Consider a European call option maturing at time T
|
|
|
- Ethelbert Mitchell
- 10 years ago
- Views:
Transcription
1 Lecture 10: Multi-period Model Options Black-Scholes-Merton model Prof. Markus K. Brunnermeier 1
2 Binomial Option Pricing Consider a European call option maturing at time T with ihstrike K: C T =max(s T K,0), K0) no cash flows in between Not able to statically tti replicate this payoff using just the stock and risk free bond Need to dynamically hedge required stock position changes for each period until maturity static hedge for forward, using put call parity Replication strategy depends on specified random process of stock price need to know how price evolves over time. Binomial (Cox Ross Rubinstein) model is canonical
3 Assumptions: Assumptions Stock which h pays no dividendid d Over each period of time, stock price moves from S to either us or ds, i.i.d. over time, so that final distribution of S T is binomial us S ds Suppose length of period ish and risk free rate isgiven by R = e rh No arbitrage: u > R > d Note: simplistic model, but as we will see, with enough periods begins to look more realistic
4 A One Period Binomial Tree Example of a single period model S=50, u = 2, d= 0.5, R= What is value of a European call option with K=50? Option payoff: max(s T K,0) 50 C =? Use replication to price 0
5 Single period replication Consider a long position of in the stock and B dollars in bond Payoff from portfolio: S+B=50 +B us+rb= B ds+rb= B Define C u as option payoff in up state and C d as option payoff in down state (C u =50,C d =0 here) Replicating strategy must match payoffs: C u = us+rb C d = ds+rb
6 Single period replication Solving these equations yields: Cu Cd Δ = S( u d ) B = ucd dc R( u d ) Inprevious example, =2/3and B= , 33 so the option value is C = S+B = 20 Interpretation of : sensitivity of call price to a change in the stock price. Equivalently, tells you how to hedge risk of option To hedge a long position in call, short shares of stock u
7 Risk neutral probabilities Substituting and B from into formula for C, C Cu Cd S( u d) R u ucd dc + R( u d) u = S 1 R d C d u R + C u d = u d Define p = (R d)/(u d) d), note that 1 p = (u R)/(u d) d), so 1 C = ) R [ pc + (1 p ] u C d Interpretation of p: probability the stock goes to us in world where everyone is risk neutral
8 Risk neutral probabilities Note that p is the probability that would justify the current stock price S in a risk neutral ik world: 1 S = ) R R d q = = p u d [ qus + (1 q ds] No arbitrage requires u > R > d as claimed before Note: didn t need to know anything about the objective probability of stock going up or down (Pmeasure). Just need a model of stock prices to construct Q measure and price the option.
9 The binomial formula in a graph
10 Two period binomial tree Concatenation of single period trees: u 2 S S us ds uds d 2 S
11 Two period binomial tree Example: S=50, u=2, d=0.5, R= Option payoff: C C u 0 C d 0
12 Two period binomial tree To price the option, work backwards from final period C u We know how to price this from before: R d p = = = 0.5 u d Cu = pcuu + (1 p) Cud = R Three step procedure: 50 [ ] Compute risk neutral probability, p 2. Plug into formula for C at each node to for prices, going backwards from the final node. 3. Plug into formula for and B at each node for replicating strategy, going backwards from the final node..
13 Two period binomial tree General formulas for two period tree: p=(r d)/(u d) C uu C=[pC u +(1 p)c d ]/R =[p 2 C uu +2p(1 p)c ud +(1 p) 2 C ud ]/R =(C u C d )/(us ds) B=C S C u =[pc uu +(1 p)c ud ]/R C u =(C uu C ud )/(u 2 S uds) B u =C u u S C d =[pc ud +(1 p)c dd ]/R d =(C C )/(uds d 2 ud dd )( S) B d =C d d S C ud Synthetic option requires dynamic hedging Must change the portfolio as stock price moves C dd
14 Arbitraging a mispriced option Consider a 3 period tree with S=80, K=80, u=1.5, d=0.5, R=1.1 Implies p = (R d)/(u d) = 0.6 Can dynamically replicate this option using 3 period binomial tree. Turns out that the cost is $34.08 If the call is selling for $36, how to arbitrage? Sell the real call Buy the synthetic call What do you get up front? C S+B = =
15 Arbitraging a mispriced option Suppose that one period goes by (2 periods from expiration), and now S=120. If you close your position, what do you get in the following scenarios? Cll Call price equals h theoretical value, $ Call price is less than Call price is more than Answer: Closing the position yields zero if call equals theoretical If call price is less than 60.50, closing position yields more than zero since it is cheaper to buy back call. If call price is more than 60.50, closing out position yields a loss! What do you do? (Rebalance and wait.)
