Information Visualization and Visual Analytics

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Information Visualization and Visual Analytics"

Transcription

1 Information Visualization and Visual Analytics Pekka Wartiainen University of Jyväskylä

2 Outline Objectives Introduction Visual Analytics Information Visualization Our research Summary

3 Learning objectives To understand the definition of visual analytics. To be aware with visual analytics approach in problem solving. To understand the basics of data visualization.

4 Motivation Raw data has no value in itself, only the extracted information has value Time and money are wasted and opportunities are lost Success depends on availability of the right information Visual analytics aims at making data and information processing transparent Visual analytics combines the strengths of humans and computers

5 An historical perspective on visual analytics Early visual analytics: exploratory data analysis Visual data exploration and visual data mining First book of visual analytics: Illuminating the Path, 2005 Some earlier systems exhibited the characteristics of visual analytics CoCo system for improving silicon chips, 1990

6 Past few years VisMaster is an European Coordination Action Project Web-page: Book: URL: Visual-Analytics.EU URL: Mastering the information age - solving problems with visual analytics YouTube video: URL: Inria - Vismaster, visual analytics

7 Visual analytics Definition Visual analytics combines automated analysis techniques with interactive visualisations for an effective understanding, reasoning and decision making on the basis of very large and complex datasets. Timeline

8 Application of visual analytics First application area was security Many major application areas physics, astronomy, medicine, climate,... Example: business intelligence Financial market generates large amounts of data on a daily basis > extremely high data volumes over the years More than 300 million VISA credit card transactions per day Multiple perspectives and assumptions for analysis history, current situation, monitoring, forecasting, recurring situations

9 Visual analytics Coordinated Graph Visualization Visual support for the simulation of climate models provided by CGV, a highly interactive graph visualization system.

10 Visual analytics NFlowVis Analysis of a distributed network attack.

11 The visual analytics process Process model of visual analytics.

12 Building blocks of visual analytics research Visual analytics integrates science and technology from many disciplines.

13 Evaluation Evaluation include techniques, methods, modes and theories as well as software tools Challenge: often processing data from the real world Evaluation involves users, tasks and data Especially in the industry, the domain expert has the best knowledge > Empirical evaluation Evaluation criteria, e.g.: effectiveness efficiency user satisfaction Importance of documentation is emphasized

14 Infrastructure Visual analytics is both user-driven and data-driven Current challenges: lack of interaction and dynamic data Limitations of traditional data bases Need for: Old fashioned architectural reference model Big data solutions Fast imprecise answers with progressive refinement Incremental re-computation, either in the data (e.g., some data has been changed) or in the analysis parameters Steering the computation towards data regions that are of higher interest to the user.

15 Data management Why? The big opportunity of the Information Age Many obstacles need to be overcome Heterogeneity of data sources Different data types Data streams Working under pressure Time consuming activities Data management ensures data consistency and standards

16 Data management VA aspects Data and semantic integration Utilizing known processing methods Data Warehousing, OLAP and Data Mining Data reduction and abstraction Data quality is crucial (cf. GIGO model) Visual techniques for exploring data

17 Space and time In large systems, space and time are essential > complexity increases Space and time are more than just numbers Specific properties: Dependencies between observations Uncertainty Scale Time Spatial approaches: Cartography, GIS, Geovisualization Representation of time: visualization of time-related data and time itself Interactive visualizations Big data cases dimension reduction

18 Space and time OECD explorer Allows to explore regional statistics data from OECD URL:Organisation for Economic Cooperation and Development

19 Data mining Humans are required in the data analysis process New tools and methodologies are necessary to help experts extract relevant information Limitations in KDD process and visualizations Combination of multidisciplinary approaches Pattern identification methods Spatio-temporal data mining Many software have been developed

20 Perception and cognitive aspects visualization The human is at the heart of visual analytics human interaction, analysis, intuition, problem solving and visual perception. Distinction between high and low-level vision Humans do not have to remember everything but extract visual clues from the environment Pre-attentive processing makes items pop out the display automatically.

21 Data visualization Fast and understandable way to present data to a user Data mining methods as pre-processing tools Many visualization methods existing JFreeChart Google Charts Remember how not to use visualization techniques Dynamic behavior of the data sets special requirements Data visualization is part of information visualization

22 GUI design Visual analytics has high demand for GUI Scalable and interactive interface General guidelines for different purposes Windows, OS X, Android,... Online solutions Define target group before designing the GUI Multidisciplinary research groups Personalized user roles

23 Common interaction select : mark data items of interest, possible followed by another operation, explore : show some other data e.g., panning, zoom, resampling, reconfigure : rearrange the data spatially e.g., sort, change attribute assigned to axis, rotate (3D), slide, encode : change visual appearance e.g., change type of representation (view), adjust colour/size/shape, abstract/elaborate : show more or less detail e.g., details on demand, tooltips, geometric zoom, filter : select or show data matching certain conditions, connect : highlight related data items e.g., brushing (selection shown in multiple views).

