove that it is possible, given an initial capital V 0, to define a trading strategy which satisfies the budget constraint at every node and which is such that the portfolio value at a node γ that is reached after j up moves and k j down moves is given by V γ = pj (1 p) k j q j (1 q) k j (1 + r)k V 0. Derive explicit expressions for the amounts of units of both assets that are to be held in the portfolio at each node, and prove that the percentage of portfolio value held in risky assets (S) is the same at each node. [10 pts.] c. Prove that the portfolio strategy defined above provides an optimal solution for the maximization problem maximize E P [ ln(v N )] subject to budget constraint at each node, initial portfolio value = V 0 where N > 0 is a given integer, and the symbol E P indicates that expectation is taken under the assumption that the objective probability of an up move at each node is given by p. 5
On the Efficiency of Competitive Stock Markets Where Traders Have Diverse Information
Finance 400 A. Penati - G. Pennacchi Notes on On the Efficiency of Competitive Stock Markets Where Traders Have Diverse Information by Sanford Grossman This model shows how the heterogeneous information
Review of Basic Options Concepts and Terminology
Review of Basic Options Concepts and Terminology March 24, 2005 1 Introduction The purchase of an options contract gives the buyer the right to buy call options contract or sell put options contract some
An Extension Model of Financially-balanced Bonus-Malus System
An Extension Model of Financially-balanced Bonus-Malus System Other : Ratemaking, Experience Rating XIAO, Yugu Center for Applied Statistics, Renmin University of China, Beijing, 00872, P.R. China Phone:
CHAPTER 11: ARBITRAGE PRICING THEORY
CHAPTER 11: ARBITRAGE PRICING THEORY 1. The revised estimate of the expected rate of return on the stock would be the old estimate plus the sum of the products of the unexpected change in each factor times
Practice Set #4 and Solutions.
FIN-469 Investments Analysis Professor Michel A. Robe Practice Set #4 and Solutions. What to do with this practice set? To help students prepare for the assignment and the exams, practice sets with solutions
3 Introduction to Assessing Risk
3 Introduction to Assessing Risk Important Question. How do we assess the risk an investor faces when choosing among assets? In this discussion we examine how an investor would assess the risk associated
1 Introduction to Option Pricing
ESTM 60202: Financial Mathematics Alex Himonas 03 Lecture Notes 1 October 7, 2009 1 Introduction to Option Pricing We begin by defining the needed finance terms. Stock is a certificate of ownership of
1. (First passage/hitting times/gambler s ruin problem:) Suppose that X has a discrete state space and let i be a fixed state. Let
Copyright c 2009 by Karl Sigman 1 Stopping Times 1.1 Stopping Times: Definition Given a stochastic process X = {X n : n 0}, a random time τ is a discrete random variable on the same probability space as
Valuation of American Options
Valuation of American Options Among the seminal contributions to the mathematics of finance is the paper F. Black and M. Scholes, The pricing of options and corporate liabilities, Journal of Political
Modern Actuarial Risk Theory
Modern Actuarial Risk Theory Modern Actuarial Risk Theory by Rob Kaas University of Amsterdam, The Netherlands Marc Goovaerts Catholic University of Leuven, Belgium and University of Amsterdam, The Netherlands
Lecture 11. Sergei Fedotov. 20912 - Introduction to Financial Mathematics. Sergei Fedotov (University of Manchester) 20912 2010 1 / 7
Lecture 11 Sergei Fedotov 20912 - Introduction to Financial Mathematics Sergei Fedotov (University of Manchester) 20912 2010 1 / 7 Lecture 11 1 American Put Option Pricing on Binomial Tree 2 Replicating
Chapter 9 Experience rating
0 INTRODUCTION 1 Chapter 9 Experience rating 0 Introduction The rating process is the process of deciding on an appropriate level of premium for a particular class of insurance business. The contents of