16 Towards Black Scholes Black Scholes can be viewed as the limit of a binomial tree where the number of periods n goes to infinity Take parameters: Where: u = e, d = 1/ u = e σ T / n σ T / n n = number of periods in tree T = time to expiration (e.g., measured in years) σ = standard deviation of continuously compounded return Also take R = rt e / n
17 Towards Black Scholes General binomial formula for a European call on non dividend paying stock n periods from expiration: C n 1 = R j= 0 n! j!( n j)! p j (1 p ) n j max(0, u j d n j S K ) Substitute u, d, and R and letting n be very large (hand waving here), get Black Scholes: rt C SN d Ke N d ( ) ( ) = d1 = 2 σ T d 2 = d 1 σ [ ( ) ( 2 ln S / K + r + σ / ) T ] T
18 Interpreting Black Scholes Note that interpret the trading strategy under the BS formula as Δ call B call = N ( d ) = Ke 1 rt N ( d ) Price of a put option: use put call parity for non dividend paying rt stock P = C S + Ke = Ke rt Reminder of parameters N d 2 ( d ) SN ( ) 2 d 1 5 parameters S = current stock price, K = strike, T = time to maturity, r = annualized continuously compounded risk free rate, σ=annualized standard dev. of cont. compounded rate of return on underlying
19 Interpreting Black Scholes Option has intrinsic value [max(s K,0)] and time value [C max(s K,0) ] Time Value Intrinsic Value S
20 Delta Recall that is the sensitivity of option price to a small change in the stock price Number of shares needed to make a synthetic call Also measures riskiness of an option position From the formula for a call, Δ N ( d ) B call = call d 1 = Ke rt N ( d ) A call always has delta between 0 and 1. Similar exercise: delta of a put is between 1 and 0. Dl Delta of a stock: 1. Dl Delta of a bond: 0. Delta of a portfolio: Δ = Δ 2 portfolio N i i
21 Delta Hedging A portfolio is delta neutral if Δ portfolio = N i Δi = 0 Delta neutral portfolios are of interest because they are a way to hedge out the risk of an option (or portfolio of options) Example: suppose you write 1 European call whose delta is How can you trade to be delta neutral? n c Δ call + n s Δ S ( 0.61 ) + n ( 1 ) 0 = 1 = 0 s So we need to hold 0.61 shares of the stock. Delta hedging makes you directionally neutral on the position.
22 Notes on Black Scholes Delta hedging is not a perfect hedge if you do not trade continuously Delta hedging is a linear approximation to the option value But convexity implies second order derivatives matter Hedge is more effective for smaller price changes Delta Gamma hedging reduces the basis risk of the hedge. B S model assumes that volatility is constant over time. This is a bad assumption Volatility smile BS underprices out of the money puts (and thus in the money calls) BS overprices out of the money of the calls (and thus in the money puts) Ways forward: stochastic volatility Other issues: stochastic interest rates, bid ask transaction costs, etc.
23 Implied Vol., Smiles and Smirks Implied volatility Use current option price and assume B S model holds Back out volatility ViX versus implied volatility of 500 stocks Smile/Smirk Implied volatility across various strike prices BS implies horizontal line Smile/Smirk after 1987
24 Collateral debt oblications (CDO) Collateralized Debt Obligation repackage cash flows from a set of assets Tranches: Senior tranche is paid out first, Mezzanine second, junior tranche is paid out last Can adapt option pricing theory, useful in pricing CDOs: Tranches can be priced using analogues from option pricing formulas Estimate implied default correlations that price the tranches correctly
Institutional Finance 08: Dynamic Arbitrage to Replicate Non-linear Payoffs. Binomial Option Pricing: Basics (Chapter 10 of McDonald)
Copyright 2003 Pearson Education, Inc. Slide 08-1 Institutional Finance 08: Dynamic Arbitrage to Replicate Non-linear Payoffs Binomial Option Pricing: Basics (Chapter 10 of McDonald) Originally prepared
Option Valuation. Chapter 21
Option Valuation Chapter 21 Intrinsic and Time Value intrinsic value of in-the-money options = the payoff that could be obtained from the immediate exercise of the option for a call option: stock price
Lecture 21 Options Pricing
Lecture 21 Options Pricing Readings BM, chapter 20 Reader, Lecture 21 M. Spiegel and R. Stanton, 2000 1 Outline Last lecture: Examples of options Derivatives and risk (mis)management Replication and Put-call