24 Using colors Powerful element in visualization Wrong usage of colors is disturbing Color Usage Research Lab NASA Ames research center Ready made color palettes are solid alternatives

25 Visual analytics in energy production Application area: BFB boiler burning biomass Co-operation with VTT, department of chemistry, and private companies Funded by Regional Council of Central Finland Time-series data measured from the different parts of the process Context-sensitive framework approach Matlab routines with Java GUI

26 People included into process The human context of visual analytics.

27 Summary Visual analytics for multidisciplinary research problems Visualization, data analysis, user interaction Highly interactive interfaces The whole process should be taken into account Many challenges still existing, especially with big and dynamic data Humans are part of the process

28 References D. Keim, J. Kohlhammer, G. Ellis ja F. Mansmann, Mastering the Information Age: Solving Problems with Visual Analytics, Eurographics Association, Germany, P. Järvinen, K. Puolamäki, P. Siltanen ja M. Ylikerälä, Visual Analytics, Technical report, VTT, Finland, P. Wartiainen, T. Kärkkäinen, A. Heimbürger, ja S. Äyrämö. Context-sensitive approach to dynamic visual analytics of energy production processes. In 22th European-Japanese Conference on Information Modelling and Knowledge Bases. MATFYZPRESS - Univerzity Karlovy, 2012.

2 Visual Analytics. 2.1 Application of Visual Analytics

2 Visual Analytics. 2.1 Application of Visual Analytics 2 Visual Analytics Visual analytics is not easy to define, due to its multi-disciplinary nature involving multiple processes and the wide variety of application areas. An early definition was "the science

More information

Information Visualization WS 2013/14 11 Visual Analytics

Information Visualization WS 2013/14 11 Visual Analytics 1 11.1 Definitions and Motivation Lot of research and papers in this emerging field: Visual Analytics: Scope and Challenges of Keim et al. Illuminating the path of Thomas and Cook 2 11.1 Definitions and

More information

Interactive Data Mining and Visualization

Interactive Data Mining and Visualization Interactive Data Mining and Visualization Zhitao Qiu Abstract: Interactive analysis introduces dynamic changes in Visualization. On another hand, advanced visualization can provide different perspectives

More information

What is Visual Analytics?

What is Visual Analytics? What is Visual Analytics? Methods@Manchester Oscar de Bruijn Decision and Cognitive Sciences Manchester Business School 1 Overview What is the problem? How does Visual Analytics offer a solution What is

More information

NStreamAware: Real-Time Visual Analytics for Data Streams to Enhance Situational Awareness

NStreamAware: Real-Time Visual Analytics for Data Streams to Enhance Situational Awareness Symposium on Visualization for Cyber Security (VizSec 2014) 10th November 2014, Paris, France NStreamAware: Real-Time Visual Analytics for Data Streams to Enhance Situational Awareness Fabian Fischer and

More information

What is Visualization? Information Visualization An Overview. Information Visualization. Definitions

What is Visualization? Information Visualization An Overview. Information Visualization. Definitions What is Visualization? Information Visualization An Overview Jonathan I. Maletic, Ph.D. Computer Science Kent State University Visualize/Visualization: To form a mental image or vision of [some

More information

Copyright 2007 Ramez Elmasri and Shamkant B. Navathe. Slide 29-1

Copyright 2007 Ramez Elmasri and Shamkant B. Navathe. Slide 29-1 Slide 29-1 Chapter 29 Overview of Data Warehousing and OLAP Chapter 29 Outline Purpose of Data Warehousing Introduction, Definitions, and Terminology Comparison with Traditional Databases Characteristics

More information

Interactive Information Visualization of Trend Information

Interactive Information Visualization of Trend Information Interactive Information Visualization of Trend Information Yasufumi Takama Takashi Yamada Tokyo Metropolitan University 6-6 Asahigaoka, Hino, Tokyo 191-0065, Japan ytakama@sd.tmu.ac.jp Abstract This paper

More information

Information Visualisation and Visual Analytics for Governance and Policy Modelling

Information Visualisation and Visual Analytics for Governance and Policy Modelling Information Visualisation and Visual Analytics for Governance and Policy Modelling Jörn Kohlhammer 1, Tobias Ruppert 1, James Davey 1, Florian Mansmann 2, Daniel Keim 2 1 Fraunhofer IGD, Fraunhoferstr.

More information

COMP 150-04 Visualization. Lecture 11 Interacting with Visualizations

COMP 150-04 Visualization. Lecture 11 Interacting with Visualizations COMP 150-04 Visualization Lecture 11 Interacting with Visualizations Assignment 5: Maps Due Wednesday, March 17th Design a thematic map visualization Option 1: Choropleth Map Implementation in Processing

More information

Introduction. A. Bellaachia Page: 1

Introduction. A. Bellaachia Page: 1 Introduction 1. Objectives... 3 2. What is Data Mining?... 4 3. Knowledge Discovery Process... 5 4. KD Process Example... 7 5. Typical Data Mining Architecture... 8 6. Database vs. Data Mining... 9 7.

More information

Course 803401 DSS. Business Intelligence: Data Warehousing, Data Acquisition, Data Mining, Business Analytics, and Visualization

Course 803401 DSS. Business Intelligence: Data Warehousing, Data Acquisition, Data Mining, Business Analytics, and Visualization Oman College of Management and Technology Course 803401 DSS Business Intelligence: Data Warehousing, Data Acquisition, Data Mining, Business Analytics, and Visualization CS/MIS Department Information Sharing

More information

SQL Server 2012 Business Intelligence Boot Camp

SQL Server 2012 Business Intelligence Boot Camp SQL Server 2012 Business Intelligence Boot Camp Length: 5 Days Technology: Microsoft SQL Server 2012 Delivery Method: Instructor-led (classroom) About this Course Data warehousing is a solution organizations

More information

Visual Analytics. Daniel A. Keim, Florian Mansmann, Andreas Stoffel, Hartmut Ziegler University of Konstanz, Germany http://infovis.uni-konstanz.

