Simultaneous three-dimensional myocardial T1 and T2 mapping in one breath hold with 3D- QALAS

Size: px
Start display at page:

Download "Simultaneous three-dimensional myocardial T1 and T2 mapping in one breath hold with 3D- QALAS"

Transcription

1 Simultaneous three-dimensional myocardial T1 and T2 mapping in one breath hold with 3D- QALAS Sofia Kvernby, Marcel Jan Bertus Warntjes, Henrik Haraldsson, Carl-Johan Carlhäll, Jan Engvall and Tino Ebbers Linköping University Post Print N.B.: When citing this work, cite the original article. Original Publication: Sofia Kvernby, Marcel Jan Bertus Warntjes, Henrik Haraldsson, Carl-Johan Carlhäll, Jan Engvall and Tino Ebbers, Simultaneous three-dimensional myocardial T1 and T2 mapping in one breath hold with 3D-QALAS, 214, Journal of Cardiovascular Magnetic Resonance, (16), Copyright: BioMed Central / Informa Healthcare Postprint available at: Linköping University Electronic Press

2 Kvernby et al. Journal of Cardiovascular Magnetic Resonance 214, 16:12 RESEARCH Simultaneous three-dimensional myocardial T1 and T2 mapping in one breath hold with 3D-QALAS Open Access Sofia Kvernby 1,2*, Marcel Jan Bertus Warntjes 1,2,3, Henrik Haraldsson 1,2, Carl-Johan Carlhäll 1,2,4, Jan Engvall 1,2,4 and Tino Ebbers 1,2,5 Abstract Background: Quantification of the longitudinal- and transverse relaxation time in the myocardium has shown to provide important information in cardiac diagnostics. Methods for cardiac relaxation time mapping generally demand a long breath hold to measure either T1 or T2 in a single 2D slice. In this paper we present and evaluate a novel method for 3D interleaved T1 and T2 mapping of the whole left ventricular myocardium within a single breath hold of 15 heartbeats. Methods: The 3D-QALAS (3D-quantification using an interleaved Look-Locker acquisition sequence with T2 preparation pulse) is based on a 3D spoiled Turbo Field Echo sequence using inversion recovery with interleaved T2 preparation. Quantification of both T1 and T2 in a volume of 13 slices with a resolution of 2.x2.x6. mm is obtained from five measurements by using simulations of the longitudinal magnetizations Mz. This acquisition scheme is repeated three times to sample k-space. The method was evaluated both in-vitro (validated against Inversion Recovery and Multi Echo) and in-vivo (validated against MOLLI and Dual Echo). Results: In-vitro, a strong relation was found between 3D-QALAS and Inversion Recovery (R =.998; N = 1; p <.1) and between 3D-QALAS and Multi Echo (R =.996; N = 1; p <.1). The 3D-QALAS method showed no dependence on e.g. heart rate in the interval of 4 12 bpm. In healthy myocardium, the mean T1 value was 183 ± 43 ms (mean ± SD) for 3D-QALAS and 189 ± 54 ms for MOLLI, while the mean T2 value was 5.4 ± 3.6 ms 3D-QALAS and 5.3 ± 3.5 ms for Dual Echo. No significant difference in in-vivo relaxation times was found between 3D-QALAS and MOLLI (N = 1; p =.65) respectively 3D-QALAS and Dual Echo (N = 1; p =.925) for the ten healthy volunteers. Conclusions: The 3D-QALAS method has demonstrated good accuracy and intra-scan variability both in-vitro and in-vivo. It allows rapid acquisition and provides quantitative information of both T1 and T2 relaxation times in the same scan with full coverage of the left ventricle, enabling clinical application in a broader spectrum of cardiac disorders. Keywords: Relaxation time, T1 mapping, T2 mapping, Three-dimensional, Myocardium, Cardiovascular magnetic resonance * Correspondence: sofia.kvernby@liu.se 1 Division of Cardiovascular Medicine, Department of Medical and Health Sciences, Linköping University, Linköping, Sweden 2 Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden Full list of author information is available at the end of the article 214 Kvernby et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver ( applies to the data made available in this article, unless otherwise stated.

3 Kvernby et al. Journal of Cardiovascular Magnetic Resonance 214, 16:12 Page 2 of 14 Background In daily clinical practice cardiovascular magnetic resonance (CMR) settings are generally chosen to highlight intensity contrast between tissues. By varying parameters such as the echo time, repetition time and flip angle it is possible to create different contrast weighted images. The absolute intensity in contrast weighted images is defined on an arbitrary scale that differs from one examination to another. Image interpretation thus relies on comparisons with surrounding tissue. Recently it has become feasible to obtain a quantitative measurement of the signal intensity corresponding to the absolute value of the longitudinal relaxation (T1), transverse relaxation (T2) and proton density in many organs [1]. This enables numerical comparison between different tissue compositions and hence the objective detection of pathological processes by measuring the deviation from the range of normal values. Another important advantage of these quantitative images is the application of synthetic CMR, which uses the absolute parameters T1 and T2 to synthesize any T1-weighted or T2-weighted contrast image [2]. In this way conventional images can be interpreted with simultaneous access to the quantitative parameters from the same acquisition. For cardiac applications, both quantitative T1 maps and quantitative T2 maps have been shown to provide important information. T1 maps have been successfully used to identify the area of myocardial infarction and to assess acute and chronic myocardial infarction [3]. Diffuse tissue changes such as diffuse fibrosis may be quantified noninvasively using T1 mapping where remote, normal, myocardium is not accessible for comparison [4-6]. Quantitative T2-mapping techniques have been validated in myocardial ischemia and edema [7,8] with robust results and increased accuracy in comparison with the commonly used T2-weighted images. In the assessment of edema in ischemic and non-ischemic heart disease, even native T1 mapping has provided helpful information [9]. Native T1- and T2-mapping techniques have also been validated for the determination of the area at risk after acute myocardial infarction [1]. Mapping of both relaxation parameters has potential for improving the differentiation between myocardium affected by various diseases and normal myocardium. Various methods are available to quantify the absolute parameters T1 and T2 in the heart. Due to cardiac motion and time constraints of the cardiac cycle, several difficulties are associated with these methods. The major drawback with the existing quantitative methods is the long imaging time. An inversion recovery sequence can be used to estimate values of T1 in the heart. To allow full magnetization recovery between the radio frequency inversion pulses a relaxation period of four to five times T1 is necessary. Since T1 often has a value exceeding the duration of the cardiac cycle, the clinical applicability of the method is limited. Look and Locker described a multi point approach [11], where the relaxation curve is sampled multiple times after the initial inversion pulse, which contributes to accelerate the acquisition. The drawback with the original Look Locker (LL) -method is that it uses continuous data acquisition and not selective data acquisition in a specific time frame of the cardiac cycle. Messroghli et al. presented, a now established, modified LL inversion recovery sequence (MOLLI) [12] which uses selective data acquisition and multiple LL experiments. The MOLLI sequence acquires in its original format one single slice of the heart in 17 heartbeats, which is a limitation to its clinical use since multiple breath holds may be required to cover the myocardium. A shortened version of MOLLI has also been presented with good agreement to the original version [13], but this is still a 2D mapping method providing a single slice of the heart in one breath hold. Three-dimensional T1-mapping methods of the heart do exist but generally suffer from long imaging time. Recently Coniglio et al. presented a 3D Inversion Recovery T1 mapping method of the heart using both ECG and respiratory triggers with accurate T1 estimates [14]. This free-breathing method was reported to take 5 8 minutes for six slices. Warntjes et al. presented a 3D single breath hold method for T1, but this approach is only appropriate at short T1 times, i.e. after administration of Gd contrast agent [15]. A multi echo sequence can be used to estimate values of T2 in the heart. Such a sequence often requires several echo time points and thus several repetitions to get a good signal to noise ratio in the T2 map and to sample enough data, which then becomes time consuming. T2 mapping methods using T2-preparation pulses exists and they appear to be robust and fast but they still only provide a single 2D slice map [16]. In this paper we present and evaluate a novel method for 3D interleaved T1 and T2 quantification of the whole left ventricular myocardium within a single breath hold of 15 heartbeats. Method Pulse sequence design The sequence is based on a cardiac triggered 3D spoiled fast gradient echo sequence, Turbo Field Echo, and named 3D-QALAS (3D-QuAntification using an interleaved Look-Locker Acquisition Sequence with T2 preparation pulse). The sequence block, described in Figure 1, can be divided into two phases, one T2 sensitizing phase and one T1 sensitizing phase, with five segmented acquisitions that are run three times during a single breath hold. The T2 sensitizing phase starts with a non slice-selective 9-degree RF pulse, followed by two 18-degree adiabatic RF refocusing pulses in a time of 5 ms. During this time