Option Values. Determinants of Call Option Values. CHAPTER 16 Option Valuation. Figure 16.1 Call Option Value Before Expiration
CHAPTER 16 Option Valuation 16.1 OPTION VALUATION: INTRODUCTION Option Values Intrinsic value - profit that could be made if the option was immediately exercised Call: stock price - exercise price Put:
OPTIONS and FUTURES Lecture 2: Binomial Option Pricing and Call Options
OPTIONS and FUTURES Lecture 2: Binomial Option Pricing and Call Options Philip H. Dybvig Washington University in Saint Louis binomial model replicating portfolio single period artificial (risk-neutral)
Overview. Option Basics. Options and Derivatives. Professor Lasse H. Pedersen. Option basics and option strategies
Options and Derivatives Professor Lasse H. Pedersen Prof. Lasse H. Pedersen 1 Overview Option basics and option strategies No-arbitrage bounds on option prices Binomial option pricing Black-Scholes-Merton
Financial Options: Pricing and Hedging
Financial Options: Pricing and Hedging Diagrams Debt Equity Value of Firm s Assets T Value of Firm s Assets T Valuation of distressed debt and equity-linked securities requires an understanding of financial
Options: Valuation and (No) Arbitrage
Prof. Alex Shapiro Lecture Notes 15 Options: Valuation and (No) Arbitrage I. Readings and Suggested Practice Problems II. Introduction: Objectives and Notation III. No Arbitrage Pricing Bound IV. The Binomial
Chapter 11 Options. Main Issues. Introduction to Options. Use of Options. Properties of Option Prices. Valuation Models of Options.
Chapter 11 Options Road Map Part A Introduction to finance. Part B Valuation of assets, given discount rates. Part C Determination of risk-adjusted discount rate. Part D Introduction to derivatives. Forwards
UCLA Anderson School of Management Daniel Andrei, Derivative Markets 237D, Winter 2014. MFE Midterm. February 2014. Date:
UCLA Anderson School of Management Daniel Andrei, Derivative Markets 237D, Winter 2014 MFE Midterm February 2014 Date: Your Name: Your Equiz.me email address: Your Signature: 1 This exam is open book,
The Binomial Option Pricing Model André Farber
1 Solvay Business School Université Libre de Bruxelles The Binomial Option Pricing Model André Farber January 2002 Consider a non-dividend paying stock whose price is initially S 0. Divide time into small
Option Values. Option Valuation. Call Option Value before Expiration. Determinants of Call Option Values
Option Values Option Valuation Intrinsic value profit that could be made if the option was immediately exercised Call: stock price exercise price : S T X i i k i X S Put: exercise price stock price : X
CS 522 Computational Tools and Methods in Finance Robert Jarrow Lecture 1: Equity Options
CS 5 Computational Tools and Methods in Finance Robert Jarrow Lecture 1: Equity Options 1. Definitions Equity. The common stock of a corporation. Traded on organized exchanges (NYSE, AMEX, NASDAQ). A common
Lecture 7: Bounds on Options Prices Steven Skiena. http://www.cs.sunysb.edu/ skiena
Lecture 7: Bounds on Options Prices Steven Skiena Department of Computer Science State University of New York Stony Brook, NY 11794 4400 http://www.cs.sunysb.edu/ skiena Option Price Quotes Reading the
Lecture 9. Sergei Fedotov. 20912 - Introduction to Financial Mathematics. Sergei Fedotov (University of Manchester) 20912 2010 1 / 8
Lecture 9 Sergei Fedotov 20912 - Introduction to Financial Mathematics Sergei Fedotov (University of Manchester) 20912 2010 1 / 8 Lecture 9 1 Risk-Neutral Valuation 2 Risk-Neutral World 3 Two-Steps Binomial
Convenient Conventions
C: call value. P : put value. X: strike price. S: stock price. D: dividend. Convenient Conventions c 2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 168 Payoff, Mathematically Speaking The payoff
Option Basics. c 2012 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 153
Option Basics c 2012 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 153 The shift toward options as the center of gravity of finance [... ] Merton H. Miller (1923 2000) c 2012 Prof. Yuh-Dauh Lyuu,
CHAPTER 21: OPTION VALUATION
CHAPTER 21: OPTION VALUATION PROBLEM SETS 1. The value of a put option also increases with the volatility of the stock. We see this from the put-call parity theorem as follows: P = C S + PV(X) + PV(Dividends)
Options Pricing. This is sometimes referred to as the intrinsic value of the option.