Call Price as a Function of the Stock Price
Call Price as a Function of the Stock Price Intuitively, the call price should be an increasing function of the stock price. This relationship allows one to develop a theory of option pricing, derived
1 Portfolio mean and variance
Copyright c 2005 by Karl Sigman Portfolio mean and variance Here we study the performance of a one-period investment X 0 > 0 (dollars) shared among several different assets. Our criterion for measuring
A Model of Optimum Tariff in Vehicle Fleet Insurance
A Model of Optimum Tariff in Vehicle Fleet Insurance. Bouhetala and F.Belhia and R.Salmi Statistics and Probability Department Bp, 3, El-Alia, USTHB, Bab-Ezzouar, Alger Algeria. Summary: An approach about
Binomial lattice model for stock prices
Copyright c 2007 by Karl Sigman Binomial lattice model for stock prices Here we model the price of a stock in discrete time by a Markov chain of the recursive form S n+ S n Y n+, n 0, where the {Y i }
The Behavior of Bonds and Interest Rates. An Impossible Bond Pricing Model. 780 w Interest Rate Models
780 w Interest Rate Models The Behavior of Bonds and Interest Rates Before discussing how a bond market-maker would delta-hedge, we first need to specify how bonds behave. Suppose we try to model a zero-coupon
TPPE17 Corporate Finance 1(5) SOLUTIONS RE-EXAMS 2014 II + III
TPPE17 Corporate Finance 1(5) SOLUTIONS RE-EXAMS 2014 II III Instructions 1. Only one problem should be treated on each sheet of paper and only one side of the sheet should be used. 2. The solutions folder
American Options. An Undergraduate Introduction to Financial Mathematics. J. Robert Buchanan. J. Robert Buchanan American Options
American Options An Undergraduate Introduction to Financial Mathematics J. Robert Buchanan 2010 Early Exercise Since American style options give the holder the same rights as European style options plus
AFM 472. Midterm Examination. Monday Oct. 24, 2011. A. Huang
AFM 472 Midterm Examination Monday Oct. 24, 2011 A. Huang Name: Answer Key Student Number: Section (circle one): 10:00am 1:00pm 2:30pm Instructions: 1. Answer all questions in the space provided. If space
Option Valuation. Chapter 21
Option Valuation Chapter 21 Intrinsic and Time Value intrinsic value of in-the-money options = the payoff that could be obtained from the immediate exercise of the option for a call option: stock price
Master s Theory Exam Spring 2006
Spring 2006 This exam contains 7 questions. You should attempt them all. Each question is divided into parts to help lead you through the material. You should attempt to complete as much of each problem
10 Binomial Trees. 10.1 One-step model. 1. Model structure. ECG590I Asset Pricing. Lecture 10: Binomial Trees 1
ECG590I Asset Pricing. Lecture 10: Binomial Trees 1 10 Binomial Trees 10.1 One-step model 1. Model structure ECG590I Asset Pricing. Lecture 10: Binomial Trees 2 There is only one time interval (t 0, t
Part V: Option Pricing Basics
erivatives & Risk Management First Week: Part A: Option Fundamentals payoffs market microstructure Next 2 Weeks: Part B: Option Pricing fundamentals: intrinsic vs. time value, put-call parity introduction
FAIR VALUATION OF THE SURRENDER OPTION EMBEDDED IN A GUARANTEED LIFE INSURANCE PARTICIPATING POLICY. Anna Rita Bacinello
FAIR VALUATION OF THE SURRENDER OPTION EMBEDDED IN A GUARANTEED LIFE INSURANCE PARTICIPATING POLICY Anna Rita Bacinello Dipartimento di Matematica Applicata alle Scienze Economiche, Statistiche ed Attuariali
Final Exam Practice Set and Solutions
FIN-469 Investments Analysis Professor Michel A. Robe Final Exam Practice Set and Solutions What to do with this practice set? To help students prepare for the final exam, three practice sets with solutions
Two-State Option Pricing
Rendleman and Bartter [1] present a simple two-state model of option pricing. The states of the world evolve like the branches of a tree. Given the current state, there are two possible states next period.