4 Kvernby et al. Journal of Cardiovascular Magnetic Resonance 214, 16:12 Page 3 of 14 Figure 1 Schematic overview of the proposed acquisition kernel. Five cardiac-triggered acquisitions (Acq1- Acq5) are performed during end-diastole. Prior to the first acquisition a T 2 -sensitizing phase decreases the M z magnetization proportional to the T 2 relaxation. Prior to the second acquisition a T 1 -sensitizing phase is applied to invert the M z magnetization. No sensitizing phases are applied before the other acquisitions. The typical M z magnetization evolution is displayed as the grey dotted line. At each interval the magnetization is labeled as M 1 -M 13. the magnetization in the xy plane decreases with the T2 relaxation time. After the last 18-degree pulse, a 9- degree RF pulse is applied to tilt the magnetization vector back to the Mz axis.the result of the T2 sensitizing phase is that T2 relaxation is encoded on the Mz axis. After the T2 sensitizing phase a 3D turbo field echo data acquisition is performed. The T1 sensitizing phase consists of a non slice-selective 18-degree 3D adiabatic inversion pulse followed by gradient spoiling. After an inversion time of 1 ms, a second acquisition is performed. During the following T1 relaxation, three more acquisitions are performed in consecutive heartbeats. The acquisition is hence performed once after the T2- prep pulse and four times after the T1sensitizing inversion pulse (5 heartbeats). The acquisitions use a flip angle of 5, a TFE-factor of 9, an echo time of 1.2 ms and a repetition time of 2.6 ms. This acquisition scheme is repeated three times to sample k-space, resulting in a breath hold of 15 heartbeats. The number of required k-space points is reduced due to the use of elliptical k-space filling. The center of k- space is sampled first and the periphery last (low-high order). The acquisition is accelerated using a sensitivity encoding (SENSE) reduction factor of 2 in the phase encoding (y) direction and a factor of 1.2 in the slice (z) direction. To minimize artifacts from cardiac motion the acquisition window is restricted to 23 ms in end-diastole by using cardiac ECG triggering. The resolution of the 3D acquisition is 2. mm, 2. mm and 12 mm in the frequency, phase and slice direction respectively. The data was reconstructed to 2. mm 2. mm 6 mm, resulting in thirteen short axis slices. Calculation of parameters T1 and T2 relaxation times are calculated from the five measurements by simulations of the longitudinal magnetizations Mz. In the absence of RF pulses, during the delay time between acquisitions, the M z relaxes with a T1 relaxation time, approaching the unsaturated magnetization M. In Figure 1, T1 relaxation occurs during the intervals M 3 -M 4,M 5 M 6,M 7 M 8,M 9 M 1,M 11 M 12 and M 13 M 1. During this period each magnetization M n+1 can be calculated from a previous magnetization M n with a time interval Δt according to: M nþ1 ¼ M ðm M n Þ e T Δt 1 ð1þ During acquisition, the observed T1 relaxation is altered in an effective T1* relaxation time by the RF pulses with a flip angle α and subsequent spoiling, repeated each repetition time T r. In Figure 1 T1* relaxation occurs during the intervals M 2 -M 3,M 6 M 7,M 8 M 9,M 1 M 11 and M 12 M 13. The longitudinal magnetization approaches a saturated magnetization M * which can be described by: T 1 T 1 ¼ M M ¼ 1 e T R T 1 1 cosðαþ e T R T 1 ð2þ Again each magnetization M n+1 can be calculated from a previous magnetization M n with a time interval Δt, but now according to: M nþ1 ¼ M ðm M n Þ e Δt T 1 ð3þ During the T1-sensitizing phase the longitudinal magnetization M z is inverted. During the T2-sensitizing phase the longitudinal magnetization M z is decreased by T2prep a factor e TE T 2, where TE T2prep is the time difference between the tip-down 9 degree RF pulse in x-direction and the tip-up 9 degree RF pulse in the x-direction. The total acquisition results in 5 measured signals for each voxel, proportional to the magnetization M 2,M 6, M 8,M 1 and M 12 in Figure 1. The T1 and M values are found per voxel by using equation 1 3 in an iterative method by minimizing the

5 Kvernby et al. Journal of Cardiovascular Magnetic Resonance 214, 16:12 Page 4 of 14 squared difference between the expected magnetization M z and the five signal data points. The T2 relaxation time is calculated using the extrapolated magnetizations just prior to the T2-sensitizing phase, M 1, and just after the T2-sensitizing phase, M 2, according to: TE T2prep T 2 ¼ lnðm 1 =M 2 Þ ð4þ Generation of the T1 and T2 maps was implemented on a standalone version of SyMRI (SyntheticMR, Sweden) and required less than 1 seconds on a standard PC. Validation The MR pulse sequence was implemented on a Philips Ingenia 3T MR system (Philips Healthcare, Best, the Netherlands) and was evaluated by phantom studies as well as in-vivo comparison with other approaches. Phantom studies Test phantoms were manufactured with different concentrations of agarose (3-5% agarose in sterile water), doped with different amounts of gadolinium-gadovist ([Gd] =.2-.1 mm) each phantom thus representing specific relaxation times with T1 ~ 2 18 ms and T2 ~ ms. Phantoms were randomly distributed in a plastic container holding water at room temperature. A physiology simulator for artificial heart triggering was used and initially set to a heart rate of 6 beats per minute. A series of 3D-QALAS scans were performed by intentionally varying some parameters that might affect the quantification, with the aim to investigate the robustness of the sequence. The simulated heart rate was varied from 4 12 bpm, the range previously recommended for cardiac relaxation times mapping [17], and the flip angle during acquisition, α, was varied from 4 8 degrees. Cardiac arrhythmias simulating atrial fibrillation or variations in the length of the cardiac cycle were deliberately applied to investigate its effect on the relaxation times measurements. Gaussian noise distributions with three different widths were used to change the length of the cardiac cycle in order to simulate fibrillation. Phantom measurements with simulated arrhythmia were repeated twenty times so that applied noise would occur randomly over the measurement. Reference values of T1 were established by using a standard inversion recovery turbo spin-echo sequence, with inversion times (TI) varying from 1 5 ms and a TR of 1 ms. Reference values of T2 were established by using a standard multi echo turbo spin-echo sequence, with echo times (TE) varying from 1 ms to 2 ms by increments of 1 ms and a TR of 3 ms. In vivo studies Ten healthy volunteers with no history of cardiovascular disease underwent three 3D-QALAS scans, in the same session, in order to investigate the intra-scan variability of the method. The left ventricular images were viewed in short axis orientation. For comparison, three repeated conventional T1 and T2 measurements were performed in a mid ventricular 2D short axis slice. For T1 a MOLLI [12] acquisition was performed and for T2 comparison a dual echo GraSE sequence was used, both with a resolution of mm. Ethics approval was granted and all subjects gave written informed consent. Details regarding the subjects are presented in Table 1. Mean values and standard deviation of relaxation times for each individual were calculated from three repeated image acquisitions. In each examination, four regions of interests were defined (septal, anterior, lateral and posterior) in a mid cavity short axis slice. Mean values and standard deviations of relaxation times were also calculated for the separate myocardial regions, as an average of the ten subjects. For analysis of the T1 and T2 maps a standalone version of SyMRI (Synthetic MR, Sweden) was used. The 3D-QALAS sequence was also validated pre and post contrast in a 65 year old male with a myocardial infarction in the inferolateral region of the left ventricle. For comparison, late gadolinium enhancement imaging was acquired. Results Phantom studies The relation between 3D-QALAS and Inversion Recovery for T1 respectively Multi Echo for T2 was investigated using Pearson correlation coefficient. There was a strong relation between 3D-QALAS and Inversion Recovery (R =.998; N = 1; p<.1) and between 3D-QALAS and Multi Echo (R =.996; N = 1; p<.1) for relaxation times Table 1 Characteristics of subjects included in the study Sex Age (years) Height (cm) Weight (kg) Heart rate (bpm) Volunteer 1 Male Volunteer 2 Male Volunteer 3 Male Volunteer 4 Male Volunteer 5 Female Volunteer 6 Male Volunteer 7 Male Volunteer 8 Male Volunteer 9 Male Volunteer 1 Male

6 Kvernby et al. Journal of Cardiovascular Magnetic Resonance 214, 16:12 Page 5 of 14 Figure 2 Bland-Altman plot for T1 values at 6 bpm with 3D-QALAS and inversion recovery in phantoms. Thick dashed line represents overall average difference between measurements ( 15.3 ms), thin dashed lines represent 2SD. in phantoms. Bland-Altman plots, in Figures 2 and 3, show the distribution of 3D-QALAS and Inversion Recovery respectively Multi Echo in phantoms. Average difference between the measurements was 15.3 ms for T1 and 3.8 ms for T2. The 2SD range was 6.3 ms for T1 and 7.5 ms for T2. The relationship between relaxation time measurement with 3D-QALAS and the corresponding reference values for different heart rates can be seen in Figure 4 for T1 and in Figure 5 for T2. The effect on T1 and T2 measurements when using different radio frequency flip angles during data acquisition, α, is shown in Figures 6 and 7. Noise was deliberately applied to the cardiac cycle length of the phantoms to simulate arrhythmia. The results of twenty repeated measurements for each noise level (5% noise, 1% noise and 15% noise) are shown in Figure 8 for T1 measurements and in Figure 9 for T2 measurements. Mean deviation from a steady cardiac cycle length of 6 bpm was at a noise level of 5%: 2.3% for T1 and 3.32% for T2, at a noise level of 1%: 1.33% for T1 and.4% for T2 and at a noise level of 15%: 22.1% for T1 and 8.1% for T2. In vivo study Left ventricular myocardial relaxation times were successfully measured in-vivo using 3D-QALAS, MOLLI, and the dual echo GraSE sequence in all 1 healthy volunteers. The thirteen short axis slices of the left ventricular myocardium obtained with 3D-QALAS did not contain any noticeable artifacts or other imperfections, as demonstrated in Figure 1. Left ventricular myocardial relaxation times, measured in-vivo with 3D-QALAS, were compared with their respective reference method and a good agreement was found, see Table 2. The mean value of T1 in healthy myocardium by 3D-QALAS was 183 ± 43 ms (mean ± SD) and by MOLLI 189 ± 54 ms. The mean value of Figure 3 Bland-Altman plot for T2 values at 6 bpm with 3D-QALAS and multi echo in phantoms. Thick dashed line represents overall average difference between measurements (3.8 ms), thin dashed lines represent 2SD.

7 Kvernby et al. Journal of Cardiovascular Magnetic Resonance 214, 16:12 Page 6 of 14 3D QALAS T1 (ms) Ref 4 bpm 5 bpm 6 bpm 7 bpm 8 bpm 9 bpm 1 bpm 11 bpm 12 bpm Ref. T1 (ms) Figure 4 Heart rate dependency in T1 measurement with 3D-QALAS. Relationship between longitudinal relaxation time measurements with 3D-QALAS and the corresponding reference values measured with Inversion Recovery for different heart rates (4 12 bpm). 3D QALAS T2 (ms) Ref 4 bpm 5 bpm 6 bpm 7 bpm 8 bpm 9 bpm 1 bpm 11 bpm 12 bpm Ref. T2 (ms) Figure 5 Heart rate dependency in T2 measurements with 3D-QALAS. Relationship between transverse relaxation time measurements with 3D-QALAS and the corresponding reference values measured with Multi Echo for different heart rates (4 12 bpm).