Options Pricing We will use the example of a call option in discussing the pricing issue. Later, we will turn our attention to the Put-Call Parity Relationship. I. Preliminary Material Recall the payoff
VALUATION IN DERIVATIVES MARKETS
VALUATION IN DERIVATIVES MARKETS September 2005 Rawle Parris ABN AMRO Property Derivatives What is a Derivative? A contract that specifies the rights and obligations between two parties to receive or deliver
Invesco Great Wall Fund Management Co. Shenzhen: June 14, 2008
: A Stern School of Business New York University Invesco Great Wall Fund Management Co. Shenzhen: June 14, 2008 Outline 1 2 3 4 5 6 se notes review the principles underlying option pricing and some of
1 The Black-Scholes model: extensions and hedging
1 The Black-Scholes model: extensions and hedging 1.1 Dividends Since we are now in a continuous time framework the dividend paid out at time t (or t ) is given by dd t = D t D t, where as before D denotes
10 Binomial Trees. 10.1 One-step model. 1. Model structure. ECG590I Asset Pricing. Lecture 10: Binomial Trees 1
ECG590I Asset Pricing. Lecture 10: Binomial Trees 1 10 Binomial Trees 10.1 One-step model 1. Model structure ECG590I Asset Pricing. Lecture 10: Binomial Trees 2 There is only one time interval (t 0, t
One Period Binomial Model
FIN-40008 FINANCIAL INSTRUMENTS SPRING 2008 One Period Binomial Model These notes consider the one period binomial model to exactly price an option. We will consider three different methods of pricing
Call and Put. Options. American and European Options. Option Terminology. Payoffs of European Options. Different Types of Options
Call and Put Options A call option gives its holder the right to purchase an asset for a specified price, called the strike price, on or before some specified expiration date. A put option gives its holder
Use the option quote information shown below to answer the following questions. The underlying stock is currently selling for $83.
Problems on the Basics of Options used in Finance 2. Understanding Option Quotes Use the option quote information shown below to answer the following questions. The underlying stock is currently selling
FIN-40008 FINANCIAL INSTRUMENTS SPRING 2008
FIN-40008 FINANCIAL INSTRUMENTS SPRING 2008 Options These notes consider the way put and call options and the underlying can be combined to create hedges, spreads and combinations. We will consider the
Jorge Cruz Lopez - Bus 316: Derivative Securities. Week 9. Binomial Trees : Hull, Ch. 12.
Week 9 Binomial Trees : Hull, Ch. 12. 1 Binomial Trees Objective: To explain how the binomial model can be used to price options. 2 Binomial Trees 1. Introduction. 2. One Step Binomial Model. 3. Risk Neutral
ACTS 4302 SOLUTION TO MIDTERM EXAM Derivatives Markets, Chapters 9, 10, 11, 12, 18. October 21, 2010 (Thurs)
Problem ACTS 4302 SOLUTION TO MIDTERM EXAM Derivatives Markets, Chapters 9, 0,, 2, 8. October 2, 200 (Thurs) (i) The current exchange rate is 0.0$/. (ii) A four-year dollar-denominated European put option
第 9 讲 : 股 票 期 权 定 价 : B-S 模 型 Valuing Stock Options: The Black-Scholes Model
1 第 9 讲 : 股 票 期 权 定 价 : B-S 模 型 Valuing Stock Options: The Black-Scholes Model Outline 有 关 股 价 的 假 设 The B-S Model 隐 性 波 动 性 Implied Volatility 红 利 与 期 权 定 价 Dividends and Option Pricing 美 式 期 权 定 价 American
a. What is the portfolio of the stock and the bond that replicates the option?
Practice problems for Lecture 2. Answers. 1. A Simple Option Pricing Problem in One Period Riskless bond (interest rate is 5%): 1 15 Stock: 5 125 5 Derivative security (call option with a strike of 8):?
The Black-Scholes Formula
FIN-40008 FINANCIAL INSTRUMENTS SPRING 2008 The Black-Scholes Formula These notes examine the Black-Scholes formula for European options. The Black-Scholes formula are complex as they are based on the
Buy a number of shares,, and invest B in bonds. Outlay for portfolio today is S + B. Tree shows possible values one period later.