Modern Actuarial Risk Theory
Modern Actuarial Risk Theory Modern Actuarial Risk Theory by Rob Kaas University of Amsterdam, The Netherlands Marc Goovaerts Catholic University of Leuven, Belgium and University of Amsterdam, The Netherlands
IEOR 6711: Stochastic Models, I Fall 2012, Professor Whitt, Final Exam SOLUTIONS
IEOR 6711: Stochastic Models, I Fall 2012, Professor Whitt, Final Exam SOLUTIONS There are four questions, each with several parts. 1. Customers Coming to an Automatic Teller Machine (ATM) (30 points)
Overview. Option Basics. Options and Derivatives. Professor Lasse H. Pedersen. Option basics and option strategies
Options and Derivatives Professor Lasse H. Pedersen Prof. Lasse H. Pedersen 1 Overview Option basics and option strategies No-arbitrage bounds on option prices Binomial option pricing Black-Scholes-Merton
FIN-40008 FINANCIAL INSTRUMENTS SPRING 2008
FIN-40008 FINANCIAL INSTRUMENTS SPRING 2008 Options These notes consider the way put and call options and the underlying can be combined to create hedges, spreads and combinations. We will consider the
Option pricing. Vinod Kothari
Option pricing Vinod Kothari Notation we use this Chapter will be as follows: S o : Price of the share at time 0 S T : Price of the share at time T T : time to maturity of the option r : risk free rate
Institutional Finance 08: Dynamic Arbitrage to Replicate Non-linear Payoffs. Binomial Option Pricing: Basics (Chapter 10 of McDonald)
Copyright 2003 Pearson Education, Inc. Slide 08-1 Institutional Finance 08: Dynamic Arbitrage to Replicate Non-linear Payoffs Binomial Option Pricing: Basics (Chapter 10 of McDonald) Originally prepared
Financial Market Microstructure Theory
The Microstructure of Financial Markets, de Jong and Rindi (2009) Financial Market Microstructure Theory Based on de Jong and Rindi, Chapters 2 5 Frank de Jong Tilburg University 1 Determinants of the
University of Texas at Austin. HW Assignment 7. Butterfly spreads. Convexity. Collars. Ratio spreads.
HW: 7 Course: M339D/M389D - Intro to Financial Math Page: 1 of 5 University of Texas at Austin HW Assignment 7 Butterfly spreads. Convexity. Collars. Ratio spreads. 7.1. Butterfly spreads and convexity.
Math 370/408, Spring 2008 Prof. A.J. Hildebrand. Actuarial Exam Practice Problem Set 2 Solutions
Math 70/408, Spring 2008 Prof. A.J. Hildebrand Actuarial Exam Practice Problem Set 2 Solutions About this problem set: These are problems from Course /P actuarial exams that I have collected over the years,
American and European. Put Option
American and European Put Option Analytical Finance I Kinda Sumlaji 1 Table of Contents: 1. Introduction... 3 2. Option Style... 4 3. Put Option 4 3.1 Definition 4 3.2 Payoff at Maturity... 4 3.3 Example
Chap 3 CAPM, Arbitrage, and Linear Factor Models
Chap 3 CAPM, Arbitrage, and Linear Factor Models 1 Asset Pricing Model a logical extension of portfolio selection theory is to consider the equilibrium asset pricing consequences of investors individually
3. The Economics of Insurance