8 Kvernby et al. Journal of Cardiovascular Magnetic Resonance 214, 16:12 Page 7 of 14 3D QALAS T1 (ms) Ref 4 degrees 5 degrees 6 degrees 7 degrees 8 degrees Ref. T1 (ms) Figure 6 Effect on T1 measurement using different radio frequency flip angles, α, during acquisition. Measured longitudinal relaxation time (T1) with 3D-QALAS for different radio frequency flip angles, α, during data acquisition and corresponding reference values measured with Inversion Recovery. Radio frequency flip angles are varied from 4 degrees to 8 degrees. T2 in healthy myocardium by 3D-QALAS was 5,4 ± 3,6 ms and by Dual Echo 5,3 ± 3,5 ms. Relaxation times were determined in healthy volunteers and derived from regions of interest such as the four regions of the short axis left ventricle that can be seen in Table 2. Values are based on three image acquisitions for each healthy volunteer. No significant difference in relaxation times was found between the different myocardial regions. Bland-Altman plots, Figures 11 and 12, show the distribution of 3D-QALAS and corresponding reference methods in ten healthy volunteer. Average difference between the measurements was 5.8 ms for T1 and.1 ms 3D QALAS T2 (ms) Ref 4 degrees 5 degrees 6 degrees 7 degrees 8 degrees Ref. T2 (ms) Figure 7 Effect on T2 measurement using different radio frequency flip angles, α, during acquisition. Measured transverse relaxation time (T2) with 3D-QALAS for different radio frequency flip angles, α, during data acquisition and corresponding reference values measured with Multi Echo. Radio frequency flip angles are varied from 4 degrees to 8 degrees.

9 Kvernby et al. Journal of Cardiovascular Magnetic Resonance 214, 16:12 Page 8 of % noise 1% noise 15% noise Difference from % noise (%) D QALAS T1 (ms) Figure 8 Effect of deliberately applied arrhythmias on phantom T1 measurements. Gaussian noise distributions with three different widths (5%, 1% and 15%) were used to change the length of the cardiac cycle, initially 6 beats per minute (bpm), in order to simulate atrial fibrillation. Deviation in percentage from measurements with 6 bpm and % noise can be seen as a function of T1 values measured with 3D-QALAS at a heart rate of 6 bpm with % noise. Difference from % noise (%) % noise 1% noise 15% noise D QALAS T2 (ms) Figure 9 Effect of deliberately applied arrhythmias on phantom T2 measurements. Gaussian noise distributions with three different widths (5%, 1% and 15%) were used to change the length of the cardiac cycle, initially 6 beats per minute (bpm), in order to simulate atrial fibrillation. Deviation in percentage from measurements with 6 bpm and % noise can be seen as a function of T2 values measured with 3D-QALAS at a heart rate of 6 bpm with % noise.

10 Kvernby et al. Journal of Cardiovascular Magnetic Resonance 214, 16:12 Page 9 of 14 T1 map T2 map Figure 1 3D-QALAS images from a healthy volunteer. The thirteen 3D-QALAS short axis slices T1 maps (left) and T2 maps (right) of the left ventricular myocardium are shown. Slice 8 is shown on a larger scale. The gray scale indicates 2 ms for T1 and 3 ms for T2. for T2. The 2SD range was 78.9 ms for T1 and 5.5 ms for T2. Results of individual myocardial relaxation times for the ten healthy volunteers investigated with 3D-QALAS and the corresponding in-vivo reference methods are shown in Figure 13 for T1 and in Figure 14 for T2. A two-tailed unpaired Student T-test was used to calculate whether the differences between population means were significant. No significant difference in relaxation times was found between 3D-QALAS and MOLLI (N = 1; p =.65) respectively 3D-QALAS and Dual Echo (N = 1; p =.925). Pre and post contrast 3D-QALAS maps together with a conventional late gadolinium enhancement image from a patient with a myocardial infarction can be seen in Figure 15. Discussion In order to make myocardial relaxation time mapping more clinically applicable in a daily routine, improvements in speed and coverage with maintained accuracy and precision are desirable. In this work we have developed a fast and accurate method providing simultaneous acquisition of T1 maps and T2 maps with coverage of the entire left ventricular myocardium in a single breath hold. Relaxation time measurements with 3D-QALAS in phantoms showed highly accurate results over a large range of T1 and T2 values, covering both expected contrast enhanced and native conditions of myocardial tissue. The method appeared to be robust for changes in flip angle, heart rate, and arrhythmia during the measurement. Table 2 Myocardial relaxation times derived from regions of interest in healthy volunteers Cases Region 3D-QALAS T1 MOLLI 3D-QALAS T2 T2-DE T1 (ms) T1 (ms) T2 (ms) T2 (ms) 1 Healthy Septal 1111 ± ± ± ± 4.4 Anterior 166 ± ± ± ± 3. Lateral 172 ± ± ± ± 3.3 Posterior 184 ± ± ± ± 3. Averages 183 ± ± ± ± 3.5 Mean values and standard deviations of myocardial relaxation times from ten healthy volunteers assessed in four regions within a short axis slice with 3D-QALAS, MOLLI and Dual Echo GraSE EPI.

11 Kvernby et al. Journal of Cardiovascular Magnetic Resonance 214, 16:12 Page 1 of 14 Figure 11 Bland-Altman plot for native myocardial T1 values with 3D-QALAS and MOLLI. Each healthy volunteer is represented with one measurement point. Thick dashed line represents overall average difference between measurements ( 5,8 ms), thin dashed lines represent 2SD. Performing relaxation time mapping in a whole 3D volume instead of in a 2D slice is followed by the requirement to collect larger quantity of k-space data in one breath hold. To fulfill this criterion without increasing the total acquisition time, i.e. the length of the breath hold, implies that there can only be a limited number of data points acquired. For the T1 curve only 4 points were measured, resulting in a dynamic range for 3D-QALAS that lies at least in the range 2 18 ms for T1 as shown in the phantom study. Especially for the low T1 values it was important to use the simulated magnetization evolution for the analysis, rather than an exponential fit. In this analysis a perfect inversion pulse is assumed, which essentially adds a data point to the measurement: the magnetization right after the inversion pulse must be equal to minus the extrapolated magnetization just prior to the inversion pulse. This assumption makes the analysis more stable compared to the exponential fit as for example is used in the MOLLI analysis. Furthermore the 3D-QALAS method needs an acquisition read out time that is slightly longer, < 23 ms, together with a larger slice thickness, 12 mm, than existing 2D relaxation time mapping methods [12,13,18] to be able to sample the larger quantity of data required to cover the whole 3D volume and to maintain good in-plane spatial resolution with a high image quality. The dynamic range of T1 in 3D-QALAS can also be related to that of saturation recovery and inversion recovery based T1-mapped methods. In 3D-QALAS the magnetization just prior to the inversion pulse is not fully relaxed since it is placed at only one cardiac cycle after the T2 preparation pulse. The magnetization is therefore more likely to be in the interval.5 1. times the unsaturated magnetization and hence in the interval.5-1. after the inversion. This places the dynamic range of T1 of 3D- QALAS somewhere between saturation recovery and inversion recovery based T1-mapping methods. The results also showed that the T2 measurements of 3D-QALAS were valid in the range of at least Figure 12 Bland-Altman plot for native myocardial T2 values with 3D-QALAS and Dual Echo. Each healthy volunteer is represented with one measurement point. Thick dashed line represents overall average difference between measurements (,1 ms), thin dashed lines represent 2SD.

12 Kvernby et al. Journal of Cardiovascular Magnetic Resonance 214, 16:12 Page 11 of 14 Figure 13 Individual myocardial T1 values from 3D-QALAS and MOLLI. Values are derived from four regions of interests (septal,anterior,lateral and posterior) in a mid-cavity short axis slice from three repeated measurements and are displayed as mean values representing each measurement. ms. The expected dynamic range for T2 can be estimated by setting requirements on the signal intensity of the exponential decay curve during the T2 sensitizing phase. The upper limit of T2 can be defined by requiring that the signal intensity should at least have decreased to 9% at the end of the measurement (corresponding to e TE T2 ¼ :9). The lower limit of T2 can be defined by requiring that the signal intensity should at most have decreased to 1% (corresponding to e TE T2 ¼ :1) at the end of the measurement, such that the signal does not disappear in the noise level. Using these requirements, in combination with the chosen TE = 5 ms, the expected dynamic range of T2 values in our experiment becomes [22 475] ms, which is larger than the evaluated range. The gradient echo sequence used for quantification could either be low flip-angle spoiled gradient echo, as suggested for 3D-QALAS, or high flip-angle balanced SSFP, as common in the MOLLI approach. As offresonance effects may be challenging in 3D application Figure 14 Individual myocardial T2 values from 3D-QALAS and Two-Point Multi Echo (ME). Values are derived from four regions of interests (septal, anterior, lateral and posterior) in a mid-cavity short axis slice from three repeated measurements and are displayed as mean values representing each measurement.