Visual Analytics. Daniel A. Keim, Florian Mansmann, Andreas Stoffel, Hartmut Ziegler University of Konstanz, Germany http://infovis.uni-konstanz. Visual Analytics Daniel A. Keim, Florian Mansmann, Andreas Stoffel, Hartmut Ziegler University of Konstanz, Germany http://infovis.uni-konstanz.de SYNONYMS Visual Analysis; Visual Data Analysis; Visual

More information

Geovisual Analytics Exploring and analyzing large spatial and multivariate data. Prof Mikael Jern & Civ IngTobias Åström. http://ncva.itn.liu.

Geovisual Analytics Exploring and analyzing large spatial and multivariate data. Prof Mikael Jern & Civ IngTobias Åström. http://ncva.itn.liu. Geovisual Analytics Exploring and analyzing large spatial and multivariate data Prof Mikael Jern & Civ IngTobias Åström http://ncva.itn.liu.se/ Agenda Introduction to a Geovisual Analytics Demo Explore

More information

Chapter 5 Business Intelligence: Data Warehousing, Data Acquisition, Data Mining, Business Analytics, and Visualization

Chapter 5 Business Intelligence: Data Warehousing, Data Acquisition, Data Mining, Business Analytics, and Visualization Turban, Aronson, and Liang Decision Support Systems and Intelligent Systems, Seventh Edition Chapter 5 Business Intelligence: Data Warehousing, Data Acquisition, Data Mining, Business Analytics, and Visualization

More information

ADVANCED DATA VISUALIZATION

ADVANCED DATA VISUALIZATION If I can't picture it, I can't understand it. Albert Einstein ADVANCED DATA VISUALIZATION REDUCE TO THE TIME TO INSIGHT AND DRIVE DATA DRIVEN DECISION MAKING Mark Wolff, Ph.D. Principal Industry Consultant

More information

Data Mining, Predictive Analytics with Microsoft Analysis Services and Excel PowerPivot

Data Mining, Predictive Analytics with Microsoft Analysis Services and Excel PowerPivot www.etidaho.com (208) 327-0768 Data Mining, Predictive Analytics with Microsoft Analysis Services and Excel PowerPivot 3 Days About this Course This course is designed for the end users and analysts that

More information

Chapter 5. Warehousing, Data Acquisition, Data. Visualization

Chapter 5. Warehousing, Data Acquisition, Data. Visualization Decision Support Systems and Intelligent Systems, Seventh Edition Chapter 5 Business Intelligence: Data Warehousing, Data Acquisition, Data Mining, Business Analytics, and Visualization 5-1 Learning Objectives

More information

Research trends relevant to data warehousing and OLAP include [Cuzzocrea et al.]: Combining the benefits of RDBMS and NoSQL database systems

Research trends relevant to data warehousing and OLAP include [Cuzzocrea et al.]: Combining the benefits of RDBMS and NoSQL database systems DATA WAREHOUSING RESEARCH TRENDS Research trends relevant to data warehousing and OLAP include [Cuzzocrea et al.]: Data source heterogeneity and incongruence Filtering out uncorrelated data Strongly unstructured

More information

RiskLab. Discussion: Peter Sarlin. Visual Network Analysis in the Regulation of Financial Systemic Risk

RiskLab. Discussion: Peter Sarlin. Visual Network Analysis in the Regulation of Financial Systemic Risk Discussion: Visual Network Analysis in the Regulation of Financial Systemic Risk The Application of Visual Analytics to Financial Stability Monitoring Peter Sarlin Goethe University Frankfurt and European

More information

Implementing Data Models and Reports with Microsoft SQL Server 2012 MOC 10778

Implementing Data Models and Reports with Microsoft SQL Server 2012 MOC 10778 Implementing Data Models and Reports with Microsoft SQL Server 2012 MOC 10778 Course Outline Module 1: Introduction to Business Intelligence and Data Modeling This module provides an introduction to Business

More information

A Short Introduction on Data Visualization. Guoning Chen

A Short Introduction on Data Visualization. Guoning Chen A Short Introduction on Data Visualization Guoning Chen Data is generated everywhere and everyday Age of Big Data Data in ever increasing sizes need an effective way to understand them History of Visualization

More information

Visualizing Repertory Grid Data for Formative Assessment

Visualizing Repertory Grid Data for Formative Assessment Visualizing Repertory Grid Data for Formative Assessment Kostas Pantazos 1, Ravi Vatrapu 1, 2 and Abid Hussain 1 1 Computational Social Science Laboratory (CSSL) Department of IT Management, Copenhagen

More information

Interactive Visual Data Analysis in the Times of Big Data

Interactive Visual Data Analysis in the Times of Big Data Interactive Visual Data Analysis in the Times of Big Data Cagatay Turkay * gicentre, City University London Who? Lecturer (Asst. Prof.) in Applied Data Science Started December 2013 @ the gicentre (gicentre.net)

More information

Information Management course

Information Management course Università degli Studi di Milano Master Degree in Computer Science Information Management course Teacher: Alberto Ceselli Lecture 01 : 06/10/2015 Practical informations: Teacher: Alberto Ceselli (alberto.ceselli@unimi.it)

More information

Framework for Visual Analytics of Measurement Data

Framework for Visual Analytics of Measurement Data Framework for Visual Analytics of Measurement Data Paula Järvinen, Pekka Siltanen, Kari Rainio VTT, PL 1000, 02044 VTT Espoo, Finland {paula.jarvinen, pekka.siltanen, kari.rainio}@vtt.fi Abstract-Visual

More information

Introduction to Data Mining

Introduction to Data Mining Introduction to Data Mining 1 Why Data Mining? Explosive Growth of Data Data collection and data availability Automated data collection tools, Internet, smartphones, Major sources of abundant data Business:

