Perpetuities and Annuities EC Borja Larrain


 Arron Hunt
 1 years ago
 Views:
Transcription
1 Perpetuities and Annuities EC 1745 Borja Larrain
2 Today: 1. Perpetuities. 2. Annuities. 3. More examples. Readings: Chapter 3 Welch (DidyoureadChapters1and2?Don twait.) Assignment 1 due next week (09/29).
3 Questions/Goal of this class: NPVandexcelareapain: Dowealwayshaveto compute these long summations for projects with many periods? Some people seem to have a calculator in their heads: How do they compute the NPV of a project so fast? Examples: If a firm produces $5 million/year forever, and the interest rate is a constant 5% forever, what is the value of the firm? (A: $100 million) In this class we ll see some shortcuts that can make these calculations very easy. These formulas also illustrate the importance of assumptions about interest rates for evaluating projects and assets. Yes, 1% can be the difference between being a millionaire and bankruptcy.
4 1 Perpetuities A perpetuity is a financial instrument that pays C dollars per period, forever. If the interest rate is constant and the first payment from the perpetuity arrives in period 1, then the Present Value of the perpetuity is: PV = X t=1 C (1 + r) t = C (1 + r) + C (1 + r) = C r IMPORTANT: the first cash flow is tomorrow (t =1), not today (t =0).
5 If a firm produces $5 million/year forever, beginning next year, and the interest rate is a constant 5% forever, what is the value of the firm? X t=1 5 (1 + 5%) t = =100 What is the value of a perpetuity if the first cash flow is today rather than tomorrow? X t=0 C (1 + r) t = C + X t=1 C (1 + r) t = C + C r So, if the firm starts producing 5 million right away its value is $105.
6 What if they offer you today a perpetuity with a 5% rate, but that starts paying $5 in two more years (t =2)? In one more year the perpetuity will be worth 5/0.05 = 100. And having 100 in one more year is worth today: r = =95.23
7 1.1 Growing Perpetuities A growing perpetuity pays C, thenc (1 + g), then C (1 + g) 2, then... For example, if C =$100and g =0.10 = 10%, then you will receive the following payments: C 0 = $0 C 1 = $100 C 2 = $100 (1 + 10%) = $110 C 3 = $100 (1 + 10%) 2 =$ IMPORTANT: It s easy to get confused with the timing. In general: C t = C 1 (1 + g) t 1 The relevant discount rate for the cash flow at t is r 0,t.
8 Definition The Present Value of a growing perpetuity is: X t=1 C t (1 + r) t = X t=1 C (1 + g) t 1 (1 + r) t = C r g Memorize this formula! It s very helpful. Thegrowthincashflowsactsasareductioninthe interest rate. Or, to put it in a slightly more convoluted way, a reduction in the interest rate acts as an increase in cash flows...aha!, do you see how you can "improve" the outlook on a company or project with only a slight modification of the interest rate you are assuming?
9 What is the value of a promise to receive $10 next year, growing by 2% (just the inflation rate) forever, if the interest rate is 6% per year? = $250 What is the value of a firm that just paid $10 this year, growing by 2% (just the inflation rate) forever, if the interest rate is 6% per year? 10(1 + 2%) =$255 What is the value of a firm that will only grow at the inflation rate (π), and which will have $E million in earnings next year? P = E r π In 10 years a firm will have cash flows of $100 million. Thereafter, its cash flow will grow at the inflation
10 rate of 3%. if the interest rate is 8%, estimate the value of the firm if you sell the firm in the 10th year =$2.06 billion This selling (or residual) value assumption is typical in many applications as a way to simplify NPV computations. The firm is assumed to become a perpetuity at some point in the future (say 10 or 20 years) and the first years are studied in more detail.
11 1.2 The Gordon Dividend Growth Model What is the share price of a firm that will pay dividends of $1 next year, with dividends that grow at 4% annually forever, and with a cost of capital of 12%? P = D r g = =12.5 There are many "ifs" in applying the perpetuity formula to stocks: dividends forever and always growing? Still, these assumptions are not that bad as a first approximation: dividends are quite stable in time once a firm starts paying them (more on this at the end of this course).