Replicating portfolios Buy a number of shares,, and invest B in bonds. Outlay for portfolio today is S + B. Tree shows possible values one period later. S + B p 1 p us + e r B ds + e r B Choose, B so that
Fundamentals of Futures and Options (a summary)
Fundamentals of Futures and Options (a summary) Roger G. Clarke, Harindra de Silva, CFA, and Steven Thorley, CFA Published 2013 by the Research Foundation of CFA Institute Summary prepared by Roger G.
Option pricing. Vinod Kothari
Option pricing Vinod Kothari Notation we use this Chapter will be as follows: S o : Price of the share at time 0 S T : Price of the share at time T T : time to maturity of the option r : risk free rate
Pricing Options: Pricing Options: The Binomial Way FINC 456. The important slide. Pricing options really boils down to three key concepts
Pricing Options: The Binomial Way FINC 456 Pricing Options: The important slide Pricing options really boils down to three key concepts Two portfolios that have the same payoff cost the same. Why? A perfectly
Caput Derivatives: October 30, 2003
Caput Derivatives: October 30, 2003 Exam + Answers Total time: 2 hours and 30 minutes. Note 1: You are allowed to use books, course notes, and a calculator. Question 1. [20 points] Consider an investor
Lecture 6: Option Pricing Using a One-step Binomial Tree. Friday, September 14, 12
Lecture 6: Option Pricing Using a One-step Binomial Tree An over-simplified model with surprisingly general extensions a single time step from 0 to T two types of traded securities: stock S and a bond
Manual for SOA Exam FM/CAS Exam 2.
Manual for SOA Exam FM/CAS Exam 2. Chapter 7. Derivatives markets. c 2009. Miguel A. Arcones. All rights reserved. Extract from: Arcones Manual for the SOA Exam FM/CAS Exam 2, Financial Mathematics. Fall
Introduction to Options. Derivatives
Introduction to Options Econ 422: Investment, Capital & Finance University of Washington Summer 2010 August 18, 2010 Derivatives A derivative is a security whose payoff or value depends on (is derived
Options/1. Prof. Ian Giddy
Options/1 New York University Stern School of Business Options Prof. Ian Giddy New York University Options Puts and Calls Put-Call Parity Combinations and Trading Strategies Valuation Hedging Options2
Week 13 Introduction to the Greeks and Portfolio Management:
Week 13 Introduction to the Greeks and Portfolio Management: Hull, Ch. 17; Poitras, Ch.9: I, IIA, IIB, III. 1 Introduction to the Greeks and Portfolio Management Objective: To explain how derivative portfolios
BINOMIAL OPTION PRICING
Darden Graduate School of Business Administration University of Virginia BINOMIAL OPTION PRICING Binomial option pricing is a simple but powerful technique that can be used to solve many complex option-pricing
DERIVATIVE SECURITIES Lecture 2: Binomial Option Pricing and Call Options
DERIVATIVE SECURITIES Lecture 2: Binomial Option Pricing and Call Options Philip H. Dybvig Washington University in Saint Louis review of pricing formulas assets versus futures practical issues call options
Jorge Cruz Lopez - Bus 316: Derivative Securities. Week 11. The Black-Scholes Model: Hull, Ch. 13.
Week 11 The Black-Scholes Model: Hull, Ch. 13. 1 The Black-Scholes Model Objective: To show how the Black-Scholes formula is derived and how it can be used to value options. 2 The Black-Scholes Model 1.
1 The Black-Scholes Formula
1 The Black-Scholes Formula In 1973 Fischer Black and Myron Scholes published a formula - the Black-Scholes formula - for computing the theoretical price of a European call option on a stock. Their paper,
Part V: Option Pricing Basics
erivatives & Risk Management First Week: Part A: Option Fundamentals payoffs market microstructure Next 2 Weeks: Part B: Option Pricing fundamentals: intrinsic vs. time value, put-call parity introduction
Four Derivations of the Black Scholes PDE by Fabrice Douglas Rouah www.frouah.com www.volopta.com
Four Derivations of the Black Scholes PDE by Fabrice Douglas Rouah www.frouah.com www.volopta.com In this Note we derive the Black Scholes PDE for an option V, given by @t + 1 + rs @S2 @S We derive the
Two-State Option Pricing
Rendleman and Bartter [1] present a simple two-state model of option pricing. The states of the world evolve like the branches of a tree. Given the current state, there are two possible states next period.