13 Kvernby et al. Journal of Cardiovascular Magnetic Resonance 214, 16:12 Page 12 of Native T1 map Native T2 map T1 post Gd T2 post Gd Late Gd Enhancement Figure 15 Native and post contrast images from a 65 years old male with a lateral myocardial infarction. Pre and post contrast 3D-QALAS maps together with a conventional late gadolinium enhancement image illustrates the area of infarction. with bssfp, a low-flip angle approach is chosen in 3D- QALAS. The penalty of using spoiled gradient echo is the intrinsically lower signal strength compared to bssfp. The penalty in SNR by choosing a low flip-angle spoiled gradient echo should however be weighted against the benefits of using a true 3D acquisition, including a full coverage of the heart, and less tissue moving in and out of the excited volume. Quantification methods can be sensitive to inhomogeneity in the radio frequency field strength (B1), which would affect the actual local flip angle. This makes the flip angle dependency of quantification techniques relevant. The results shows that the 3D-QALAS sequence was insensitive to RF flip angles changes in the range of 4-8, which can be interpreted as the relaxation time calculation is relatively insensitive to changes in the B1 field. Heart rate dependency has proven to be a challenge for myocardial T1 mapping methods, especially at long longitudinal relaxation times [19]. We did not see such dependence within the tested range of heart rate with the method proposed in this work, either for T1 measurements or for T2 measurements, as can be seen in Figures 4 and 5. This may be a result of the use of a simulation of the full magnetization evolution during the acquisition, which included saturation effects due to long T1 relaxation times in comparison to one heartbeat. This seems to be a more robust approach than using the assumption that the magnetization has returned to M after a certain delay time. In theory, the dynamic range might be affected by heart hate. The dynamic range becomes eventually slightly lower at higher heart rates than for lower heart rates since the recovery of the magnetization vector is less when the total acquisition time is shorter. This assumed loss of dynamic range was not evident in the volunteer with the highest heart rate, 86 beats/min. The proposed method is robust to small random changes in cardiac cycle lengths, as was

14 Kvernby et al. Journal of Cardiovascular Magnetic Resonance 214, 16:12 Page 13 of 14 done in phantoms to simulate cardiac arrhythmia. Gaussian noise distributions applied to the length of the cardiac cycle of 5% and 1% has a minor effect on the quantification of relaxation times. The error seen at an applied noise level of 15% deviation from a steady cardiac cycle length is most probably related to the exclusion of extremely short cardiac cycles. Cardiac cycles longer than thesetvalueonthescannerusuallyposenoproblem for the data acquisition to be completed within the expected cardiac cycle length, other than motion artifacts if the data acquisition does not occur at the right moment in the cardiac cycle. However, cardiac cycles much shorter than the set value will result in incomplete data and the need to complete the acquisition in the next cardiac cycle. This will thus introduce a fault in the calculation of relaxation times. To overcome this problem, a higher heart rate than the actual mean heart rate can be set on the scanner. Left ventricular myocardial relaxation times with 3D- QALAS were compared with a MOLLI for T1 measurement, a dual echo GraSE sequence for T2 measurement and consistent results were found between 3D- QALAS and the corresponding reference method. In-vivo relaxation time measurements with 3D-QALAS were in accordance with previously published results for both T1 and T2 [13,2]. Reference values for healthy myocardial tissue seem to differ between manufacturers and between different quantification methods. According to a recently published study [21], several T1-mapping methods suffer from poor absolute accuracy and reference values from different relaxation time mapping methods might thus be difficult to compare with each other. Native T1 values at 3T from inversion recovery based T1 mapping methods have shown a spread from < 9 ms to > 13 ms in healthy volunteers [22,23]. We have evaluated the accuracy and intra-scan variability of 3D-QALAS using phantom studies and in-vivo studies on healthy volunteers. The results are promising, but further evaluation post-contrast and in cardiac disease is necessary before assessment of extracellular volume or application of the method in larger clinical studies. One patient with myocardial infarction is however included in the study to demonstrate the method at short T1, post-contrast. The presented original version of 3D-QALAS provides 13 slices of the left ventricular volume within a breath hold of 15 heartbeats. The sequence can be modified to a shortened version, in which k-space is covered in two segments instead of three segments as in the original version. We have successfully tested a version covering eight slices within a breath hold of 1 heartbeats, still giving the same resolution as the original version but thus with less ventricular coverage. This modified version enables use of this method in patients having difficulty holding their breath and gives the possibility of full coverage of left ventricular volume in two breath holds. 3D-QALAS enables relaxation time mapping of both T1 and T2 in a 3D volume in a single breath hold. Moreover, the T1 and T2 maps are inherently co-registered, avoiding post-processing registration errors. It is reasonable to believe that quantitative information from both these parameters facilitates better differentiation between myocardium affected by e.g. edema, fibrosis, storage diseases and normal myocardium. Conclusions The 3D-QALAS principle has demonstrated good accuracy and intra-scan-variability both in-vitro and in-vivo. It allows a rapid acquisition and provides quantitative information of both T1 and T2 relaxation times in the same scan with full coverage of the left ventricle, enabling the method to be clinically applicable to a broader spectrum of cardiac disorders. Competing interests MW has a part time employment at SyntheticMR AB, Sweden. Authors contributions SK contributed in the concept and implementation of the method, designed the study, performed all experiments in-vitro and in-vivo, analyzed the results, performed the statistical analysis and drafted the manuscript. MW provided the concept and implementation of the method and contributed in the experiments. HH contributed to the concept of the method. JE, CJC and TE contributed to the study design and to the concept of the method. All authors have revised the manuscript and approved the final version. Acknowledgement This research was partly funded by the Swedish Heart and Lung Foundation, the Swedish Research Council, the County Council of Östergötland, and the European Research Council. Author details 1 Division of Cardiovascular Medicine, Department of Medical and Health Sciences, Linköping University, Linköping, Sweden. 2 Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden. 3 SyntheticMR AB, Linköping, Sweden. 4 Department of Clinical Physiology, County Council of Östergötland, Linköping, Sweden. 5 Division of Media and Information Technology, Department of Science and Technology, Linköping University, Linköping, Sweden. Received: 27 February 214 Accepted: 21 November 214 References 1. Chang KJ, Jara H. Applications of quantitative T1, T2, and proton density to diagnosis. Appl Radiol. 25; Riederer S, Lee J, Farzaneh F, Wang H, Wright R. Magnetic resonance image synthesis. clinical implementation. Acta Radiol Suppl. 1986; 369: Messroghli DR, Walters K, Plein S, Sparrow P, Friedrich MG, Ridgway JP, Sivananthan MU. Myocardial T1 mapping: application to patients with acute and chronic myocardial infarction. Magn Reson Med. 27; 58: Iles L, Pfluger H, Phrommintikul A, Cherayath J, Aksit P, Gupta SN, Kaye DM, Taylor AJ. Evaluation of diffuse myocardial fibrosis in heart failure with cardiac magnetic resonance contrast-enhanced T1 mapping. J Am Coll Cardiol. 28; 52: Sparrow P, Messroghli DR, Reid S, Ridgway JP, Bainbridge G, Sivananthan MU. Myocardial T1 mapping for detection of left ventricular myocardial fibrosis in chronic aortic regurgitation: pilot study. Am J Roentgenol. 26; 187(6):W63 5.

15 Kvernby et al. Journal of Cardiovascular Magnetic Resonance 214, 16:12 Page 14 of Flett AS, Hayward MP, Ashworth MT, Hansen MS, Taylor AM, Elliott PM, McGregor C, Moon JC. Equilibrium contrast cardiovascular magnetic resonance for the measurement of diffuse myocardial fibrosis preliminary validation in humans. Circulation. 21; 122: Verhaert D, Thavendiranathan P, Giri S, Mihai G, Rajagopalan S, Simonetti OP, Raman SV. Direct T2 quantification of myocardial edema in acute ischemic injury. JACC Cardiovasc Imaging. 211; 4: Giri S, Chung Y-C, Merchant A, Mihai G, Rajagopalan S, Raman S, Simonetti O. T2 quantification for improved detection of myocardial edema. J Cardiovasc Magn Reson. 29; 11: Ferreira VM, Piechnik SK, Dall Armellina E, Karamitsos TD, Francis JM, Choudhury RP, Friedrich MG, Robson MD, Neubauer S. Non-contrast T1-mapping detects acute myocardial edema with high diagnostic accuracy: a comparison to T2-weighted cardiovascular magnetic resonance. J Cardiovasc Magn Reson. 212; 14: Ugander M, Bagi PS, Oki AJ, Chen B, Hsu L-Y, Aletras AH, Shah S, Greiser A, Kellman P, Arai AE. Myocardial edema as detected by pre-contrast T1 and T2 CMR delineates area at risk associated with acute myocardial infarction. JACC Cardiovasc Imaging. 212; 5: Look DC, Locker DR. Time saving in measurement of NMR and EPR relaxation times. Rev Sci Instrum. 197; 41: Messroghli DR, Radjenovic A, Kozerke S, Higgins DM, Sivananthan MU, Ridgway JP. Modified look-locker inversion recovery (MOLLI) for highresolution T 1 mapping of the heart. Magn Reson Med. 24; 52: Piechnik SK, Ferreira VM, Dall Armellina E, Cochlin LE, Greiser A, Neubauer S, Robson MD. Shortened Modified Look-Locker Inversion recovery (ShMOLLI) for clinical myocardial T1-mapping at 1.5 and 3 T within a 9 heartbeat breathhold. J Cardiovasc Magn Reson. 21; 12: Coniglio A, Di Renzi P, Vilches Freixas G, Della Longa G, Santarelli A, Capparella R, Nardiello B, Loiudice C, Bianchi S, D Arienzo M, Begnozzi L. Multiple 3D inversion recovery imaging for volume T1 mapping of the heart. Magn Reson Med. 213; 69: Warntjes MJ, Kihlberg J, Engvall J. Rapid T1 quantification based on 3D phase sensitive inversion recovery. BMC Med Imaging. 21; 1: Kellman P, Aletras AH, Mancini C, McVeigh ER, Arai AE. T2-prepared SSFP improves diagnostic confidence in edema imaging in acute myocardial infarction compared to turbo spin echo. Magn Reson Med. 27; 57: Moon JC, Messroghli DR, Kellman P, Piechnik SK, Robson MD, Ugander M, Gatehouse PD, Arai AE, Friedrich MG, Neubauer S. Myocardial T1 mapping and extracellular volume quantification: a Society for Cardiovascular Magnetic Resonance (SCMR) and CMR working group of the european society of cardiology consensus statement. J Cardiovasc Magn Reson. 213; 15: Huang T-Y, Liu Y-J, Stemmer A, Poncelet BP. T2 measurement of the human myocardium using a T2-prepared transient-state truefisp sequence. Magn Reson Med. 27; 57: Messroghli DR, Plein S, Jones TR, Sivananthan MU, Higgins DM, Ridgway JP, Walters K. Human myocardium: single-breath-hold MR T1 mapping with high spatial resolution - reproducibility study. Radiology. 26; 238: von Knobelsdorff-Brenkenhoff F, Prothmann M, Dieringer M, Wassmuth R, Greiser A, Schwenke C, Niendorf T, Schulz-Menger J. Myocardial T1 and T2 mapping at 3 T: reference values, influencing factors and implications. J Cardiovasc Magn Reson. 213; 15: Kellman P, Hansen MS. T1-mapping in the heart: accuracy and precision. J Cardiovasc Magn Reson. 214; 16: Dabir D, Rogers T, Voigt T, Schaeffter T, Nagel E, Puntmann VO. Age-gender reference values of native myocardial T1 at 1.5 T and 3T: comparison of MOLLI and shmolli. J Cardiovasc Magn Reson. 213; 15:P Lee JJ, Liu S, Nacif MS, Ugander M, Han J, Kawel N, Sibley CT, Kellman P, Arai AE, Bluemke DA. Myocardial T1 and extracellular volume fraction mapping at 3 Tesla. J Cardiovasc Magn Reson. 211; 13:75. doi:1.1186/s Cite this article as: Kvernby et al.: Simultaneous three-dimensional myocardial T1 and T2 mapping in one breath hold with 3D-QALAS. Journal of Cardiovascular Magnetic Resonance :12. Submit your next manuscript to BioMed Central and take full advantage of: Convenient online submission Thorough peer review No space constraints or color figure charges Immediate publication on acceptance Inclusion in PubMed, CAS, Scopus and Google Scholar Research which is freely available for redistribution Submit your manuscript at

