Lecture 15 An Arithmetic Circuit Lowerbound and Flows in Graphs



Similar documents
Lecture 1: Course overview, circuits, and formulas

Math 115A HW4 Solutions University of California, Los Angeles. 5 2i 6 + 4i. (5 2i)7i (6 + 4i)( 3 + i) = 35i + 14 ( 22 6i) = i.

2.1 Complexity Classes

Lecture 4: AC 0 lower bounds and pseudorandomness

Similarity and Diagonalization. Similar Matrices

MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS

3. Linear Programming and Polyhedral Combinatorics

Orthogonal Diagonalization of Symmetric Matrices

(67902) Topics in Theory and Complexity Nov 2, Lecture 7

Lecture 3: Finding integer solutions to systems of linear equations

MATH10212 Linear Algebra. Systems of Linear Equations. Definition. An n-dimensional vector is a row or a column of n numbers (or letters): a 1.

Mathematics Course 111: Algebra I Part IV: Vector Spaces

Discrete Mathematics. Hans Cuypers. October 11, 2007

1 The Line vs Point Test

MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS. + + x 2. x n. a 11 a 12 a 1n b 1 a 21 a 22 a 2n b 2 a 31 a 32 a 3n b 3. a m1 a m2 a mn b m

DATA ANALYSIS II. Matrix Algorithms

On Rank vs. Communication Complexity

SHARP BOUNDS FOR THE SUM OF THE SQUARES OF THE DEGREES OF A GRAPH

DETERMINANTS IN THE KRONECKER PRODUCT OF MATRICES: THE INCIDENCE MATRIX OF A COMPLETE GRAPH

Methods for Finding Bases

Zachary Monaco Georgia College Olympic Coloring: Go For The Gold

Algebraic Computation Models. Algebraic Computation Models

LECTURE 5: DUALITY AND SENSITIVITY ANALYSIS. 1. Dual linear program 2. Duality theory 3. Sensitivity analysis 4. Dual simplex method

8 Square matrices continued: Determinants

Linear Codes. Chapter Basics

THE FUNDAMENTAL THEOREM OF ALGEBRA VIA PROPER MAPS

Classification of Cartan matrices

Split Nonthreshold Laplacian Integral Graphs

December 4, 2013 MATH 171 BASIC LINEAR ALGEBRA B. KITCHENS

ISOMETRIES OF R n KEITH CONRAD

Practical Guide to the Simplex Method of Linear Programming

Applied Algorithm Design Lecture 5

IE 680 Special Topics in Production Systems: Networks, Routing and Logistics*

MATH 304 Linear Algebra Lecture 18: Rank and nullity of a matrix.

Analysis of Algorithms, I

The Goldberg Rao Algorithm for the Maximum Flow Problem

Chapter 6. Orthogonality

Approximation Algorithms

A note on companion matrices

THE DIMENSION OF A VECTOR SPACE

GENERATING SETS KEITH CONRAD

On the representability of the bi-uniform matroid

SUBGROUPS OF CYCLIC GROUPS. 1. Introduction In a group G, we denote the (cyclic) group of powers of some g G by

o-minimality and Uniformity in n 1 Graphs

AN ALGORITHM FOR DETERMINING WHETHER A GIVEN BINARY MATROID IS GRAPHIC

IRREDUCIBLE OPERATOR SEMIGROUPS SUCH THAT AB AND BA ARE PROPORTIONAL. 1. Introduction

Arithmetic complexity in algebraic extensions

On Integer Additive Set-Indexers of Graphs

ONLINE DEGREE-BOUNDED STEINER NETWORK DESIGN. Sina Dehghani Saeed Seddighin Ali Shafahi Fall 2015

Chapter 17. Orthogonal Matrices and Symmetries of Space

GROUPS ACTING ON A SET

Large induced subgraphs with all degrees odd

Solving Linear Systems, Continued and The Inverse of a Matrix

Social Media Mining. Graph Essentials

Some Polynomial Theorems. John Kennedy Mathematics Department Santa Monica College 1900 Pico Blvd. Santa Monica, CA

Tree-representation of set families and applications to combinatorial decompositions

Math 312 Homework 1 Solutions

! Solve problem to optimality. ! Solve problem in poly-time. ! Solve arbitrary instances of the problem. #-approximation algorithm.

V. Adamchik 1. Graph Theory. Victor Adamchik. Fall of 2005

High degree graphs contain large-star factors

Inner Product Spaces

Nimble Algorithms for Cloud Computing. Ravi Kannan, Santosh Vempala and David Woodruff

Au = = = 3u. Aw = = = 2w. so the action of A on u and w is very easy to picture: it simply amounts to a stretching by 3 and 2, respectively.