3. The Economics of Insurance Insurance is designed to protect against serious financial reversals that result from random evens intruding on the plan of individuals. Limitations on Insurance Protection
Financial Markets. Itay Goldstein. Wharton School, University of Pennsylvania
Financial Markets Itay Goldstein Wharton School, University of Pennsylvania 1 Trading and Price Formation This line of the literature analyzes the formation of prices in financial markets in a setting
Chapter 1: Financial Markets and Financial Derivatives
Chapter 1: Financial Markets and Financial Derivatives 1.1 Financial Markets Financial markets are markets for financial instruments, in which buyers and sellers find each other and create or exchange
Midterm Exam:Answer Sheet
Econ 497 Barry W. Ickes Spring 2007 Midterm Exam:Answer Sheet 1. (25%) Consider a portfolio, c, comprised of a risk-free and risky asset, with returns given by r f and E(r p ), respectively. Let y be the
JANUARY 2016 EXAMINATIONS. Life Insurance I
PAPER CODE NO. MATH 273 EXAMINER: Dr. C. Boado-Penas TEL.NO. 44026 DEPARTMENT: Mathematical Sciences JANUARY 2016 EXAMINATIONS Life Insurance I Time allowed: Two and a half hours INSTRUCTIONS TO CANDIDATES:
The Binomial Option Pricing Model André Farber
1 Solvay Business School Université Libre de Bruxelles The Binomial Option Pricing Model André Farber January 2002 Consider a non-dividend paying stock whose price is initially S 0. Divide time into small
Monte Carlo Methods in Finance
Author: Yiyang Yang Advisor: Pr. Xiaolin Li, Pr. Zari Rachev Department of Applied Mathematics and Statistics State University of New York at Stony Brook October 2, 2012 Outline Introduction 1 Introduction
Lecture 11 Uncertainty
Lecture 11 Uncertainty 1. Contingent Claims and the State-Preference Model 1) Contingent Commodities and Contingent Claims Using the simple two-good model we have developed throughout this course, think
Call and Put. Options. American and European Options. Option Terminology. Payoffs of European Options. Different Types of Options
Call and Put Options A call option gives its holder the right to purchase an asset for a specified price, called the strike price, on or before some specified expiration date. A put option gives its holder
Options pricing in discrete systems
UNIVERZA V LJUBLJANI, FAKULTETA ZA MATEMATIKO IN FIZIKO Options pricing in discrete systems Seminar II Mentor: prof. Dr. Mihael Perman Author: Gorazd Gotovac //2008 Abstract This paper is a basic introduction
ECO 317 Economics of Uncertainty Fall Term 2009 Week 5 Precepts October 21 Insurance, Portfolio Choice - Questions
ECO 37 Economics of Uncertainty Fall Term 2009 Week 5 Precepts October 2 Insurance, Portfolio Choice - Questions Important Note: To get the best value out of this precept, come with your calculator or
Current Accounts in Open Economies Obstfeld and Rogoff, Chapter 2
Current Accounts in Open Economies Obstfeld and Rogoff, Chapter 2 1 Consumption with many periods 1.1 Finite horizon of T Optimization problem maximize U t = u (c t ) + β (c t+1 ) + β 2 u (c t+2 ) +...
Name: 1 (5) a b c d e TRUE/FALSE 1 (2) TRUE FALSE. 2 (5) a b c d e. 3 (5) a b c d e 2 (2) TRUE FALSE. 4 (5) a b c d e.