GE Medical Systems Training in Partnership. Module 8: IQ: Acquisition Time

GE Medical Systems Training in Partnership. Module 8: IQ: Acquisition Time Module 8: IQ: Acquisition Time IQ : Acquisition Time Objectives...Describe types of data acquisition modes....compute acquisition times for 2D and 3D scans. 2D Acquisitions The 2D mode acquires and reconstructs

More information

MRI SEQUENCES. 1 Gradient Echo Sequence

MRI SEQUENCES. 1 Gradient Echo Sequence 5 An MRI sequence is an ordered combination of RF and gradient pulses designed to acquire the data to form the image. In this chapter I will describe the basic gradient echo, spin echo and inversion recovery

More information

Normal variation of magnetic resonance T1 relaxation times in the human population at 1.5 T using ShMOLLI

Normal variation of magnetic resonance T1 relaxation times in the human population at 1.5 T using ShMOLLI Piechnik et al. Journal of Cardiovascular Magnetic Resonance 2013, 15:13 RESEARCH Open Access Normal variation of magnetic resonance T1 relaxation times in the human population at 1.5 T using ShMOLLI Stefan

More information

5 Factors Affecting the Signal-to-Noise Ratio

5 Factors Affecting the Signal-to-Noise Ratio 5 Factors Affecting the Signal-to-Noise Ratio 29 5 Factors Affecting the Signal-to-Noise Ratio In the preceding chapters we have learned how an MR signal is generated and how the collected signal is processed

More information

GE 3.0T NPW,TRF,FAST,F R NPW,TRF,FAST,F R

GE 3.0T NPW,TRF,FAST,F R NPW,TRF,FAST,F R GE 3.0T 3.0T WRIST Invivo 8CH Wrist Coil Sequence Ax T2 Cor PD Cor PDFS Cor T1 Cor PD (Small FOV) FOV (mm) 80 80 80 80 40 Matrix 384x224 384x256 320x256 384x320 320x192 Phase Direction RL RL RL RL RL #

More information

Gadolinium (Gd)-based contrast administration within a single breathhold is presented with in vitro validation.

Gadolinium (Gd)-based contrast administration within a single breathhold is presented with in vitro validation. Original Article Fast in vivo quantification of T1 and T2 MRI relaxation times in the myocardium based on inversion recovery SSFP with in vitro validation post Gd-based contrast administration Christof

More information

Basic Principles of Magnetic Resonance

Basic Principles of Magnetic Resonance Basic Principles of Magnetic Resonance Contents: Jorge Jovicich jovicich@mit.edu I) Historical Background II) An MR experiment - Overview - Can we scan the subject? - The subject goes into the magnet -

More information

Musculoskeletal MRI Technical Considerations

Musculoskeletal MRI Technical Considerations Musculoskeletal MRI Technical Considerations Garry E. Gold, M.D. Professor of Radiology, Bioengineering and Orthopaedic Surgery Stanford University Outline Joint Structure Image Contrast Protocols: 3.0T

More information

Electronic Supplementary Information

Electronic Supplementary Information Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is the Owner Societies 2016 Electronic Supplementary Information Achieving High Resolution and Controlling

More information

SITE IMAGING MANUAL ACRIN 6698

SITE IMAGING MANUAL ACRIN 6698 SITE IMAGING MANUAL ACRIN 6698 Diffusion Weighted MR Imaging Biomarkers for Assessment of Breast Cancer Response to Neoadjuvant Treatment: A sub-study of the I-SPY 2 TRIAL Version: 1.0 Date: May 28, 2012

More information

Magnetic Resonance Imaging

Magnetic Resonance Imaging Magnetic Resonance Imaging What are the uses of MRI? To begin, not only are there a variety of scanning methodologies available, but there are also a variety of MRI methodologies available which provide

More information

GE Medical Systems Training in Partnership. Module 12: Spin Echo

GE Medical Systems Training in Partnership. Module 12: Spin Echo Module : Spin Echo Spin Echo Objectives Review the SE PSD. Review the concepts of T, T, and T*. Spin Echo PSD RF Gz Gy 90 80 Gx Spin Echo - SE Spin echo is a standard pulse sequence on Signa MRi/LX and

More information

Magnetic Resonance Quantitative Analysis. MRV MR Flow. Reliable analysis of heart and peripheral arteries in the clinical workflow

Magnetic Resonance Quantitative Analysis. MRV MR Flow. Reliable analysis of heart and peripheral arteries in the clinical workflow Magnetic Resonance Quantitative Analysis MRV MR Flow Reliable analysis of heart and peripheral arteries in the clinical workflow CAAS MRV Functional Workflow Designed for imaging specialists, CAAS MRV

More information

NMR Techniques Applied to Mineral Oil, Water, and Ethanol

NMR Techniques Applied to Mineral Oil, Water, and Ethanol NMR Techniques Applied to Mineral Oil, Water, and Ethanol L. Bianchini and L. Coffey Physics Department, Brandeis University, MA, 02453 (Dated: February 24, 2010) Using a TeachSpin PS1-A pulsed NMR device,

More information

Purchasing a cardiac CT scanner: What the radiologist needs to know

Purchasing a cardiac CT scanner: What the radiologist needs to know Purchasing a cardiac CT scanner: What the radiologist needs to know Maria Lewis ImPACT St George s Hospital, London maria.lewis@stgeorges.nhs.uk CT scanner development Slice wars 1998 Increased z-coverage

More information

ParaVision 6. Innovation with Integrity. The Next Generation of MR Acquisition and Processing for Preclinical and Material Research.

ParaVision 6. Innovation with Integrity. The Next Generation of MR Acquisition and Processing for Preclinical and Material Research. ParaVision 6 The Next Generation of MR Acquisition and Processing for Preclinical and Material Research Innovation with Integrity Preclinical MRI A new standard in Preclinical Imaging ParaVision sets a

More information

THEORY, SIMULATION, AND COMPENSATION OF PHYSIOLOGICAL MOTION ARTIFACTS IN FUNCTIONAL MRI. Douglas C. Noll* and Walter Schneider

THEORY, SIMULATION, AND COMPENSATION OF PHYSIOLOGICAL MOTION ARTIFACTS IN FUNCTIONAL MRI. Douglas C. Noll* and Walter Schneider THEORY, SIMULATION, AND COMPENSATION OF PHYSIOLOGICAL MOTION ARTIFACTS IN FUNCTIONAL MRI Douglas C. Noll* and Walter Schneider Departments of *Radiology, *Electrical Engineering, and Psychology University

More information

Diffusione e perfusione in risonanza magnetica. E. Pagani, M. Filippi

Diffusione e perfusione in risonanza magnetica. E. Pagani, M. Filippi Diffusione e perfusione in risonanza magnetica E. Pagani, M. Filippi DW-MRI DIFFUSION-WEIGHTED MRI Principles Diffusion results from a microspic random motion known as Brownian motion THE RANDOM WALK How

More information

Olga Golubnitschaja 1,2. Abstract

Olga Golubnitschaja 1,2. Abstract EDITORIAL Open Access Time for new guidelines in advanced healthcare: the mission of The EPMA Journal to promote an integrative view in predictive, preventive and personalized medicine Olga Golubnitschaja

More information

In Vivo Comparison of Myocardial T1 With T2 and T2* in Thalassaemia Major

In Vivo Comparison of Myocardial T1 With T2 and T2* in Thalassaemia Major CME JOURNAL OF MAGNETIC RESONANCE IMAGING 38:588 593 (2013) Original Research In Vivo Comparison of Myocardial T1 With T2 and T2* in Thalassaemia Major Yanqiu Feng, PhD, 1,2 Taigang He, PhD, 2,3 * John-Paul

More information

Chapter 2 NMR in Inhomogeneous Fields

Chapter 2 NMR in Inhomogeneous Fields Chapter 2 NMR in Inhomogeneous Fields Federico Casanova and Juan Perlo 2.1 Introduction Besides the redesigning of the hardware to excite and detect NMR signals from sample volumes external to the sensor,

More information

Improve Myocardial T 1 Measurement in Rats with a New Regression Model: Application to Myocardial Infarction and Beyond

Improve Myocardial T 1 Measurement in Rats with a New Regression Model: Application to Myocardial Infarction and Beyond FULL PAPER Magnetic Resonance in Medicine 00:00 00 (2013) Improve Myocardial T 1 Measurement in Rats with a New Regression Model: Application to Myocardial Infarction and Beyond Haosen Zhang, 1 Qing Ye,

More information

Etude POPART'MUS MRI Component

Etude POPART'MUS MRI Component TECHNICAL SURVEY Dear Investigators, This document is a Technical Survey which provides the teams of THERALYS and of the Pierre Wertheimer Neurological Hospital of Lyon with an overview of your site s

More information

Subjects: Fourteen Princeton undergraduate and graduate students were recruited to

Subjects: Fourteen Princeton undergraduate and graduate students were recruited to Supplementary Methods Subjects: Fourteen Princeton undergraduate and graduate students were recruited to participate in the study, including 9 females and 5 males. The mean age was 21.4 years, with standard

More information

GUIDE TO SETTING UP AN MRI RESEARCH PROJECT

GUIDE TO SETTING UP AN MRI RESEARCH PROJECT GUIDE TO SETTING UP AN MRI RESEARCH PROJECT Formal requirements and procedures OVERVIEW This document is intended to help a principle investigator set up a research project using magnetic resonance imaging