Lecture 17/18/19 Options II
1 Lecture 17/18/19 Options II Alexander K. Koch Department of Economics, Royal Holloway, University of London February 25, February 29, and March 10 2008 In addition to learning the material covered in
American Options. An Undergraduate Introduction to Financial Mathematics. J. Robert Buchanan. J. Robert Buchanan American Options
American Options An Undergraduate Introduction to Financial Mathematics J. Robert Buchanan 2010 Early Exercise Since American style options give the holder the same rights as European style options plus
Lecture 11: The Greeks and Risk Management
Lecture 11: The Greeks and Risk Management This lecture studies market risk management from the perspective of an options trader. First, we show how to describe the risk characteristics of derivatives.
DETERMINING THE VALUE OF EMPLOYEE STOCK OPTIONS. Report Produced for the Ontario Teachers Pension Plan John Hull and Alan White August 2002
DETERMINING THE VALUE OF EMPLOYEE STOCK OPTIONS 1. Background Report Produced for the Ontario Teachers Pension Plan John Hull and Alan White August 2002 It is now becoming increasingly accepted that companies
Lecture 12. Options Strategies
Lecture 12. Options Strategies Introduction to Options Strategies Options, Futures, Derivatives 10/15/07 back to start 1 Solutions Problem 6:23: Assume that a bank can borrow or lend money at the same
Trading Strategies Involving Options. Chapter 11
Trading Strategies Involving Options Chapter 11 1 Strategies to be Considered A risk-free bond and an option to create a principal-protected note A stock and an option Two or more options of the same type
Introduction to Binomial Trees
11 C H A P T E R Introduction to Binomial Trees A useful and very popular technique for pricing an option involves constructing a binomial tree. This is a diagram that represents di erent possible paths
1 Pricing options using the Black Scholes formula
Lecture 9 Pricing options using the Black Scholes formula Exercise. Consider month options with exercise prices of K = 45. The variance of the underlying security is σ 2 = 0.20. The risk free interest
S 1 S 2. Options and Other Derivatives
Options and Other Derivatives The One-Period Model The previous chapter introduced the following two methods: Replicate the option payoffs with known securities, and calculate the price of the replicating
b. June expiration: 95-23 = 95 + 23/32 % = 95.71875% or.9571875.9571875 X $100,000 = $95,718.75.
ANSWERS FOR FINANCIAL RISK MANAGEMENT A. 2-4 Value of T-bond Futures Contracts a. March expiration: The settle price is stated as a percentage of the face value of the bond with the final "27" being read
Binomial lattice model for stock prices
Copyright c 2007 by Karl Sigman Binomial lattice model for stock prices Here we model the price of a stock in discrete time by a Markov chain of the recursive form S n+ S n Y n+, n 0, where the {Y i }
CHAPTER 15. Option Valuation
CHAPTER 15 Option Valuation Just what is an option worth? Actually, this is one of the more difficult questions in finance. Option valuation is an esoteric area of finance since it often involves complex
Binomial trees and risk neutral valuation
Binomial trees and risk neutral valuation Moty Katzman September 19, 2014 Derivatives in a simple world A derivative is an asset whose value depends on the value of another asset. Call/Put European/American
Exam MFE Spring 2007 FINAL ANSWER KEY 1 B 2 A 3 C 4 E 5 D 6 C 7 E 8 C 9 A 10 B 11 D 12 A 13 E 14 E 15 C 16 D 17 B 18 A 19 D
Exam MFE Spring 2007 FINAL ANSWER KEY Question # Answer 1 B 2 A 3 C 4 E 5 D 6 C 7 E 8 C 9 A 10 B 11 D 12 A 13 E 14 E 15 C 16 D 17 B 18 A 19 D **BEGINNING OF EXAMINATION** ACTUARIAL MODELS FINANCIAL ECONOMICS
A Simulation-Based lntroduction Using Excel
Quantitative Finance A Simulation-Based lntroduction Using Excel Matt Davison University of Western Ontario London, Canada CRC Press Taylor & Francis Croup Boca Raton London New York CRC Press is an imprint
Lecture Notes: Basic Concepts in Option Pricing - The Black and Scholes Model
Brunel University Msc., EC5504, Financial Engineering Prof Menelaos Karanasos Lecture Notes: Basic Concepts in Option Pricing - The Black and Scholes Model Recall that the price of an option is equal to
Chapter 21 Valuing Options
Chapter 21 Valuing Options Multiple Choice Questions 1. Relative to the underlying stock, a call option always has: A) A higher beta and a higher standard deviation of return B) A lower beta and a higher
Options, Derivatives, Risk Management
1/1 Options, Derivatives, Risk Management (Welch, Chapter 27) Ivo Welch UCLA Anderson School, Corporate Finance, Winter 2014 January 13, 2015 Did you bring your calculator? Did you read these notes and
TABLE OF CONTENTS. A. Put-Call Parity 1 B. Comparing Options with Respect to Style, Maturity, and Strike 13
TABLE OF CONTENTS 1. McDonald 9: "Parity and Other Option Relationships" A. Put-Call Parity 1 B. Comparing Options with Respect to Style, Maturity, and Strike 13 2. McDonald 10: "Binomial Option Pricing:
FINANCIAL ECONOMICS OPTION PRICING
OPTION PRICING Options are contingency contracts that specify payoffs if stock prices reach specified levels. A call option is the right to buy a stock at a specified price, X, called the strike price.