More information

Defense Technical Information Center Compilation Part Notice

Defense Technical Information Center Compilation Part Notice UNCLASSIFIED Defense Technical Information Center Compilation Part Notice ADP012353 TITLE: Advanced 3D Visualization Web Technology and its Use in Military and Intelligence Applications DISTRIBUTION: Approved

More information

SPATIAL DATA CLASSIFICATION AND DATA MINING

SPATIAL DATA CLASSIFICATION AND DATA MINING , pp.-40-44. Available online at http://www. bioinfo. in/contents. php?id=42 SPATIAL DATA CLASSIFICATION AND DATA MINING RATHI J.B. * AND PATIL A.D. Department of Computer Science & Engineering, Jawaharlal

More information

Introduction of Information Visualization and Visual Analytics. Chapter 2. Introduction and Motivation

Introduction of Information Visualization and Visual Analytics. Chapter 2. Introduction and Motivation Introduction of Information Visualization and Visual Analytics Chapter 2 Introduction and Motivation Overview! 2 Overview and Motivation! Information Visualization (InfoVis)! InfoVis Application Areas!

More information

Creating a Tableau Data Visualization on Cincinnati Crime By Jeffrey A. Shaffer

Creating a Tableau Data Visualization on Cincinnati Crime By Jeffrey A. Shaffer Creating a Tableau Data Visualization on Cincinnati Crime By Jeffrey A. Shaffer Step 1 Gather and Compile the Data: This data was compiled using weekly files provided by the Cincinnati Police. Each file

More information

Certificate Program in Applied Big Data Analytics in Dubai. A Collaborative Program offered by INSOFE and Synergy-BI

Certificate Program in Applied Big Data Analytics in Dubai. A Collaborative Program offered by INSOFE and Synergy-BI Certificate Program in Applied Big Data Analytics in Dubai A Collaborative Program offered by INSOFE and Synergy-BI Program Overview Today s manager needs to be extremely data savvy. They need to work

More information

An example. Visualization? An example. Scientific Visualization. This talk. Information Visualization & Visual Analytics. 30 items, 30 x 3 values

An example. Visualization? An example. Scientific Visualization. This talk. Information Visualization & Visual Analytics. 30 items, 30 x 3 values Information Visualization & Visual Analytics Jack van Wijk Technische Universiteit Eindhoven An example y 30 items, 30 x 3 values I-science for Astronomy, October 13-17, 2008 Lorentz center, Leiden x An

More information

Industry 4.0 and Big Data

Industry 4.0 and Big Data Industry 4.0 and Big Data Marek Obitko, mobitko@ra.rockwell.com Senior Research Engineer 03/25/2015 PUBLIC PUBLIC - 5058-CO900H 2 Background Joint work with Czech Institute of Informatics, Robotics and

More information

Each of the modules is stand-alone allowing for customization of the course for those audiences that may not have an interest in a certain service.

Each of the modules is stand-alone allowing for customization of the course for those audiences that may not have an interest in a certain service. Course Page - Page 1 of 19 Microsoft End to End Business Intelligence Boot Camp M-55045 Length: 5 days Price: $2,795.00 Course Description This five-day instructor-led course is a complete high-level tour

More information

Universidade de Aveiro Departamento de Electrónica, Telecomunicações e Informática. Introduction to Information Visualization

Universidade de Aveiro Departamento de Electrónica, Telecomunicações e Informática. Introduction to Information Visualization Universidade de Aveiro Departamento de Electrónica, Telecomunicações e Informática Introduction to Information Visualization www.portugal-migration.info Information Visualization Beatriz Sousa Santos,

More information

Challenge 10 - Attack Visualization The Honeynet Project / Forensic Challenge 2011 / 2011-12-18

Challenge 10 - Attack Visualization The Honeynet Project / Forensic Challenge 2011 / 2011-12-18 Challenge 10 - Attack Visualization The Honeynet Project / Forensic Challenge 2011 / 2011-12-18 Fabian Fischer Data Analysis and Visualization Group University of Konstanz Data Preprocessing with & I wanted

More information

Keywords Big Data; OODBMS; RDBMS; hadoop; EDM; learning analytics, data abundance.

Keywords Big Data; OODBMS; RDBMS; hadoop; EDM; learning analytics, data abundance. Volume 4, Issue 11, November 2014 ISSN: 2277 128X International Journal of Advanced Research in Computer Science and Software Engineering Research Paper Available online at: www.ijarcsse.com Analytics

More information

GEO-VISUALIZATION SUPPORT FOR MULTIDIMENSIONAL CLUSTERING

GEO-VISUALIZATION SUPPORT FOR MULTIDIMENSIONAL CLUSTERING Geoinformatics 2004 Proc. 12th Int. Conf. on Geoinformatics Geospatial Information Research: Bridging the Pacific and Atlantic University of Gävle, Sweden, 7-9 June 2004 GEO-VISUALIZATION SUPPORT FOR MULTIDIMENSIONAL

More information

Knowledge Discovery from patents using KMX Text Analytics

Knowledge Discovery from patents using KMX Text Analytics Knowledge Discovery from patents using KMX Text Analytics Dr. Anton Heijs anton.heijs@treparel.com Treparel Abstract In this white paper we discuss how the KMX technology of Treparel can help searchers

More information

A Discussion on Visual Interactive Data Exploration using Self-Organizing Maps

A Discussion on Visual Interactive Data Exploration using Self-Organizing Maps A Discussion on Visual Interactive Data Exploration using Self-Organizing Maps Julia Moehrmann 1, Andre Burkovski 1, Evgeny Baranovskiy 2, Geoffrey-Alexeij Heinze 2, Andrej Rapoport 2, and Gunther Heidemann