12 Another way to use this formula: what is the cost of capital of a firm with a dividend yield of 5% and with dividends that grow at 3% forever? r = D P + g =5%+3%=8% But be careful with naive applications of this formula. Example: Glassman and Hassett s "Dow 36, 000" written at the end of the 1990s (peak of the internet bubble). When they wrote the book the Dow Jones was at 9, 000 and the dividend yield at 2%. These imply D =2% 9, 000 = 180. They assumed that the longrun growth rate of the economy was 2.5% and r =3%(yield on Treasury Bills at the time). With these assumptions: P =180/(3% 2.5%) = 36, 000.
13 However, the Dow Jones today is at ±11, 000. What went wrong? Hint: is the cost of capital they assumed a reasonable number for stocks? Probably not, the number is too low. Why? More on this later on the course. If r =6%, P =180/(6% 2.5%) = 5, 142 Calculations are very sensitive to the r you assume.
14 2 Annuities An annuity is a financial instrument that pays C dollars for T years. It has the following PV formula: PV = TX t=1 C (1 + r) t = C r " 1 # 1 (1 + r) T You should be able to remember this formula. One trick: think of the annuity as a perpetuity today minus a perpetuity given at time T : C r 1 (1+r) T ³ Cr.
15 Annuities Perpetuity A pays a for ever starting next period Annuity C pays for T periods starting next period. Perpetuity B Perpetuity B pays a for ever starting T periods from now A B = C = a 1 r r (1 1 + r ) T
16 Proof: Define 1/(1 + r) =q. The value of a an annuity is: P = Cq + Cq 2 + Cq Cq T Now, apply the "Gaussian" trick and multiply everything by q: Pq = Cq 2 + Cq 3 + Cq Cq T +1 Subtract the second line from the first: P Pq = Cq Cq T +1 Therefore, P = Cq(1 qt ) 1 q Once you substitute q for what it is you ll get our formula. For the special case where T (i.e., a perpetuity) it turns out that q T 0 because q<1, and therefore P = C/r.
17 2.1 Annuity Example: Mortgage Loan A 30year mortgage is an annuity with 360 payments, starting one month from today. Because payments are monthly we need the monthly interest rate. The monthly rate is the quoted rate divided by 12 (In other words, like bank interest, your actual annual rate is higher than quoted, nice!) The monthly rate on a 9% mortgage is: r monthly =0.09/12 = 75 bp per month If you take a $1.2 million fixed rate mortgage with 30 years to maturity, 360 equal monthly payments, and a quoted interest rate of 9%: what is your monthly
18 mortgage payment? C 1, 200, 000 = C (1.0075) 360 " C 1 1, 200, 000 = ( ) 360 C = $9, #
19 2.2 Annuities vs. Perpetuities What fraction of a perpetuity s value comes from the first T years? The difference between a perpetuity and an annuity (in % terms) is: PV(perpetuity) PV(annuity) PV(perpetuity) = 1 (1 + r) T This number gets smaller as r or T get bigger. For example, if r =5%and T =30, this number is 23%, but if r =10%and T =30, this number is only 6%. So, for high interest rates, the cash flows after 30 years or so are basically irrelevant.
20 Put differently, is it reasonable to use a perpetuity as an approximation for an annuity? (the formula is easier, isn t it?) Yes, if interest rates are high or if the annuity is of sufficientlylongmaturity.
21 3 More examples/applications 3.1 Rental Equivalents Think of 3 alternatives: Machine A: costs $20k upfront and lasts 18 years. It has annual maintenance costs of $1k per year. Machine B: costs $25k upfront and lasts 30 years. It has annual maintenance costs of $900 per year. Outsource production for $2,500 per year Theinterestrateis10%peryear. Machine A costs $2,438.60: $20 = C 0.1 " 1 1 ( ) 18 # C =2, 438.6
22 Plus maintenance, Option A costs $3, Option B costs $2, plus 900 maintenance = $3,551. So, Option C is a bargain! Careful: this answer depends on the implicit assumption of "equal repetition".
23 3.2 How to cheat on loans The advertisement of an actual automobile loan agreement claimed: "12 months car loans. Only 9%" Butthisishowthiscardealercalculatedpayments on a $10,000 car: a $10k loan at 9% implies you owe $10, equal payments imply 10, 900/12 = $ per month. Is the PV of this loan $10,000? Actually, no. What is the implied interest rate (or IRR) on this loan? 10, 000 = r monthly = 1.35% r monthly ³ 1+rmonthly 12
24 But this monthly rates does not imply 9% annually: (1 + r monthly ) 12 1 r annual =17.5% The dealer is assuming you borrow 10k for the whole year, but you are actually making monthly payments and thereby reducing what you owe during the year. It s cheating! A true loan of 9% a year implies a monthly payment of just $ (homework: get this number! First get the true monthly rate if the annual rate is 9%). This is how ordinary loans and mortgages work.