USE OF EIGENVALUES AND EIGENVECTORS TO ANALYZE BIPARTIVITY OF NETWORK GRAPHS

6. Cholesky factorization

Lecture 7: NP-Complete Problems

U.C. Berkeley CS276: Cryptography Handout 0.1 Luca Trevisan January, Notes on Algebra

Introduction to computer science

Social Media Mining. Network Measures

5 INTEGER LINEAR PROGRAMMING (ILP) E. Amaldi Fondamenti di R.O. Politecnico di Milano 1

Minimally Infeasible Set Partitioning Problems with Balanced Constraints

Determination of the normalization level of database schemas through equivalence classes of attributes

Continued Fractions and the Euclidean Algorithm

Discrete Mathematics & Mathematical Reasoning Chapter 10: Graphs

Graph theoretic techniques in the analysis of uniquely localizable sensor networks

1 Formulating The Low Degree Testing Problem

G = G 0 > G 1 > > G k = {e}

Approximated Distributed Minimum Vertex Cover Algorithms for Bounded Degree Graphs

Lecture 4: Partitioned Matrices and Determinants

Orthogonal Projections

Discuss the size of the instance for the minimum spanning tree problem.

4: EIGENVALUES, EIGENVECTORS, DIAGONALIZATION

Handout #Ch7 San Skulrattanakulchai Gustavus Adolphus College Dec 6, Chapter 7: Digraphs

1 Sets and Set Notation.

α = u v. In other words, Orthogonal Projection

The Characteristic Polynomial

Permutation Betting Markets: Singleton Betting with Extra Information

Midterm Practice Problems

Logistic Regression. Jia Li. Department of Statistics The Pennsylvania State University. Logistic Regression

The Basics of Graphical Models

ON INDUCED SUBGRAPHS WITH ALL DEGREES ODD. 1. Introduction

Determinants in the Kronecker product of matrices: The incidence matrix of a complete graph

FUZZY CLUSTERING ANALYSIS OF DATA MINING: APPLICATION TO AN ACCIDENT MINING SYSTEM

Definition Given a graph G on n vertices, we define the following quantities:

136 CHAPTER 4. INDUCTION, GRAPHS AND TREES

MATH 423 Linear Algebra II Lecture 38: Generalized eigenvectors. Jordan canonical form (continued).

Lecture 17 : Equivalence and Order Relations DRAFT

CS 598CSC: Combinatorial Optimization Lecture date: 2/4/2010

Introduction to Finite Fields (cont.)

LINEAR ALGEBRA W W L CHEN

Transcription:

CSE599s: Extremal Combinatorics November 21, 2011 Lecture 15 An Arithmetic Circuit Lowerbound and Flows in Graphs Lecturer: Anup Rao 1 An Arithmetic Circuit Lower Bound An arithmetic circuit is just like a boolean circuit, except that the gates are either multiplication or addition gates, and the inputs are either variables or constants. Formally, it is a directed acyclic graph where every vertex has in-degree (aka fan-in) 2 or 0, each vertex (aka gate) of in-degree 0 is labeled by a variable or a field element, and every other vertex is labeled either + or. The fan-out of a gate is its out-degree. We say that a circuit computes the polynomial p(x 1,..., X n ) if there is gate in the circuit whose evaluation gives the polynomial p(x 1,..., X n ). Note that although every function from F2 n F 2 can be represented as a polynomial, and multiplication and addition (over F 2 ) can be used to simulate any boolean function on 2 bits, it is harder to design a small arithmetic circuit for computing a particular polynomial than it is to design a boolean circuit that computes the corresponding function. This is because many polynomials can evaluate to the same function on F n 2 F 2. For example, the polynomial (X + Y )(X + Z) evaluates to the same function as the polynomial X + Y + Z + Y Z, so if you want to compute the function X + Y + Z + Y Z, you can do it with three gates, even though computing the polynomial requires 4 gates. A boolean circuit can choose to evaluate the easiest polynomial, and so be of smaller size. Indeed, this restriction allows us to prove stronger lower bounds on arithmetic circuits, and gives us more techniques to attack them. Suppose we want to compute the polynomial X d. This can be done by repeatedly squaring X with a circuit of size log d. It is easy to see that this construction is tight: each additional gate can at most double the degree of the polynomials computed by the circuit, so at least log d multiplications are needed to get degree d. What about if we want a circuit that simultaneously computes each of the polynomials X1 d, Xd 2, Xd 3,..., Xd n? One way to do this is to compute each one separately, for a total size of n log d. Is this the best one can do? Theorem 1 (Bauer and Strassen). Any arithmetic circuit computing X d 1 + Xd 2 +... + Xd n must use Ω(n log d) wires. In particular, we get the following easy corollary: Corollary 2. Any arithmetic circuit computing each of X d 1, Xd 2,..., Xd n must use Ω(n log d) wires. There are two parts to the proof of Theorem 1. First we prove Corollary 2. Then we show that any size s circuit that computes X d 1 +... + Xd n can be used to obtain a size O(s + n) circuit computing X d 1, Xd 2,..., Xd n. Actually you can show that any circuit that computes a polynomial p can be used to obtain a circuit that computes all the partial derivatives of p in similar size, which gives what we want. Here we shall just prove the first part with a proof due to Smolensky that is based on dimension counting. 15 An Arithmetic Circuit Lowerbound and Flows in Graphs-1