More information

MEDIMAGE A Multimedia Database Management System for Alzheimer s Disease Patients

MEDIMAGE A Multimedia Database Management System for Alzheimer s Disease Patients MEDIMAGE A Multimedia Database Management System for Alzheimer s Disease Patients Peter L. Stanchev 1, Farshad Fotouhi 2 1 Kettering University, Flint, Michigan, 48504 USA pstanche@kettering.edu http://www.kettering.edu/~pstanche

More information

Deriving the 12-lead Electrocardiogram From Four Standard Leads Based on the Frank Torso Model

Deriving the 12-lead Electrocardiogram From Four Standard Leads Based on the Frank Torso Model Deriving the 12-lead Electrocardiogram From Four Standard Leads Based on the Frank Torso Model Daming Wei Graduate School of Information System The University of Aizu, Fukushima Prefecture, Japan A b s

More information

Time series analysis of data from stress ECG

Time series analysis of data from stress ECG Communications to SIMAI Congress, ISSN 827-905, Vol. 3 (2009) DOI: 0.685/CSC09XXX Time series analysis of data from stress ECG Camillo Cammarota Dipartimento di Matematica La Sapienza Università di Roma,

More information

Incorporating Internal Gradient and Restricted Diffusion Effects in Nuclear Magnetic Resonance Log Interpretation

Incorporating Internal Gradient and Restricted Diffusion Effects in Nuclear Magnetic Resonance Log Interpretation The Open-Access Journal for the Basic Principles of Diffusion Theory, Experiment and Application Incorporating Internal Gradient and Restricted Diffusion Effects in Nuclear Magnetic Resonance Log Interpretation

More information

7/16/2010. Pulse Sequences and Acquisition Techniques for Breast MRI. Objectives. ACR Breast MRI Accreditation Program Launched May 2010

7/16/2010. Pulse Sequences and Acquisition Techniques for Breast MRI. Objectives. ACR Breast MRI Accreditation Program Launched May 2010 Pulse Sequences and Acquisition Techniques for Breast MRI ACR Breast MRI Accreditation Program Launched May 2010 Ron Price Vanderbilt University Medical Center Nashville, TN 37232 Information available:

More information

Table 11: Pros and Cons of 1.5 T MRI vs. 3.0 T MRI; Safety and Technical Issues, and Clinical Applications

Table 11: Pros and Cons of 1.5 T MRI vs. 3.0 T MRI; Safety and Technical Issues, and Clinical Applications Safety Issue 3.0 T MRI Pro 3.0 T MRI Con Immediate fringe field surrounding magnet A ferromagnetic object inadvertently brought into the scan room will experience a sharp increase in attraction toward

More information

Diagnostic and Therapeutic Procedures

Diagnostic and Therapeutic Procedures Diagnostic and Therapeutic Procedures Diagnostic and therapeutic cardiovascular s are central to the evaluation and management of patients with cardiovascular disease. Consistent with the other sections,

More information

LONI De-Identification Policy

LONI De-Identification Policy The following defines how different file formats are de-identified with LONI tools. Each metadata attribute of each file can have the following operations performed: Operation keep Remove Replace Description

More information

Accurate Multislice Gradient Echo T 1 Measurement in the Presence of Non-ideal RF Pulse Shape and RF Field Nonuniformity

Accurate Multislice Gradient Echo T 1 Measurement in the Presence of Non-ideal RF Pulse Shape and RF Field Nonuniformity Accurate Multislice Gradient Echo T 1 Measurement in the Presence of Non-ideal RF Pulse Shape and RF Field Nonuniformity Geoffrey J.M. Parker,* Gareth J. Barker, and Paul S. Tofts Magnetic Resonance in

More information

HeAT: A Software Assistant for the Analysis of LV Remodeling after Myocardial Infarction in 4D MR Follow-Up Studies

HeAT: A Software Assistant for the Analysis of LV Remodeling after Myocardial Infarction in 4D MR Follow-Up Studies HeAT: A Software Assistant for the Analysis of LV Remodeling after Myocardial Infarction in 4D MR Follow-Up Studies D. Säring 1, A. Stork 2, S. Juchheim 2, G. Lund 3, G. Adam 2, H. Handels 1 1 Department

More information

Imaging Heart Motion Using Harmonic Phase MRI

Imaging Heart Motion Using Harmonic Phase MRI 186 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 19, NO. 3, MARCH 2000 Imaging Heart Motion Using Harmonic Phase MRI Nael F. Osman, Elliot R. McVeigh, and Jerry L. Prince* Abstract This paper describes a

More information

Flip-angle-optimized fast dynamic T 1 mapping with a 3D gradient-echo sequence

Flip-angle-optimized fast dynamic T 1 mapping with a 3D gradient-echo sequence Flip-angle-optimized fast dynamic T 1 mapping with a 3D gradient-echo sequence Olaf Dietrich 1, Maximilian Freiermuth 1, Linus Willerding 2, Maximilian F. Reiser 1, Michael Peller 1 1 Josef Lissner Laboratory

More information

MRI for Paediatric Surgeons

MRI for Paediatric Surgeons MRI for Paediatric Surgeons Starship David Perry Paediatric Radiologist Starship Children s Hospital CHILDREN S HEALTH What determines the brightness of a pixel in MRI? i.e. What determines the strength

More information

Case Report: Whole-body Oncologic Imaging with syngo TimCT

Case Report: Whole-body Oncologic Imaging with syngo TimCT Case Report: Whole-body Oncologic Imaging with syngo TimCT Eric Hatfield, M.D. 1 ; Agus Priatna, Ph.D. 2 ; John Kotyk, Ph.D. 1 ; Benjamin Tan, M.D. 1 ; Alto Stemmer 3 ; Stephan Kannengiesser, Ph.D. 3 ;

More information

NMR for Physical and Biological Scientists Thomas C. Pochapsky and Susan Sondej Pochapsky Table of Contents

NMR for Physical and Biological Scientists Thomas C. Pochapsky and Susan Sondej Pochapsky Table of Contents Preface Symbols and fundamental constants 1. What is spectroscopy? A semiclassical description of spectroscopy Damped harmonics Quantum oscillators The spectroscopic experiment Ensembles and coherence

More information

32-Channel Head Coil Imaging at 3T

32-Channel Head Coil Imaging at 3T 32-Channel Head Coil Imaging at 3T Thomas Benner Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA

More information

Lecture 14. Point Spread Function (PSF)

Lecture 14. Point Spread Function (PSF) Lecture 14 Point Spread Function (PSF), Modulation Transfer Function (MTF), Signal-to-noise Ratio (SNR), Contrast-to-noise Ratio (CNR), and Receiver Operating Curves (ROC) Point Spread Function (PSF) Recollect

More information

Spin-lattice and spin-spin relaxation

Spin-lattice and spin-spin relaxation Spin-lattice and spin-spin relaation Sequence of events in the NMR eperiment: (i) application of a 90 pulse alters the population ratios, and creates transverse magnetic field components (M () ); (ii)

More information

MGH Adult Diffusion Data Scanning Protocols

MGH Adult Diffusion Data Scanning Protocols MGH Adult Diffusion Data Scanning Protocols Structural scans SIEMENS MAGNETOM ConnectomA syngo MR D11 \\USER\INVESTIGATORS\Default\AAHScout_64 TA:0:14 PAT:3 Voxel size:1.6 1.6 1.6 mm Rel. SNR:1.00 :fl

More information

Single-scan longitudinal relaxation measurements in high-resolution NMR spectroscopy

Single-scan longitudinal relaxation measurements in high-resolution NMR spectroscopy Journal of Magnetic Resonance 164 (2003) 321 328 www.elsevier.com/locate/jmr Single-scan longitudinal relaxation measurements in high-resolution NMR spectroscopy Nikolaus M. Loening, a, * Michael J. Thrippleton,

More information

Flash, Rocking on others Added value in DCM and CRT. C. Parsai Polyclinique des Fleurs France

Flash, Rocking on others Added value in DCM and CRT. C. Parsai Polyclinique des Fleurs France Flash, Rocking on others Added value in DCM and CRT C. Parsai Polyclinique des Fleurs France Cleland JGF et al. (2007) Nat Clin Pract Cardiovasc Med 4: 90 101 Predicting CRT Response Device Related Patient

More information

REVIEW. Magnetic Resonance in Medicine 00:00 00 (2014)

REVIEW. Magnetic Resonance in Medicine 00:00 00 (2014) REVIEW Magnetic Resonance in Medicine 00:00 00 (2014) Recommended Implementation of Arterial Spin-Labeled Perfusion MRI for Clinical Applications: A Consensus of the ISMRM Perfusion Study Group and the

More information

Rb 82 Cardiac PET Scanning Protocols and Dosimetry. Deborah Tout Nuclear Medicine Department Central Manchester University Hospitals

Rb 82 Cardiac PET Scanning Protocols and Dosimetry. Deborah Tout Nuclear Medicine Department Central Manchester University Hospitals Rb 82 Cardiac PET Scanning Protocols and Dosimetry Deborah Tout Nuclear Medicine Department Central Manchester University Hospitals Overview Rb 82 myocardial perfusion imaging protocols Acquisition Reconstruction

More information

MYOCARDIAL PERFUSION COMPUTED TOMOGRAPHY PhD course in Medical Imaging. Anne Günther Department of Radiology OUS Rikshospitalet

MYOCARDIAL PERFUSION COMPUTED TOMOGRAPHY PhD course in Medical Imaging. Anne Günther Department of Radiology OUS Rikshospitalet MYOCARDIAL PERFUSION COMPUTED TOMOGRAPHY PhD course in Medical Imaging Anne Günther Department of Radiology OUS Rikshospitalet CORONARY CT ANGIOGRAPHY (CTA) Accurate method in the assessment of possible

More information

Detection of Heart Diseases by Mathematical Artificial Intelligence Algorithm Using Phonocardiogram Signals

Detection of Heart Diseases by Mathematical Artificial Intelligence Algorithm Using Phonocardiogram Signals International Journal of Innovation and Applied Studies ISSN 2028-9324 Vol. 3 No. 1 May 2013, pp. 145-150 2013 Innovative Space of Scientific Research Journals http://www.issr-journals.org/ijias/ Detection

More information

Super-Resolution Reconstruction in MRI: Better Images Faster?