25 3.3 Growing annuities A growing annuity pays C (1+g) t 1 per year starting in period 1 for T periods. The Present Value of a growing annuity is: PV = TX t=1 C (1 + g) t 1 (1 + r) t = C " 1 r g # (1 + g)t (1 + r) T Don t bother to memorize this formula! Example: An insurance company offers a retirement annuity that pays $100 per year for 15 years, growing at an "inflationcompensator" rate of 3%, and sells for $ What is the interest rate? = 100 r 3% r = 11.76% " 1 (1 + 3%)15 (1 + r) 15 #
26 READ CHAPTERS 3 & 4, NOW! (ASSIGNMENT 1 COVERS MATERIAL UP TO Ch. 4)
H O W T O C A L C U L A T E PRESENT VALUES CHAPTER THREE. Brealey Meyers: Principles of Corporate Finance, Seventh Edition
CHAPTER THREE H O W T O C A L C U L A T E PRESENT VALUES 32 IN CHAPTER 2 we learned how to work out the value of an asset that produces cash exactly one year from now. But we did not explain how to value
More informationFinding the Payment $20,000 = C[1 1 / 1.0066667 48 ] /.0066667 C = $488.26
Quick Quiz: Part 2 You know the payment amount for a loan and you want to know how much was borrowed. Do you compute a present value or a future value? You want to receive $5,000 per month in retirement.
More informationTHE TIME VALUE OF MONEY
1 THE TIME VALUE OF MONEY A dollar today is worth more than a dollar in the future, because we can invest the dollar elsewhere and earn a return on it. Most people can grasp this argument without the use
More informationIntroduction (I) Present Value Concepts. Introduction (II) Introduction (III)
Introduction (I) Present Value Concepts Philip A. Viton February 19, 2014 Many projects lead to impacts that occur at different times. We will refer to those impacts as constituting an (inter)temporal
More informationCHAPTER 6 NET PRESENT VALUE AND OTHER INVESTMENT CRITERIA
CHAPTER 6 NET PRESENT VALUE AND OTHER INVESTMENT CRITERIA Answers to Concepts Review and Critical Thinking Questions 1. Assuming conventional cash flows, a payback period less than the project s life means
More informationInvestment, Time, and Present Value
Investment, Time, and Present Value Contents: Introduction Future Value (FV) Present Value (PV) Net Present Value (NPV) Optional: The Capital Asset Pricing Model (CAPM) Introduction Decisions made by a
More informationsubstantially more powerful. The internal rate of return feature is one of the most useful of the additions. Using the TI BA II Plus
for Actuarial Finance Calculations Introduction. This manual is being written to help actuarial students become more efficient problem solvers for the Part II examination of the Casualty Actuarial Society
More informationChapter 3 Present Value
Chapter 3 Present Value MULTIPLE CHOICE 1. Which of the following cannot be calculated? a. Present value of an annuity. b. Future value of an annuity. c. Present value of a perpetuity. d. Future value
More informationGet the facts: Capital guaranteed or protected investments 1
Get the facts: Capital guaranteed or protected investments 1 Wouldn t it have been great if you had been able to protect your investments from tumbling investment markets during the global financial crisis?
More informationUsing Credit to Your Advantage.
Using Credit to Your Advantage. Topic Overview. The Using Credit To Your Advantage topic will provide participants with all the basic information they need to understand credit what it is and how to make
More informationLife Insurance Buyer s Guide
Life Insurance Buyer s Guide This guide can show you how to save money when you shop for life insurance. It helps you to:  Decide how much life insurance you should buy,  Decide what kind of life insurance
More informationAdvanced Fixed Income Callable Bonds Professor Anh Le
1 What are callable bonds? When you take out a fixed rate mortgage to buy a house, you usually have the option of pre paying the mortgage. The common term to use is to refinance. And people would refinance
More informationPresent Value. Aswath Damodaran. Aswath Damodaran 1
Present Value Aswath Damodaran Aswath Damodaran 1 Intuition Behind Present Value There are three reasons why a dollar tomorrow is worth less than a dollar today Individuals prefer present consumption to
More informationPrepared by the National Association of Insurance Commissioners. This guide does not endorse any company or policy.