Name: Thursday, February 28 th M375T=M396C Introduction to Actuarial Financial Mathematics Spring 2013, The University of Texas at Austin In-Term Exam I Instructor: Milica Čudina Notes: This is a closed
THE FUNDAMENTAL THEOREM OF ARBITRAGE PRICING
THE FUNDAMENTAL THEOREM OF ARBITRAGE PRICING 1. Introduction The Black-Scholes theory, which is the main subject of this course and its sequel, is based on the Efficient Market Hypothesis, that arbitrages
Analysis of a Production/Inventory System with Multiple Retailers
Analysis of a Production/Inventory System with Multiple Retailers Ann M. Noblesse 1, Robert N. Boute 1,2, Marc R. Lambrecht 1, Benny Van Houdt 3 1 Research Center for Operations Management, University
COMPLETE MARKETS DO NOT ALLOW FREE CASH FLOW STREAMS
COMPLETE MARKETS DO NOT ALLOW FREE CASH FLOW STREAMS NICOLE BÄUERLE AND STEFANIE GRETHER Abstract. In this short note we prove a conjecture posed in Cui et al. 2012): Dynamic mean-variance problems in
7: The CRR Market Model
Ben Goldys and Marek Rutkowski School of Mathematics and Statistics University of Sydney MATH3075/3975 Financial Mathematics Semester 2, 2015 Outline We will examine the following issues: 1 The Cox-Ross-Rubinstein
Pension Fund Dynamics
Pension Fund Dynamics Presented by: Alan White Rotman School of Management, University of Toronto International Centre for Pension Management Pension Plan Design, Risk and Sustainability Workshop Discussion
UCLA Anderson School of Management Daniel Andrei, Derivative Markets 237D, Winter 2014. MFE Midterm. February 2014. Date:
UCLA Anderson School of Management Daniel Andrei, Derivative Markets 237D, Winter 2014 MFE Midterm February 2014 Date: Your Name: Your Equiz.me email address: Your Signature: 1 This exam is open book,
THE DYING FIBONACCI TREE. 1. Introduction. Consider a tree with two types of nodes, say A and B, and the following properties:
THE DYING FIBONACCI TREE BERNHARD GITTENBERGER 1. Introduction Consider a tree with two types of nodes, say A and B, and the following properties: 1. Let the root be of type A.. Each node of type A produces
Black-Scholes-Merton approach merits and shortcomings
Black-Scholes-Merton approach merits and shortcomings Emilia Matei 1005056 EC372 Term Paper. Topic 3 1. Introduction The Black-Scholes and Merton method of modelling derivatives prices was first introduced
Invesco Great Wall Fund Management Co. Shenzhen: June 14, 2008
: A Stern School of Business New York University Invesco Great Wall Fund Management Co. Shenzhen: June 14, 2008 Outline 1 2 3 4 5 6 se notes review the principles underlying option pricing and some of
Risk/Arbitrage Strategies: An Application to Stock Option Portfolio Management
Risk/Arbitrage Strategies: An Application to Stock Option Portfolio Management Vincenzo Bochicchio, Niklaus Bühlmann, Stephane Junod and Hans-Fredo List Swiss Reinsurance Company Mythenquai 50/60, CH-8022
How To Price A Call Option
Now by Itô s formula But Mu f and u g in Ū. Hence τ θ u(x) =E( Mu(X) ds + u(x(τ θ))) 0 τ θ u(x) E( f(x) ds + g(x(τ θ))) = J x (θ). 0 But since u(x) =J x (θ ), we consequently have u(x) =J x (θ ) = min
1 The Black-Scholes model: extensions and hedging
1 The Black-Scholes model: extensions and hedging 1.1 Dividends Since we are now in a continuous time framework the dividend paid out at time t (or t ) is given by dd t = D t D t, where as before D denotes
On the mathematical theory of splitting and Russian roulette
On the mathematical theory of splitting and Russian roulette techniques St.Petersburg State University, Russia 1. Introduction Splitting is an universal and potentially very powerful technique for increasing
Some Research Problems in Uncertainty Theory
Journal of Uncertain Systems Vol.3, No.1, pp.3-10, 2009 Online at: www.jus.org.uk Some Research Problems in Uncertainty Theory aoding Liu Uncertainty Theory Laboratory, Department of Mathematical Sciences
a. What is the portfolio of the stock and the bond that replicates the option?
Practice problems for Lecture 2. Answers. 1. A Simple Option Pricing Problem in One Period Riskless bond (interest rate is 5%): 1 15 Stock: 5 125 5 Derivative security (call option with a strike of 8):?