More information

Topics in basic DBMS course

Topics in basic DBMS course Topics in basic DBMS course Database design Transaction processing Relational query languages (SQL), calculus, and algebra DBMS APIs Database tuning (physical database design) Basic query processing (ch

More information

COURSE SYLLABUS COURSE TITLE:

COURSE SYLLABUS COURSE TITLE: 1 COURSE SYLLABUS COURSE TITLE: FORMAT: CERTIFICATION EXAMS: 55043AC Microsoft End to End Business Intelligence Boot Camp Instructor-led None This course syllabus should be used to determine whether the

More information

Situational Awareness Through Network Visualization

Situational Awareness Through Network Visualization CYBER SECURITY DIVISION 2014 R&D SHOWCASE AND TECHNICAL WORKSHOP Situational Awareness Through Network Visualization Pacific Northwest National Laboratory Daniel M. Best Bryan Olsen 11/25/2014 Introduction

More information

Database Marketing, Business Intelligence and Knowledge Discovery

Database Marketing, Business Intelligence and Knowledge Discovery Database Marketing, Business Intelligence and Knowledge Discovery Note: Using material from Tan / Steinbach / Kumar (2005) Introduction to Data Mining,, Addison Wesley; and Cios / Pedrycz / Swiniarski

More information

W3C USING OPEN DATA WORKSHOP VISUAL ANALYTICS FOR POLICY-MAKING OPPORTUNITIES AND RESEARCH CHALLENGES Francesco Mureddu, Tech4i2.

W3C USING OPEN DATA WORKSHOP VISUAL ANALYTICS FOR POLICY-MAKING OPPORTUNITIES AND RESEARCH CHALLENGES Francesco Mureddu, Tech4i2. W3C USING OPEN DATA WORKSHOP VISUAL ANALYTICS FOR POLICY-MAKING OPPORTUNITIES AND RESEARCH CHALLENGES Francesco Mureddu, Tech4i2.com www.crossover-project.eu #pmod BACKGROUND CROSSOVER project Bridging

More information

INFORMATION VISUALIZATION TECHNIQUES USAGE MODEL

INFORMATION VISUALIZATION TECHNIQUES USAGE MODEL INFORMATION VISUALIZATION TECHNIQUES USAGE MODEL Akanmu Semiu A. 1 and Zulikha Jamaludin 2 1 Universiti Utara Malaysia, Malaysia, ayobami.sm@gmail.com 2 Universiti Utara Malaysia, Malaysia, zulie@uum.edu.my

More information

Microsoft End to End Business Intelligence Boot Camp

Microsoft End to End Business Intelligence Boot Camp Microsoft End to End Business Intelligence Boot Camp Längd: 5 Days Kurskod: M55045 Sammanfattning: This five-day instructor-led course is a complete high-level tour of the Microsoft Business Intelligence

More information

Visual Analytics: Combining Automated Discovery with Interactive Visualizations

Visual Analytics: Combining Automated Discovery with Interactive Visualizations Visual Analytics: Combining Automated Discovery with Interactive Visualizations Daniel A. Keim, Florian Mansmann, Daniela Oelke, and Hartmut Ziegler University of Konstanz, Germany first.lastname@uni-konstanz.de,

More information

WORK SMART. Microsoft Dynamics NAV 2009 Simple. Smart. Innovative

WORK SMART. Microsoft Dynamics NAV 2009 Simple. Smart. Innovative WORK SMART Microsoft Dynamics NAV 2009 Simple. Smart. Innovative SIMPLICITY The business management solution for more than one million users worldwide Fast to implement, easy to configure, and simple to

More information

Search and Data Mining: Techniques. Introduction Anna Yarygina Boris Novikov

Search and Data Mining: Techniques. Introduction Anna Yarygina Boris Novikov Search and Data Mining: Techniques Introduction Anna Yarygina Boris Novikov Data Analytics: Conference Sections Fundamentals for data analytics Mechanisms and features Big Data Huge data Target analytics

More information

Gain insight, agility and advantage by analyzing change across time and space.

Gain insight, agility and advantage by analyzing change across time and space. White paper Location Intelligence Gain insight, agility and advantage by analyzing change across time and space. Spatio-temporal information analysis is a Big Data challenge. The visualization and decision

More information

An Overview on Interactive Visual Data Mining Techniques for Knowledge Discovery

An Overview on Interactive Visual Data Mining Techniques for Knowledge Discovery Article type: Overview An Overview on Interactive Visual Data Mining Techniques for Knowledge Discovery Frederic Stahl University of Reading, School of Systems Engineering, F.T.Stahl@reading.ac.uk Bogdan

More information

Interactive Exploration of Decision Tree Results

Interactive Exploration of Decision Tree Results Interactive Exploration of Decision Tree Results 1 IRISA Campus de Beaulieu F35042 Rennes Cedex, France (email: pnguyenk,amorin@irisa.fr) 2 INRIA Futurs L.R.I., University Paris-Sud F91405 ORSAY Cedex,

More information

Spatio-Temporal Networks:

Spatio-Temporal Networks: Spatio-Temporal Networks: Analyzing Change Across Time and Place WHITE PAPER By: Jeremy Peters, Principal Consultant, Digital Commerce Professional Services, Pitney Bowes ABSTRACT ORGANIZATIONS ARE GENERATING

More information

Technology-Driven Demand and e- Customer Relationship Management e-crm

Technology-Driven Demand and e- Customer Relationship Management e-crm E-Banking and Payment System Technology-Driven Demand and e- Customer Relationship Management e-crm Sittikorn Direksoonthorn Assumption University 1/2004 E-Banking and Payment System Quick Win Agenda Data

More information

Enterprise Facility Management Software

Enterprise Facility Management Software Enterprise Facility Management Software How your environment can benefit from enteliweb systems Scheduling Event scheduling in enteliweb allows occupancy to be associated with specific date ranges or recurrences.