Lecture 4: The Black-Scholes model
OPTIONS and FUTURES Lecture 4: The Black-Scholes model Philip H. Dybvig Washington University in Saint Louis Black-Scholes option pricing model Lognormal price process Call price Put price Using Black-Scholes
Lecture 11. Sergei Fedotov. 20912 - Introduction to Financial Mathematics. Sergei Fedotov (University of Manchester) 20912 2010 1 / 7
Lecture 11 Sergei Fedotov 20912 - Introduction to Financial Mathematics Sergei Fedotov (University of Manchester) 20912 2010 1 / 7 Lecture 11 1 American Put Option Pricing on Binomial Tree 2 Replicating
How To Value Real Options
FIN 673 Pricing Real Options Professor Robert B.H. Hauswald Kogod School of Business, AU From Financial to Real Options Option pricing: a reminder messy and intuitive: lattices (trees) elegant and mysterious:
Black Scholes Merton Approach To Modelling Financial Derivatives Prices Tomas Sinkariovas 0802869. Words: 3441
Black Scholes Merton Approach To Modelling Financial Derivatives Prices Tomas Sinkariovas 0802869 Words: 3441 1 1. Introduction In this paper I present Black, Scholes (1973) and Merton (1973) (BSM) general
Lectures. Sergei Fedotov. 20912 - Introduction to Financial Mathematics. No tutorials in the first week
Lectures Sergei Fedotov 20912 - Introduction to Financial Mathematics No tutorials in the first week Sergei Fedotov (University of Manchester) 20912 2010 1 / 1 Lecture 1 1 Introduction Elementary economics
American and European. Put Option
American and European Put Option Analytical Finance I Kinda Sumlaji 1 Table of Contents: 1. Introduction... 3 2. Option Style... 4 3. Put Option 4 3.1 Definition 4 3.2 Payoff at Maturity... 4 3.3 Example
Martingale Pricing Applied to Options, Forwards and Futures
IEOR E4706: Financial Engineering: Discrete-Time Asset Pricing Fall 2005 c 2005 by Martin Haugh Martingale Pricing Applied to Options, Forwards and Futures We now apply martingale pricing theory to the
Week 12. Options on Stock Indices and Currencies: Hull, Ch. 15. Employee Stock Options: Hull, Ch. 14.
Week 12 Options on Stock Indices and Currencies: Hull, Ch. 15. Employee Stock Options: Hull, Ch. 14. 1 Options on Stock Indices and Currencies Objective: To explain the basic asset pricing techniques used
Vanna-Volga Method for Foreign Exchange Implied Volatility Smile. Copyright Changwei Xiong 2011. January 2011. last update: Nov 27, 2013
Vanna-Volga Method for Foreign Exchange Implied Volatility Smile Copyright Changwei Xiong 011 January 011 last update: Nov 7, 01 TABLE OF CONTENTS TABLE OF CONTENTS...1 1. Trading Strategies of Vanilla
Mid-Term Spring 2003
Mid-Term Spring 2003 1. (1 point) You want to purchase XYZ stock at $60 from your broker using as little of your own money as possible. If initial margin is 50% and you have $3000 to invest, how many shares
GAMMA.0279 THETA 8.9173 VEGA 9.9144 RHO 3.5985
14 Option Sensitivities and Option Hedging Answers to Questions and Problems 1. Consider Call A, with: X $70; r 0.06; T t 90 days; 0.4; and S $60. Compute the price, DELTA, GAMMA, THETA, VEGA, and RHO
11 Option. Payoffs and Option Strategies. Answers to Questions and Problems
11 Option Payoffs and Option Strategies Answers to Questions and Problems 1. Consider a call option with an exercise price of $80 and a cost of $5. Graph the profits and losses at expiration for various
Futures Price d,f $ 0.65 = (1.05) (1.04)
24 e. Currency Futures In a currency futures contract, you enter into a contract to buy a foreign currency at a price fixed today. To see how spot and futures currency prices are related, note that holding
Dynamic Trading Strategies
Dynamic Trading Strategies Concepts and Buzzwords Multi-Period Bond Model Replication and Pricing Using Dynamic Trading Strategies Pricing Using Risk- eutral Probabilities One-factor model, no-arbitrage
How to Value Employee Stock Options
John Hull and Alan White One of the arguments often used against expensing employee stock options is that calculating their fair value at the time they are granted is very difficult. This article presents