Stocks paying discrete dividends: modelling and option pricing
Stocks paying discrete dividends: modelling and option pricing Ralf Korn 1 and L. C. G. Rogers 2 Abstract In the Black-Scholes model, any dividends on stocks are paid continuously, but in reality dividends
Choice under Uncertainty
Choice under Uncertainty Part 1: Expected Utility Function, Attitudes towards Risk, Demand for Insurance Slide 1 Choice under Uncertainty We ll analyze the underlying assumptions of expected utility theory
Lesson 4 Annuities: The Mathematics of Regular Payments
Lesson 4 Annuities: The Mathematics of Regular Payments Introduction An annuity is a sequence of equal, periodic payments where each payment receives compound interest. One example of an annuity is a Christmas
Jorge Cruz Lopez - Bus 316: Derivative Securities. Week 9. Binomial Trees : Hull, Ch. 12.
Week 9 Binomial Trees : Hull, Ch. 12. 1 Binomial Trees Objective: To explain how the binomial model can be used to price options. 2 Binomial Trees 1. Introduction. 2. One Step Binomial Model. 3. Risk Neutral
1 Interest rates, and risk-free investments
Interest rates, and risk-free investments Copyright c 2005 by Karl Sigman. Interest and compounded interest Suppose that you place x 0 ($) in an account that offers a fixed (never to change over time)
EC3070 FINANCIAL DERIVATIVES
BINOMIAL OPTION PRICING MODEL A One-Step Binomial Model The Binomial Option Pricing Model is a simple device that is used for determining the price c τ 0 that should be attributed initially to a call option
Assessing Credit Risk for a Ghanaian Bank Using the Black- Scholes Model
Assessing Credit Risk for a Ghanaian Bank Using the Black- Scholes Model VK Dedu 1, FT Oduro 2 1,2 Department of Mathematics, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana. Abstract
4: SINGLE-PERIOD MARKET MODELS
4: SINGLE-PERIOD MARKET MODELS Ben Goldys and Marek Rutkowski School of Mathematics and Statistics University of Sydney Semester 2, 2015 B. Goldys and M. Rutkowski (USydney) Slides 4: Single-Period Market
Statistics in Retail Finance. Chapter 6: Behavioural models
Statistics in Retail Finance 1 Overview > So far we have focussed mainly on application scorecards. In this chapter we shall look at behavioural models. We shall cover the following topics:- Behavioural
Lecture 4: Properties of stock options
Lecture 4: Properties of stock options Reading: J.C.Hull, Chapter 9 An European call option is an agreement between two parties giving the holder the right to buy a certain asset (e.g. one stock unit)
Valuing Stock Options: The Black-Scholes-Merton Model. Chapter 13
Valuing Stock Options: The Black-Scholes-Merton Model Chapter 13 Fundamentals of Futures and Options Markets, 8th Ed, Ch 13, Copyright John C. Hull 2013 1 The Black-Scholes-Merton Random Walk Assumption
IMPLEMENTING ARROW-DEBREU EQUILIBRIA BY TRADING INFINITELY-LIVED SECURITIES
IMPLEMENTING ARROW-DEBREU EQUILIBRIA BY TRADING INFINITELY-LIVED SECURITIES Kevin X.D. Huang and Jan Werner DECEMBER 2002 RWP 02-08 Research Division Federal Reserve Bank of Kansas City Kevin X.D. Huang
NEW YORK STATE TEACHER CERTIFICATION EXAMINATIONS
NEW YORK STATE TEACHER CERTIFICATION EXAMINATIONS TEST DESIGN AND FRAMEWORK September 2014 Authorized for Distribution by the New York State Education Department This test design and framework document
OPTIMAL DESIGN OF A MULTITIER REWARD SCHEME. Amir Gandomi *, Saeed Zolfaghari **
OPTIMAL DESIGN OF A MULTITIER REWARD SCHEME Amir Gandomi *, Saeed Zolfaghari ** Department of Mechanical and Industrial Engineering, Ryerson University, Toronto, Ontario * Tel.: + 46 979 5000x7702, Email:
UNIVERSITY OF OSLO. The Poisson model is a common model for claim frequency.