More information

VeLA: A Visual elearning Analytics tool

VeLA: A Visual elearning Analytics tool VeLA: A Visual elearning Analytics tool Juan Cruz-Benito Francisco J. García-Peñalvo GRIAL Research Group Departament of Computers and Automatics University of Salamanca juancb@usal.es / @_juancb fgarcia@usal.es

More information

City Data Pipeline. A System for Making Open Data Useful for Cities. stefan.bischof@tuwien.ac.at

City Data Pipeline. A System for Making Open Data Useful for Cities. stefan.bischof@tuwien.ac.at City Data Pipeline A System for Making Open Data Useful for Cities Stefan Bischof 1,2, Axel Polleres 1, and Simon Sperl 1 1 Siemens AG Österreich, Siemensstraße 90, 1211 Vienna, Austria {bischof.stefan,axel.polleres,simon.sperl}@siemens.com

More information

Consumption of OData Services of Open Items Analytics Dashboard using SAP Predictive Analysis

Consumption of OData Services of Open Items Analytics Dashboard using SAP Predictive Analysis Consumption of OData Services of Open Items Analytics Dashboard using SAP Predictive Analysis (Version 1.17) For validation Document version 0.1 7/7/2014 Contents What is SAP Predictive Analytics?... 3

More information

4-06-35. John R. Vacca INSIDE

4-06-35. John R. Vacca INSIDE 4-06-35 INFORMATION MANAGEMENT: STRATEGY, SYSTEMS, AND TECHNOLOGIES ONLINE DATA MINING John R. Vacca INSIDE Online Analytical Modeling (OLAM); OLAM Architecture and Features; Implementation Mechanisms;

More information

Oracle Database 11g Comparison Chart

Oracle Database 11g Comparison Chart Key Feature Summary Express 10g Standard One Standard Enterprise Maximum 1 CPU 2 Sockets 4 Sockets No Limit RAM 1GB OS Max OS Max OS Max Database Size 4GB No Limit No Limit No Limit Windows Linux Unix

More information

Enterprise Resource Planning Analysis of Business Intelligence & Emergence of Mining Objects

Enterprise Resource Planning Analysis of Business Intelligence & Emergence of Mining Objects Enterprise Resource Planning Analysis of Business Intelligence & Emergence of Mining Objects Abstract: Build a model to investigate system and discovering relations that connect variables in a database

More information

Decision Support Optimization through Predictive Analytics - Leuven Statistical Day 2010

Decision Support Optimization through Predictive Analytics - Leuven Statistical Day 2010 Decision Support Optimization through Predictive Analytics - Leuven Statistical Day 2010 Ernst van Waning Senior Sales Engineer May 28, 2010 Agenda SPSS, an IBM Company SPSS Statistics User-driven product

More information

Vendor briefing Business Intelligence and Analytics Platforms Gartner 15 capabilities

Vendor briefing Business Intelligence and Analytics Platforms Gartner 15 capabilities Vendor briefing Business Intelligence and Analytics Platforms Gartner 15 capabilities April, 2013 gaddsoftware.com Table of content 1. Introduction... 3 2. Vendor briefings questions and answers... 3 2.1.

More information

VISUALIZATION OF GEOSPATIAL METADATA FOR SELECTING GEOGRAPHIC DATASETS

VISUALIZATION OF GEOSPATIAL METADATA FOR SELECTING GEOGRAPHIC DATASETS Helsinki University of Technology Publications in Cartography and Geoinformatics Teknillisen korkeakoulun kartografian ja geoinformatiikan julkaisuja Espoo 2005 TKK-ICG-6 VISUALIZATION OF GEOSPATIAL METADATA

More information

Challenges in Visual Data Analysis

Challenges in Visual Data Analysis Challenges in Visual Data Analysis Daniel A. Keim, Florian Mansmann, Jörn Schneidewind, and Hartmut Ziegler University of Konstanz, Germany {keim, mansmann, schneide, ziegler}@inf.uni-konstanz.de Abstract

More information

Business Intelligence. A Presentation of the Current Lead Solutions and a Comparative Analysis of the Main Providers

Business Intelligence. A Presentation of the Current Lead Solutions and a Comparative Analysis of the Main Providers 60 Business Intelligence. A Presentation of the Current Lead Solutions and a Comparative Analysis of the Main Providers Business Intelligence. A Presentation of the Current Lead Solutions and a Comparative

More information

AMPLIO VQA A Web Based Visual Query Analysis System for Micro Grid Energy Mix Planning

AMPLIO VQA A Web Based Visual Query Analysis System for Micro Grid Energy Mix Planning International Workshop on Visual Analytics (2012) K. Matkovic and G. Santucci (Editors) AMPLIO VQA A Web Based Visual Query Analysis System for Micro Grid Energy Mix Planning A. Stoffel 1 and L. Zhang

More information

Big Data. Introducción. Santiago González

Big Data. Introducción. Santiago González <sgonzalez@fi.upm.es> Big Data Introducción Santiago González Contenidos Por que BIG DATA? Características de Big Data Tecnologías y Herramientas Big Data Paradigmas fundamentales Big Data Data Mining