Super-Resolution Reconstruction in MRI: Better Images Faster? Super-Resolution Reconstruction in MRI: Better Images Faster? Esben Plenge 1,, Dirk H. J. Poot 1, Monique Bernsen 2, Gyula Kotek 2, Gavin Houston 2, Piotr Wielopolski 2, Louise van der Weerd 3, Wiro J.

More information

Reproducibility of T1 and T2 Relaxation Times Calculated from Routine MR Imaging Sequences: Phantom Study

Reproducibility of T1 and T2 Relaxation Times Calculated from Routine MR Imaging Sequences: Phantom Study 277 Reproducibility of T1 and T2 Relaxation Times Calculated from Routine MR Imaging Sequences: Phantom Study Bent O. Kjos 1 Richard L. Ehman Michael Brant-Zawadki Measurement of nand T2 relaxation times

More information

MRI Physics for Radiologists

MRI Physics for Radiologists Alfred L. Horowitz MRI Physics for Radiologists A Visual Approach Second Edition With 94 Illustrations Springer-Verlag New York Berlin Heidelberg London Paris Tokyo Hong Kong Barcelona Budapest Alfred

More information

Nuclear PACS: Problems, Solutions

Nuclear PACS: Problems, Solutions Nuclear PACS: Problems, Solutions by Jerold W. Wallis, MD Introduction Reprinted with permission: Wallis JW. Nuclear PACS: Problems, Solutions. Decisions in Imaging Economics. 2004;6;21-25. There is increasing

More information

In vivo stem cell tracking in the myocardium of small laboratory animals: Feasibility and acquisition strategies on clinical magnetic resonance

In vivo stem cell tracking in the myocardium of small laboratory animals: Feasibility and acquisition strategies on clinical magnetic resonance In vivo stem cell tracking in the myocardium of small laboratory animals: Feasibility and acquisition strategies on clinical magnetic resonance imaging (MRI) systems Piotr A. Wielopolski Erasmus MC Department

More information

Overview. Optimizing MRI Protocols. Image Contrast. Morphology & Physiology. User Selectable Parameters. Tissue Parameters

Overview. Optimizing MRI Protocols. Image Contrast. Morphology & Physiology. User Selectable Parameters. Tissue Parameters Overview Optimizing MRI Protocols Clinical Practice & Compromises Geoffrey D. Clarke, Radiology Department University of Texas Health Science Center at San Antonio Pulse timing parameters for adjusting

More information

Application note for listmode scanning

Application note for listmode scanning Application note for listmode scanning This application note explains what listmode acquisition is, how a listmode scan is done and how to process a listmode scan with SkyScan software. What is listmode?

More information

FDA Guidelines for Magnetic Resonance Equipment Safety

FDA Guidelines for Magnetic Resonance Equipment Safety FDA Guidelines for Magnetic Resonance Equipment Safety Loren A. Zaremba, Ph.D. Center for Devices and Radiological Health Food and Drug Administration Outline I. Introduction II. Static Magnetic Field

More information

Kap 8 Image quality, signal, contrast and noise

Kap 8 Image quality, signal, contrast and noise 4/5/ FYS-KJM 474 contrast SNR MR-teori og medisinsk diagnostikk Kap 8 Image qualit, signal, contrast and noise resolution vailable MRparameters speed Main source of noise in MRI: Noise generated within

More information

X X X a) perfect linear correlation b) no correlation c) positive correlation (r = 1) (r = 0) (0 < r < 1)

X X X a) perfect linear correlation b) no correlation c) positive correlation (r = 1) (r = 0) (0 < r < 1) CORRELATION AND REGRESSION / 47 CHAPTER EIGHT CORRELATION AND REGRESSION Correlation and regression are statistical methods that are commonly used in the medical literature to compare two or more variables.

More information

Advanced MRI methods in diagnostics of spinal cord pathology

Advanced MRI methods in diagnostics of spinal cord pathology Advanced MRI methods in diagnostics of spinal cord pathology Stanisław Kwieciński Department of Magnetic Resonance MR IMAGING LAB MRI /MRS IN BIOMEDICAL RESEARCH ON HUMANS AND ANIMAL MODELS IN VIVO Equipment:

More information

Robot Perception Continued

Robot Perception Continued Robot Perception Continued 1 Visual Perception Visual Odometry Reconstruction Recognition CS 685 11 Range Sensing strategies Active range sensors Ultrasound Laser range sensor Slides adopted from Siegwart

More information

BIPOLAR LIMB LEADS UNIPOLAR LIMB LEADS PRECORDIAL (UNIPOLAR) LEADS VIEW OF EACH LEAD INDICATIVE ECG CHANGES

BIPOLAR LIMB LEADS UNIPOLAR LIMB LEADS PRECORDIAL (UNIPOLAR) LEADS VIEW OF EACH LEAD INDICATIVE ECG CHANGES BIPOLAR LIMB LEADS Have both a distinctive positive and negative pole. Lead I LA (positive) RA (negative) Lead II LL (positive) RA (negative) Lead III LL (positive) LA (negative) UNIPOLAR LIMB LEADS Have

More information

Medical Imaging. MRI Instrumentation, Data Acquisition, Image Reconstruction. Assistant Professor Department of Radiology, NYU School of Medicine

Medical Imaging. MRI Instrumentation, Data Acquisition, Image Reconstruction. Assistant Professor Department of Radiology, NYU School of Medicine G16.4426/EL5823/BE6203 Medical Imaging MRI Instrumentation, Data Acquisition, Image Reconstruction Riccardo Lattanzi, Ph.D. Assistant Professor Department of Radiology, NYU School of Medicine Department

More information

Chapter 8. Low energy ion scattering study of Fe 4 N on Cu(100)

Chapter 8. Low energy ion scattering study of Fe 4 N on Cu(100) Low energy ion scattering study of 4 on Cu(1) Chapter 8. Low energy ion scattering study of 4 on Cu(1) 8.1. Introduction For a better understanding of the reconstructed 4 surfaces one would like to know

More information

Real-Time 3-Dimensional Transesophageal Echocardiography in the Evaluation of Post-Operative Mitral Annuloplasty Ring and Prosthetic Valve Dehiscence

Real-Time 3-Dimensional Transesophageal Echocardiography in the Evaluation of Post-Operative Mitral Annuloplasty Ring and Prosthetic Valve Dehiscence Journal of the American College of Cardiology Vol. 53, No. 17, 2009 2009 by the American College of Cardiology Foundation ISSN 0735-1097/09/$36.00 Published by Elsevier Inc. doi:10.1016/j.jacc.2008.12.059

More information

Generation and Detection of NMR Signals

Generation and Detection of NMR Signals Generation and Detection of NMR Signals Hanudatta S. Atreya NMR Research Centre Indian Institute of Science NMR Spectroscopy Spin (I)=1/2h B 0 Energy 0 = B 0 Classical picture (B 0 ) Quantum Mechanical

More information

Introduction to Electrophysiology. Wm. W. Barrington, MD, FACC University of Pittsburgh Medical Center

Introduction to Electrophysiology. Wm. W. Barrington, MD, FACC University of Pittsburgh Medical Center Introduction to Electrophysiology Wm. W. Barrington, MD, FACC University of Pittsburgh Medical Center Objectives Indications for EP Study How do we do the study Normal recordings Abnormal Recordings Limitations

More information

Computed Tomography, Head Or Brain; Without Contrast Material, Followed By Contrast Material(S) And Further Sections

Computed Tomography, Head Or Brain; Without Contrast Material, Followed By Contrast Material(S) And Further Sections 1199SEIU BENEFIT AND PENSION FUNDS High Tech Diagnostic Radiology and s # 1 70336 Magnetic Resonance (Eg, Proton) Imaging, Temporomandibular Joint(S) 2 70450 Computed Tomography, Head Or Brain; Without

More information

Review of Biomedical Image Processing

Review of Biomedical Image Processing BOOK REVIEW Open Access Review of Biomedical Image Processing Edward J Ciaccio Correspondence: ciaccio@columbia. edu Department of Medicine, Columbia University, New York, USA Abstract This article is

More information

MDCT Technology. Kalpana M. Kanal, Ph.D., DABR Assistant Professor Department of Radiology University of Washington Seattle, Washington

MDCT Technology. Kalpana M. Kanal, Ph.D., DABR Assistant Professor Department of Radiology University of Washington Seattle, Washington MDCT Technology Kalpana M. Kanal, Ph.D., DABR Assistant Professor Department of Radiology University of Washington Seattle, Washington ACMP Annual Meeting 2008 - Seattle, WA Educational Objectives Historical

More information

2. MATERIALS AND METHODS

2. MATERIALS AND METHODS Difficulties of T1 brain MRI segmentation techniques M S. Atkins *a, K. Siu a, B. Law a, J. Orchard a, W. Rosenbaum a a School of Computing Science, Simon Fraser University ABSTRACT This paper looks at

More information

The Fourier Analysis Tool in Microsoft Excel

The Fourier Analysis Tool in Microsoft Excel The Fourier Analysis Tool in Microsoft Excel Douglas A. Kerr Issue March 4, 2009 ABSTRACT AD ITRODUCTIO The spreadsheet application Microsoft Excel includes a tool that will calculate the discrete Fourier

More information

How To Understand The Measurement Process

How To Understand The Measurement Process April 24, 2015 Exam #3: Solution Key online now! Graded exams by Monday! Final Exam Monday, May 4 th, 10:30 a.m. Room: Perkins 107 1 A Classical Perspective A classical view will help us understand the

More information

Wireless Radio Frequency Coil for Magnetic Resonance Image of Knee Joint

Wireless Radio Frequency Coil for Magnetic Resonance Image of Knee Joint Wireless Radio Frequency Coil for Magnetic Resonance Image of Knee Joint Tomohiro Sahara, Hiroshi Tsutsui, Shigehiro Hashimoto, Shuichi Mochizuki, Kenichi Yamasaki, Hideo Kondo, Teruo Miyazaki Department

More information

Clinical Observations with the Lead System

Clinical Observations with the Lead System Clinical Observations with the Lead System Frank Precordial By J. A. ABILDSKOv, M.D., W. W. STREET, M.D., N. SOLOMON, B.A., AND A. H. TOOMAJIAN, B.A. Several new lead systems for electrocardiography and

More information

Update: MRI in Multiple sclerosis

Update: MRI in Multiple sclerosis Nyt indenfor MS ved MR Update: MRI in Multiple sclerosis Hartwig Roman Siebner Danish Research Centre for Magnetic Resonance (DRCMR) Copenhagen University Hospital Hvidovre Dansk Radiologisk Selskabs 10.