UNIVERSITY OF OSLO Faculty of mathematics and natural sciences Candidate no Exam in: STK 4540 Non-Life Insurance Mathematics Day of examination: December, 9th, 2015 Examination hours: 09:00 13:00 This
On Compulsory Per-Claim Deductibles in Automobile Insurance
The Geneva Papers on Risk and Insurance Theory, 28: 25 32, 2003 c 2003 The Geneva Association On Compulsory Per-Claim Deductibles in Automobile Insurance CHU-SHIU LI Department of Economics, Feng Chia
K 1 < K 2 = P (K 1 ) P (K 2 ) (6) This holds for both American and European Options.
Slope and Convexity Restrictions and How to implement Arbitrage Opportunities 1 These notes will show how to implement arbitrage opportunities when either the slope or the convexity restriction is violated.
This paper is not to be removed from the Examination Halls
~~FN3023 ZB d0 This paper is not to be removed from the Examination Halls UNIVERSITY OF LONDON FN3023 ZB BSc degrees and Diplomas for Graduates in Economics, Management, Finance and the Social Sciences,
Lecture 15: Final Topics on CAPM
Lecture 15: Final Topics on CAPM Final topics on estimating and using beta: the market risk premium putting it all together Final topics on CAPM: Examples of firm and market risk Shorting Stocks and other
BINOMIAL OPTION PRICING
Darden Graduate School of Business Administration University of Virginia BINOMIAL OPTION PRICING Binomial option pricing is a simple but powerful technique that can be used to solve many complex option-pricing
Algebra I Credit Recovery
Algebra I Credit Recovery COURSE DESCRIPTION: The purpose of this course is to allow the student to gain mastery in working with and evaluating mathematical expressions, equations, graphs, and other topics,
Finite Differences Schemes for Pricing of European and American Options
Finite Differences Schemes for Pricing of European and American Options Margarida Mirador Fernandes IST Technical University of Lisbon Lisbon, Portugal November 009 Abstract Starting with the Black-Scholes
DERIVATIVE SECURITIES Lecture 2: Binomial Option Pricing and Call Options
DERIVATIVE SECURITIES Lecture 2: Binomial Option Pricing and Call Options Philip H. Dybvig Washington University in Saint Louis review of pricing formulas assets versus futures practical issues call options
University of Chicago Graduate School of Business. Business 41000: Business Statistics
Name: University of Chicago Graduate School of Business Business 41000: Business Statistics Special Notes: 1. This is a closed-book exam. You may use an 8 11 piece of paper for the formulas. 2. Throughout
Lecture 12: The Black-Scholes Model Steven Skiena. http://www.cs.sunysb.edu/ skiena
Lecture 12: The Black-Scholes Model Steven Skiena Department of Computer Science State University of New York Stony Brook, NY 11794 4400 http://www.cs.sunysb.edu/ skiena The Black-Scholes-Merton Model
Chapter 2 Portfolio Management and the Capital Asset Pricing Model
Chapter 2 Portfolio Management and the Capital Asset Pricing Model In this chapter, we explore the issue of risk management in a portfolio of assets. The main issue is how to balance a portfolio, that
Consider a European call option maturing at time T
Lecture 10: Multi-period Model Options Black-Scholes-Merton model Prof. Markus K. Brunnermeier 1 Binomial Option Pricing Consider a European call option maturing at time T with ihstrike K: C T =max(s T
Introduction, Forwards and Futures
Introduction, Forwards and Futures Liuren Wu Zicklin School of Business, Baruch College Fall, 2007 (Hull chapters: 1,2,3,5) Liuren Wu Introduction, Forwards & Futures Option Pricing, Fall, 2007 1 / 35