More information

Module 3: Refining and Retrieving Data

Module 3: Refining and Retrieving Data Module 3: Refining and Retrieving Data The Streams Project database holds all of the data from your field forms, the lab analysis of phosphorus, E.coli, Coliform and total suspended solids (TSS), and GISanalysis

More information

Exploring Big Data using Visual Analytics

Exploring Big Data using Visual Analytics Exploring Big Data using Visual Analytics Daniel A. Keim Data Analysis and Information Visualization Group University of Konstanz, Germany Data Mining for Business Intelligence, Beer Sheva, Israel April

More information

An Introduction to SAS Enterprise Miner and SAS Forecast Server. André de Waal, Ph.D. Analytical Consultant

An Introduction to SAS Enterprise Miner and SAS Forecast Server. André de Waal, Ph.D. Analytical Consultant SAS Analytics Day An Introduction to SAS Enterprise Miner and SAS Forecast Server André de Waal, Ph.D. Analytical Consultant Agenda 1. Introduction to SAS Enterprise Miner 2. Basics 3. Enterprise Miner

More information

Information & Data Visualization. Yasufumi TAKAMA Tokyo Metropolitan University, JAPAN ytakama@sd.tmu.ac.jp

Information & Data Visualization. Yasufumi TAKAMA Tokyo Metropolitan University, JAPAN ytakama@sd.tmu.ac.jp Information & Data Visualization Yasufumi TAKAMA Tokyo Metropolitan University, JAPAN ytakama@sd.tmu.ac.jp 1 Introduction Contents Self introduction & Research purpose Social Data Analysis Related Works

More information

Visualizing Human Trajectories: Comparing Space-Time Cubes and Static Maps

Visualizing Human Trajectories: Comparing Space-Time Cubes and Static Maps http://dx.doi.org/10.14236/ewic/hci2014.24 Visualizing Human Trajectories: Comparing Space-Time Cubes and Static Maps 1 Tiago Gonc alves 1, Ana Paula Afonso 1, and Bruno Martins 2 Departamento de Informa

More information

GeoKettle: A powerful open source spatial ETL tool

GeoKettle: A powerful open source spatial ETL tool GeoKettle: A powerful open source spatial ETL tool FOSS4G 2010 Dr. Thierry Badard, CTO Spatialytics inc. Quebec, Canada tbadard@spatialytics.com Barcelona, Spain Sept 9th, 2010 What is GeoKettle? It is

More information

20 A Visualization Framework For Discovering Prepaid Mobile Subscriber Usage Patterns

20 A Visualization Framework For Discovering Prepaid Mobile Subscriber Usage Patterns 20 A Visualization Framework For Discovering Prepaid Mobile Subscriber Usage Patterns John Aogon and Patrick J. Ogao Telecommunications operators in developing countries are faced with a problem of knowing

More information

Big Data: Rethinking Text Visualization

Big Data: Rethinking Text Visualization Big Data: Rethinking Text Visualization Dr. Anton Heijs anton.heijs@treparel.com Treparel April 8, 2013 Abstract In this white paper we discuss text visualization approaches and how these are important

More information

RESEARCH ON THE FRAMEWORK OF SPATIO-TEMPORAL DATA WAREHOUSE

RESEARCH ON THE FRAMEWORK OF SPATIO-TEMPORAL DATA WAREHOUSE RESEARCH ON THE FRAMEWORK OF SPATIO-TEMPORAL DATA WAREHOUSE WANG Jizhou, LI Chengming Institute of GIS, Chinese Academy of Surveying and Mapping No.16, Road Beitaiping, District Haidian, Beijing, P.R.China,

More information

Data Warehouse: Introduction

Data Warehouse: Introduction Base and Mining Group of Base and Mining Group of Base and Mining Group of Base and Mining Group of Base and Mining Group of Base and Mining Group of Base and Mining Group of base and data mining group,

More information

Big Data from a Database Theory Perspective

Big Data from a Database Theory Perspective Big Data from a Database Theory Perspective Martin Grohe Lehrstuhl Informatik 7 - Logic and the Theory of Discrete Systems A CS View on Data Science Applications Data System Users 2 Us Data HUGE heterogeneous

More information

A very short talk about Apache Kylin Business Intelligence meets Big Data. Fabian Wilckens EMEA Solutions Architect

A very short talk about Apache Kylin Business Intelligence meets Big Data. Fabian Wilckens EMEA Solutions Architect A very short talk about Apache Kylin Business Intelligence meets Big Data Fabian Wilckens EMEA Solutions Architect 1 The challenge today 2 Very quickly: OLAP Online Analytical Processing How many beers

More information

Visualizing the Top 400 Universities

Visualizing the Top 400 Universities Int'l Conf. e-learning, e-bus., EIS, and e-gov. EEE'15 81 Visualizing the Top 400 Universities Salwa Aljehane 1, Reem Alshahrani 1, and Maha Thafar 1 saljehan@kent.edu, ralshahr@kent.edu, mthafar@kent.edu

More information

Implementing Data Models and Reports with Microsoft SQL Server 2012

Implementing Data Models and Reports with Microsoft SQL Server 2012 10778 - Implementing Data Models and Reports with Microsoft SQL Server 2012 Duration: 5 days Course Price: $2,695 Software Assurance Eligible Course Description 10778 - Implementing Data Models and Reports

More information

CHAPTER 1 INTRODUCTION

CHAPTER 1 INTRODUCTION 1 CHAPTER 1 INTRODUCTION Exploration is a process of discovery. In the database exploration process, an analyst executes a sequence of transformations over a collection of data structures to discover useful