More information

Spin-Lattice Relaxation Times

Spin-Lattice Relaxation Times Spin-Lattice Relaxation Times Reading Assignment: T. D. W. Claridge, High Resolution NMR Techniques in Organic Chemistry, Chapter 2; E. Breitmaier, W. Voelter, Carbon 13 NMR Spectroscopy,3rd Ed., 3.3.2.

More information

The File-Card-Browser View for Breast DCE-MRI Data

The File-Card-Browser View for Breast DCE-MRI Data The File-Card-Browser View for Breast DCE-MRI Data Sylvia Glaßer 1, Kathrin Scheil 1, Uta Preim 2, Bernhard Preim 1 1 Department of Simulation and Graphics, University of Magdeburg 2 Department of Radiology,

More information

Three Dimensional Ultrasound Imaging

Three Dimensional Ultrasound Imaging Three Dimensional Ultrasound Imaging Hans Torp/ Sevald Berg/Kjell Kristoffersen m/flere Department of circulation and medical imaging NTNU Hans Torp NTNU, Norway Acquisition Reconstruction Filtering Collecting

More information

NMR Pulse Spectrometer PS 15. experimental manual

NMR Pulse Spectrometer PS 15. experimental manual NMR Pulse Spectrometer PS 15 experimental manual NMR Pulse Spectrometer PS 15 Experimental Manual for MS Windows For: MS Windows software Winner Format: MS Word 2002 File: PS15 Experimental Manual 1.5.1.doc

More information

TCOM 370 NOTES 99-4 BANDWIDTH, FREQUENCY RESPONSE, AND CAPACITY OF COMMUNICATION LINKS

TCOM 370 NOTES 99-4 BANDWIDTH, FREQUENCY RESPONSE, AND CAPACITY OF COMMUNICATION LINKS TCOM 370 NOTES 99-4 BANDWIDTH, FREQUENCY RESPONSE, AND CAPACITY OF COMMUNICATION LINKS 1. Bandwidth: The bandwidth of a communication link, or in general any system, was loosely defined as the width of

More information

Preserving Hyperpolarization of 129 Xe for Transport Submitted by: Zach Zytner Project Supervisor: Dr. Giles Santyr Medical Biophysics 3970 Date:

Preserving Hyperpolarization of 129 Xe for Transport Submitted by: Zach Zytner Project Supervisor: Dr. Giles Santyr Medical Biophysics 3970 Date: Preserving Hyperpolarization of 129 Xe for Transport Submitted by: Zach Zytner Project Supervisor: Dr. Giles Santyr Medical Biophysics 3970 Date: April 1, 2011 Introduction and Theory The effective use

More information

Evaluation copy. Analyzing the Heart with EKG. Computer

Evaluation copy. Analyzing the Heart with EKG. Computer Analyzing the Heart with EKG Computer An electrocardiogram (ECG or EKG) is a graphical recording of the electrical events occurring within the heart. In a healthy heart there is a natural pacemaker in

More information

Quantitative Comparison of Conventional and Oblique MRI for Detection of Herniated Spinal Discs

Quantitative Comparison of Conventional and Oblique MRI for Detection of Herniated Spinal Discs Quantitative Comparison of Conventional and Oblique MRI for Detection of Herniated Spinal Discs Doug Dean ENGN 2500: Medical Image Analysis Final Project Outline Introduction to the problem Based on paper:

More information

R/F. Efforts to Reduce Exposure Dose in Chest Tomosynthesis Targeting Lung Cancer Screening. 3. Utility of Chest Tomosynthesis. 1.

R/F. Efforts to Reduce Exposure Dose in Chest Tomosynthesis Targeting Lung Cancer Screening. 3. Utility of Chest Tomosynthesis. 1. R/F Efforts to Reduce Exposure Dose in Chest Tomosynthesis Targeting Lung Cancer Screening Department of Radiology, National Cancer Center Hospital East Kaoru Shimizu Ms. Kaoru Shimizu 1. Introduction

More information

Relaxation Can T, Be Longer Than T,?

Relaxation Can T, Be Longer Than T,? Concepts in Magnetic Resonance, 1991, 3, 171-177 Relaxation Can T, Be Longer Than T,? Daniel D. Traficante Departments of Chemistry and Medicinal Chemistry and NMR Concepts UniVersily of Rhode Island Kingston,

More information

Paul S Tofts. Institute of Neurology (Queen Square), University College London, WC1N 3BG, UK

Paul S Tofts. Institute of Neurology (Queen Square), University College London, WC1N 3BG, UK What can quantitative DCE T -weighted MR imaging tell us? Paul S Tofts Institute of Neurology (Queen Square), University College London, WCN 3BG, UK http://www.ion.ucl.ac.uk/nmrphysics/paultofts/ p.tofts@ion.ucl.ac.uk

More information

The mhr model is described by 30 ordinary differential equations (ODEs): one. ion concentrations and 23 equations describing channel gating.

The mhr model is described by 30 ordinary differential equations (ODEs): one. ion concentrations and 23 equations describing channel gating. On-line Supplement: Computer Modeling Chris Clausen, PhD and Ira S. Cohen, MD, PhD Computer models of canine ventricular action potentials The mhr model is described by 30 ordinary differential equations

More information

3/30/2013. Disclosure. Advanced Neuro MRI: Imaging Techniques and Protocol Optimization. MRI, 35 year ago. MRI Today. Outlines

3/30/2013. Disclosure. Advanced Neuro MRI: Imaging Techniques and Protocol Optimization. MRI, 35 year ago. MRI Today. Outlines http://www.magnet.fsu.edu Disclosure Advanced Neuro MRI: Imaging Techniques and Protocol Optimization Research funding provided by Siemens Healthcare. Chen Lin, PhD DABR Indiana University School of Medicine

More information

J. P. Oakley and R. T. Shann. Department of Electrical Engineering University of Manchester Manchester M13 9PL U.K. Abstract

J. P. Oakley and R. T. Shann. Department of Electrical Engineering University of Manchester Manchester M13 9PL U.K. Abstract A CURVATURE SENSITIVE FILTER AND ITS APPLICATION IN MICROFOSSIL IMAGE CHARACTERISATION J. P. Oakley and R. T. Shann Department of Electrical Engineering University of Manchester Manchester M13 9PL U.K.

More information

4D Magnetic Resonance Analysis. MR 4D Flow. Visualization and Quantification of Aortic Blood Flow

4D Magnetic Resonance Analysis. MR 4D Flow. Visualization and Quantification of Aortic Blood Flow 4D Magnetic Resonance Analysis MR 4D Flow Visualization and Quantification of Aortic Blood Flow 4D Magnetic Resonance Analysis Pie Medical Imaging, manufacturer of Quantitative Analysis software for cardiology

More information

Whitepapers on Imaging Infrastructure for Research Paper 1. General Workflow Considerations

Whitepapers on Imaging Infrastructure for Research Paper 1. General Workflow Considerations Whitepapers on Imaging Infrastructure for Research Paper 1. General Workflow Considerations Bradley J Erickson, Tony Pan, Daniel J Marcus, CTSA Imaging Informatics Working Group Introduction The use of

More information

Video-Based Eye Tracking

Video-Based Eye Tracking Video-Based Eye Tracking Our Experience with Advanced Stimuli Design for Eye Tracking Software A. RUFA, a G.L. MARIOTTINI, b D. PRATTICHIZZO, b D. ALESSANDRINI, b A. VICINO, b AND A. FEDERICO a a Department

More information

CT RADIATION DOSE REPORT FROM DICOM. Frank Dong, PhD, DABR Diagnostic Physicist Imaging Institute Cleveland Clinic Foundation Cleveland, OH

CT RADIATION DOSE REPORT FROM DICOM. Frank Dong, PhD, DABR Diagnostic Physicist Imaging Institute Cleveland Clinic Foundation Cleveland, OH CT RADIATION DOSE REPORT FROM DICOM Frank Dong, PhD, DABR Diagnostic Physicist Imaging Institute Cleveland Clinic Foundation Cleveland, OH CT Patient comes out... Patient goes in... Big Black Box Radiology

More information

ALLEN Mouse Brain Atlas

ALLEN Mouse Brain Atlas TECHNICAL WHITE PAPER: QUALITY CONTROL STANDARDS FOR HIGH-THROUGHPUT RNA IN SITU HYBRIDIZATION DATA GENERATION Consistent data quality and internal reproducibility are critical concerns for high-throughput

More information

Award Number: W81XWH-10-1-0739

Award Number: W81XWH-10-1-0739 AD Award Number: W81XWH-10-1-0739 TITLE: Voxel-Wise Time-Series Analysis of Quantitative MRI in Relapsing-Remitting MS: Dynamic Imaging Metrics of Disease Activity Including Prelesional Changes PRINCIPAL

More information

MRI DATA PROCESSING. Compiled by: Nicolas F. Lori and Carlos Ferreira. Introduction

MRI DATA PROCESSING. Compiled by: Nicolas F. Lori and Carlos Ferreira. Introduction MRI DATA PROCESSING Compiled by: Nicolas F. Lori and Carlos Ferreira Introduction Magnetic Resonance Imaging (MRI) is a clinical exam that is safe to the patient. Nevertheless, it s very important to attend

More information

Spatial Encoding Using Multiple rf Coils: SMASH Imaging and Parallel MRI

Spatial Encoding Using Multiple rf Coils: SMASH Imaging and Parallel MRI SPATIAL ENCODING USING MULTIPLE RF COILS: SMASH IMAGING AND PARALLEL MRI 1 Spatial Encoding Using Multiple rf Coils: SMASH Imaging and Parallel MRI Daniel K. Sodickson Beth Israel Deaconess Medical Center

More information