Suppose that there is some circuit C with s wires that computes X d 1,..., Xd n. For a polynomial r(y ; Z) in variables partitioned into two lists Y, Z, we say r has degree (d 1, 1) if the degree of any variable in Y is at most d 1 and any variable in Z is at most 1. Given two lists of polynomials p = p 1,..., p k F[X 1,..., X n ] and q = q 1,..., q l F[X 1,..., X n ], define the set of polynomials We have the following claims: τ(p q) = {r(p; q) : r has degree (d 1, 1) }. Claim 3. If f = g h, then τ(f, p 1,..., p k q 1,..., q l ) τ(g, h, p 1,..., p k q 1,..., q l ). Indeed, in any degree (d 1, 1) polynomial r, f t = g t h t, so we obtain a new polynomial r in one additional variable that computes the same thing as r. Claim 4. If f = g + h, then τ(f, p 1,..., p k q 1..., q l ) τ(g, h, p 1,..., p k q 1... q l ). Again, in any degree (d 1, 1) polynomial r, we can replace f t = (g + h) t and again obtain a degree (d 1, 1) polynomial q that computes the same thing as q. Claim 5. τ(f, f, p 1,..., p k q 1,..., q l ) τ(f, p 1,..., p k f d, q 1,..., q l ). To prove this claim, note that since r has access to two copies of f, it can actually compute f t for any t 2(d 1). To simulate this new computation, it is enough to have access to f d with degree up to 1 and f with degree up to d 1. Claim 6. If a circuit C uses s wires to compute polynomials p 1,..., p k at k distinct gates, then there exist at most s polynomials q 1,..., q s such that τ(p 1,..., p k ) τ(x 1,..., X n q 1,..., q s ). Proof We prove the claim inductively. Suppose we are working with the space τ(p 1,..., p k q 1,..., q r ), where each p i is a polynomial computed at a distinct gate of the circuit. Suppose p 1 is a polynomial of maximal depth in the circuit (namely it corresponds to the gate that is farthest away from an input variable). If p 1 is equal to X i for some i, then we are done, since all p i s must be at depth 0. Otherwise, by Claims 3 or 4, we get that τ(p 1,..., p k q 1,..., q r ) τ(g, h, p 2,..., p k q 1,..., q r ), where g, h are polynomials computed at gates of lower depth in the circuit. g, h may correspond to the same gate as one of the p i s, in which case we apply Claim 5 (possibly twice) to take care of this duplication. If we repeatedly apply this argument, note that we can apply Claim 5 at most s times. This proves the claim. All that remains is to count dimensions. Note that τ(x d 1,..., Xd n, X 1,..., X n ) is simply the set of all polynomials in X 1,..., X n whose degree in each variable is less than d 2. The dimension of this space is thus (d 2 ) n = d 2n. On the other hand, τ(x 1,..., X n q 1,..., q s ) is spanned by a set of at most 2 s d n polynomials. Thus 2 s d n d 2n s n log d. 2 Schwartz Zippel Lemma Lemma 7. Let 0 p F[X 1,..., X n ] be a polynomial of total degree at most d. Then p has at most d F n 1 roots. 15 An Arithmetic Circuit Lowerbound and Flows in Graphs-2