More information

DATA MINING TOOL FOR INTEGRATED COMPLAINT MANAGEMENT SYSTEM WEKA 3.6.7

DATA MINING TOOL FOR INTEGRATED COMPLAINT MANAGEMENT SYSTEM WEKA 3.6.7 DATA MINING TOOL FOR INTEGRATED COMPLAINT MANAGEMENT SYSTEM WEKA 3.6.7 UNDER THE GUIDANCE Dr. N.P. DHAVALE, DGM, INFINET Department SUBMITTED TO INSTITUTE FOR DEVELOPMENT AND RESEARCH IN BANKING TECHNOLOGY

More information

Visualisatie BMT. Introduction, visualization, visualization pipeline. Arjan Kok Huub van de Wetering (h.v.d.wetering@tue.nl)

Visualisatie BMT. Introduction, visualization, visualization pipeline. Arjan Kok Huub van de Wetering (h.v.d.wetering@tue.nl) Visualisatie BMT Introduction, visualization, visualization pipeline Arjan Kok Huub van de Wetering (h.v.d.wetering@tue.nl) 1 Lecture overview Goal Summary Study material What is visualization Examples

More information

Time Series Data Visualization

Time Series Data Visualization Time Series Data Visualization Time Series Data Fundamental chronological component to the data set Random sample of 4000 graphics from 15 of world s newspapers and magazines from 74-80 found that 75%

More information

Data Mining for Manufacturing: Preventive Maintenance, Failure Prediction, Quality Control

Data Mining for Manufacturing: Preventive Maintenance, Failure Prediction, Quality Control Data Mining for Manufacturing: Preventive Maintenance, Failure Prediction, Quality Control Andre BERGMANN Salzgitter Mannesmann Forschung GmbH; Duisburg, Germany Phone: +49 203 9993154, Fax: +49 203 9993234;

More information

Software for time series visualization

Software for time series visualization Software for time series visualization April 2016 I. Web-based The software packages listed in this section allow the visualizing time series data on websites. Recommended software packages are Plotly

More information

The Scientific Data Mining Process

The Scientific Data Mining Process Chapter 4 The Scientific Data Mining Process When I use a word, Humpty Dumpty said, in rather a scornful tone, it means just what I choose it to mean neither more nor less. Lewis Carroll [87, p. 214] In

More information

Zhenping Liu *, Yao Liang * Virginia Polytechnic Institute and State University. Xu Liang ** University of California, Berkeley

Zhenping Liu *, Yao Liang * Virginia Polytechnic Institute and State University. Xu Liang ** University of California, Berkeley P1.1 AN INTEGRATED DATA MANAGEMENT, RETRIEVAL AND VISUALIZATION SYSTEM FOR EARTH SCIENCE DATASETS Zhenping Liu *, Yao Liang * Virginia Polytechnic Institute and State University Xu Liang ** University

More information

Statistics for BIG data

Statistics for BIG data Statistics for BIG data Statistics for Big Data: Are Statisticians Ready? Dennis Lin Department of Statistics The Pennsylvania State University John Jordan and Dennis K.J. Lin (ICSA-Bulletine 2014) Before

More information

DICON: Visual Cluster Analysis in Support of Clinical Decision Intelligence

DICON: Visual Cluster Analysis in Support of Clinical Decision Intelligence DICON: Visual Cluster Analysis in Support of Clinical Decision Intelligence Abstract David Gotz, PhD 1, Jimeng Sun, PhD 1, Nan Cao, MS 2, Shahram Ebadollahi, PhD 1 1 IBM T.J. Watson Research Center, New

More information

TRENDS IN THE DEVELOPMENT OF BUSINESS INTELLIGENCE SYSTEMS

TRENDS IN THE DEVELOPMENT OF BUSINESS INTELLIGENCE SYSTEMS 9 8 TRENDS IN THE DEVELOPMENT OF BUSINESS INTELLIGENCE SYSTEMS Assist. Prof. Latinka Todoranova Econ Lit C 810 Information technology is a highly dynamic field of research. As part of it, business intelligence

More information

39 Solving Problems with Visual Analytics: Challenges and Applications

39 Solving Problems with Visual Analytics: Challenges and Applications 39 Solving Problems with Visual Analytics: Challenges and Applications Daniel Keim, University of Konstanz, Germany Leishi Zhang, University of Konstanz, Germany Miloš Krstajić, University of Konstanz,

More information

1 1 Product Information

1 1 Product Information Product Information 1 1 TOTAL BILLING SOLUTIONS Rate&Bill may be used for various billing needs Billing systems play a fundamental role in revenue collection for service providers. However, many systems

More information

Data Management Practices for Intelligent Asset Management in a Public Water Utility

Data Management Practices for Intelligent Asset Management in a Public Water Utility Data Management Practices for Intelligent Asset Management in a Public Water Utility Author: Rod van Buskirk, Ph.D. Introduction Concerned about potential failure of aging infrastructure, water and wastewater

More information

GEOG 482/582 : GIS Data Management. Lesson 10: Enterprise GIS Data Management Strategies GEOG 482/582 / My Course / University of Washington

GEOG 482/582 : GIS Data Management. Lesson 10: Enterprise GIS Data Management Strategies GEOG 482/582 / My Course / University of Washington GEOG 482/582 : GIS Data Management Lesson 10: Enterprise GIS Data Management Strategies Overview Learning Objective Questions: 1. What are challenges for multi-user database environments? 2. What is Enterprise

More information