Prepared by the National Association of Insurance Commissioners The National Association of Insurance Commissioners is an association of state insurance regulatory officials. This association helps the
More informationREPAYING YOUR LOAN EARLY. www.fla.org.uk
REPAYING YOUR LOAN EARLY www.fla.org.uk REPAYING YOUR LOAN EARLY What this leaflet tells you Early repayment, or early settlement, is where you repay some or all of your loan before you were required to.
More informationLife. The Instant Insurance Guide: A buyer s guide to life insurance and annuities in Delaware. www.delawareinsurance.gov
The Instant Insurance Guide: Life A buyer s guide to life insurance and annuities in Delaware From Karen Weldin Stewart, CIRML Delaware s Insurance Commissioner 18002828611 www.delawareinsurance.gov
More informationNotes on Present Value, Discounting, and Financial Transactions
Notes on Present Value, Discounting, and Financial Transactions Professor John Yinger The Maxwell School Sracuse Universit Version 2.0 Introduction These notes introduce the concepts of present value and
More informationEquity Indexed Annuities Look Before You Leap
Equity Indexed Annuities Look Before You Leap by Dr. John R. Brock Does an equity indexed annuity (EIA) offer the elusive free lunch for investors by providing both protection of principal and meaningful
More informationReturn on Investment Analysis for Ebusiness Projects
Return on Investment Analysis for Ebusiness Projects Mark Jeffery, Northwestern University Introduction 1 The Information Paradox 2 Review of Basic Finance 4 The Time Value of Money 4 ROI, Internal Rate
More informationBuyer s Guide for. Deferred Annuities. For personal, noncommercial use only.
Buyer s Guide for Deferred Annuities Prepared by the NAIC National Association of Insurance Commissioners The National Association of Insurance Commissioners is an association of state insurance regulatory
More information33 DISCOUNTED PRESENT VALUE
33 DISCOUNTED PRESENT VALUE Purpose: To illustrate the idea of discounted present value with computations of the value of payments to be received in the future at different rates of interest. To use discounted
More informationECG590I Asset Pricing. Lecture 2: Present Value 1
ECG59I Asset Pricing. Lecture 2: Present Value 1 2 Present Value If you have to decide between receiving 1$ now or 1$ one year from now, then you would rather have your money now. If you have to decide
More informationBuilding Your Future A Student and Teacher Resource for Financial Literacy Education
Building Your Future A Student and Teacher Resource for Financial Literacy Education Copyright 2009, 2011 The Actuarial Foundation About This Book Personal finance is part knowledge and part skill and
More informationBuyer s Guide for. Deferred Annuities
Buyer s Guide for Deferred Annuities Prepared by the NAIC National Association of Insurance Commissioners The National Association of Insurance Commissioners is an association of state insurance regulatory
More informationAnnuities, Insurance and Life
Annuities, Insurance and Life by Pat Goeters Department of Mathematics Auburn University Auburn, AL 368495310 1 2 These notes cover a standard oneterm course in Actuarial Mathematics with a primer from
More informationLesson 1. Net Present Value. Prof. Beatriz de Blas
Lesson 1. Net Present Value Prof. Beatriz de Blas April 2006 1. Net Present Value 1 1. Introduction When deciding to invest or not, a rm or an individual has to decide what to do with the money today.
More informationPaper P4. Advanced Financial Management. Professional Pilot Paper Options module. The Association of Chartered Certified Accountants
Professional Pilot Paper Options module Advanced Financial Management Time allowed Reading and planning: Writing: 15 minutes 3 hours This paper is divided into two sections: Section A THIS ONE question
More informationBUYER'S GUIDE TO EQUITYINDEXED ANNUITIES WHAT ARE THE DIFFERENT KINDS OF ANNUITY CONTRACTS?
BUYER'S GUIDE TO EQUITYINDEXED ANNUITIES Prepared by the National Association of Insurance Commissioners The National Association of Insurance Commissioners is an association of state insurance regulatory
More informationAN INTRODUCTION TO PREMIUM TREND
AN INTRODUCTION TO PREMIUM TREND Burt D. Jones * February, 2002 Acknowledgement I would like to acknowledge the valuable assistance of Catherine Taylor, who was instrumental in the development of this
More informationMicroeconomics Topic 2: Explain the principle of comparative advantage and how it leads to specialization and gains from trade.
Microeconomics Topic 2: Explain the principle of comparative advantage and how it leads to specialization and gains from trade. Reference: Gregory Mankiw s Principles of Microeconomics, 2 nd edition, Chapter
More information