where N is the standard normal distribution function,
The Black-Scholes-Merton formula (Hull 13.5 13.8) Assume S t is a geometric Brownian motion w/drift. Want market value at t = 0 of call option. European call option with expiration at time T. Payout at
CHAPTER 21: OPTION VALUATION
CHAPTER 21: OPTION VALUATION 1. Put values also must increase as the volatility of the underlying stock increases. We see this from the parity relation as follows: P = C + PV(X) S 0 + PV(Dividends). Given
Options. + Concepts and Buzzwords. Readings. Put-Call Parity Volatility Effects
+ Options + Concepts and Buzzwords Put-Call Parity Volatility Effects Call, put, European, American, underlying asset, strike price, expiration date Readings Tuckman, Chapter 19 Veronesi, Chapter 6 Options
Finance 436 Futures and Options Review Notes for Final Exam. Chapter 9
Finance 436 Futures and Options Review Notes for Final Exam Chapter 9 1. Options: call options vs. put options, American options vs. European options 2. Characteristics: option premium, option type, underlying
Call Price as a Function of the Stock Price
Call Price as a Function of the Stock Price Intuitively, the call price should be an increasing function of the stock price. This relationship allows one to develop a theory of option pricing, derived
Valuing Stock Options: The Black-Scholes-Merton Model. Chapter 13
Valuing Stock Options: The Black-Scholes-Merton Model Chapter 13 Fundamentals of Futures and Options Markets, 8th Ed, Ch 13, Copyright John C. Hull 2013 1 The Black-Scholes-Merton Random Walk Assumption
Lecture 4: Properties of stock options
Lecture 4: Properties of stock options Reading: J.C.Hull, Chapter 9 An European call option is an agreement between two parties giving the holder the right to buy a certain asset (e.g. one stock unit)
Option Properties. Liuren Wu. Zicklin School of Business, Baruch College. Options Markets. (Hull chapter: 9)
Option Properties Liuren Wu Zicklin School of Business, Baruch College Options Markets (Hull chapter: 9) Liuren Wu (Baruch) Option Properties Options Markets 1 / 17 Notation c: European call option price.
Chapter 1: Financial Markets and Financial Derivatives
Chapter 1: Financial Markets and Financial Derivatives 1.1 Financial Markets Financial markets are markets for financial instruments, in which buyers and sellers find each other and create or exchange
Valuation, Pricing of Options / Use of MATLAB
CS-5 Computational Tools and Methods in Finance Tom Coleman Valuation, Pricing of Options / Use of MATLAB 1.0 Put-Call Parity (review) Given a European option with no dividends, let t current time T exercise
Forward Price. The payoff of a forward contract at maturity is S T X. Forward contracts do not involve any initial cash flow.
Forward Price The payoff of a forward contract at maturity is S T X. Forward contracts do not involve any initial cash flow. The forward price is the delivery price which makes the forward contract zero
Lecture 12: The Black-Scholes Model Steven Skiena. http://www.cs.sunysb.edu/ skiena
Lecture 12: The Black-Scholes Model Steven Skiena Department of Computer Science State University of New York Stony Brook, NY 11794 4400 http://www.cs.sunysb.edu/ skiena The Black-Scholes-Merton Model
Chapter 21: Options and Corporate Finance
Chapter 21: Options and Corporate Finance 21.1 a. An option is a contract which gives its owner the right to buy or sell an underlying asset at a fixed price on or before a given date. b. Exercise is the
Does Black-Scholes framework for Option Pricing use Constant Volatilities and Interest Rates? New Solution for a New Problem
Does Black-Scholes framework for Option Pricing use Constant Volatilities and Interest Rates? New Solution for a New Problem Gagan Deep Singh Assistant Vice President Genpact Smart Decision Services Financial
9 Basics of options, including trading strategies
ECG590I Asset Pricing. Lecture 9: Basics of options, including trading strategies 1 9 Basics of options, including trading strategies Option: The option of buying (call) or selling (put) an asset. European