Proof We proceed by induction on n. The base case is that a univariate polynomial of degree d can have at most d roots, which we have shown. If n > 1, let p = g t (X 2,..., X n )X1 t + g t 1(X 2,..., X n )X1 t 1 + + g 0 (X 2,..., X n ). Now consider what happens when we evaluate p at a random point in (a 1,..., a n ) F n, by first sampling X 2,..., X n and then sampling X 1. By induction, Pr[g t (a 2,..., a n ) = 0] (d t)/ F, since it has total degree d t. If g t does not vanish, we are left with a univariate non-zero polynomial of degree t. Thus Pr[p(a 1,..., a n ) = 0 g t (a 2,..., a n ) 0] t/ F. The union bound then completes the argument. 3 Computing Edge Connectivity Given a directed graph G and two vertices s, t, and s t cut in the graph is a subset of vertices S such that s S, t / S. The size of the cut is the number of edges that go from S to the complement of S. The following is a well known theorem: Theorem 8 (Max Flow-Min Cut). The maximum number of edge disjoint paths from s to t is the same the minimum size of an s t cut. Proof Suppose the maximum number of edge disjoint paths is k, and the minimum size of an s t cut is c. Then clearly k c, since each edge disjoint path must cross the cut using a different edge. Let P be a set of k edge disjoint paths. Then consider the graph G P which is obtained from G by reversing the direction of each edge involved in a path of P. If there is a path s t path p in G P, then this path can be used to obtain k + 1 edge disjoint paths from s to t in G as follows. Let E P denote the set of edges involved in the paths P, R p denote the set of edges of E P that were used in p in the reverse direction, and U p denote the set of edges of p that did not come from P. Then it is easy to check that E P U p R p is a set of k + 1 edge disjoint paths. Thus G P contains no s t path. Let S denote the set of vertices reachable from s in G P. There is no edge leaving S in G P. None of the paths in P can enter S from the outside, since otherwise there would be an edge leaving S in G P. Every edge leaving S in G must be used by a path of P, or else again there would be an edge leaving S in G P. Thus there must be at most k edges leaving S, since each path can leave S at most once. This implies that k c. We remark that the above theorem can easily be strengthened to the case of weighted directed graphs, where the weights are viewed as capacities. Then we can talk about flows from s to t, where a flow is an assignment of non-negative values to edges, such that in every vertex except for s and t, the flow in is equal to the flow out. Similarly, the size of a cut can be defined to be the total weight of out going edges that are cut. Essentially the same proof as above can be used to show that the maximum flow is equal to the size of the minimum cut. Here we give a beautiful algorithm by Cheung, Lau and Leung for computing the number of edge disjoint paths. A major selling point of the algorithm is that given a vertex s, it simultaneously computes the number of edge disjoint paths to all vertices t, with a running time that is faster than previously known algorithms for doing this. Another advantage is that the algorithm is extremely simple. Suppose the graph has n vertices and m edges. We work with a vector space over a finite field F t. For every pair of edges e 1, e 2 in the graph, we sample a uniformly random element c e1,e 2 F. 15 An Arithmetic Circuit Lowerbound and Flows in Graphs-3

For every edge e in the graph, we shall attempt to associate a vector a e F t, in such a way that the following linear constraints are satisfied: For the j th edge e = (s, v) leaving s, if g 1,..., g l are the edges that come in to s, then a e = i c gi,e a gi + a j, where a j denotes the j th unit vector. For every other edge e = (u, v), if g 1,..., g l are the edges that come in to u, then a e = i c gi,e a gi We can easily express the above linear constraints using matrices. Let C be the matrix whose rows and columns are both indexed by the edges such that C e,e = c e,e. Let A denote the matrix whose rows are indexed by edges, such that the e th row is a e. Then the above linear constraints can be written A = C A + H, where H is matrix that captures the contributions to the constraints that come from the unit vectors (it is independent of the c e,e s). If I C is invertible, then A = (I C) 1 H. Lemma 9. I C is invertible except with probability m/ F. Proof Since C is 0 on the diagonal, I C has ones on the diagonal. Every off-diagonal coordinate is either 0 or a variable. In other words, when all the constants are chosen to be 0, this matrix is the identity. Thus the determinant det(i C) is a non-zero polynomial in the c e,e s of degree at most m. By the Schwartz-Zippel lemma, the probability that the determinant vanishes is at most m/ F, so it has an inverse except with probability m/ F. So with high probability, we get a unique solution A = (I C) 1 H. Next we shall argue that the number of edge disjoint paths from s to t is equal to the rank of the vectors coming in to t with high probability. Let A t denote the matrix whose rows are the vectors a e for edges e coming in to t. Theorem 10. The rank rk(a t ) is equal to the number of edge disjoint paths from s to t, except with probability m 2 / F. Proof Let k be the size of a minimum s t cut S. Then observe that the vectors for edges that are outside S can be expressed as linear combinations of vectors associated with the edges leaving S. Thus, the rk(a t ) k. Consider any set of k edge disjoint paths P from s to t. If we set c e,e = 1 for each pair of edges that are adjacent in P, and set all other constants to 0, then the constraints are satisfied by the vectors that send a distinct unit vector along each path to t. Thus, in this case A t contains k distinct unit vectors, as rows and so must contain a k k submatrix of rank k. Call this submatrix A t. We shall argue that rk(a t) = k with high probability. Indeed, each entry of A = (I C) 1 H is a polynomial of degree m 1, divided by det(i C). Thus det(a t) is a polynomial of degree at most k(m 1) m(m 1), divided by det(i C) k. These 15 An Arithmetic Circuit Lowerbound and Flows in Graphs-4

polynomials do have some setting that gives them a non-zero value, as we saw by considering the k disjoint paths. By the union bound, the probability that either the numerator or denominators vanish is at most m(m 1)/ F + m/ F. The algorithm involves computing A = (I C) 1 H, and then computing the rank of A t for each t. 15 An Arithmetic Circuit Lowerbound and Flows in Graphs-5