A Comparative Study of Conforming and Nonconforming High-Resolution Finite Element Schemes

Size: px
Start display at page:

Download "A Comparative Study of Conforming and Nonconforming High-Resolution Finite Element Schemes"

Transcription

1 A Comparative Study of Conforming and Nonconforming High-Resolution Finite Element Schemes Matthias Möller Institute of Applied Mathematics (LS3) TU Dortmund, Germany European Seminar on Computing Pilsen, Czech Republic June 25, 2012

2 Family of AFC schemes Kuzmin et al. M L u =[K + D]u + F( u, u) lumped mass matrix antidiffusive correction artificial diffusion operator

3 Family of AFC schemes Kuzmin et al. M L u =[K + D]u + F( u, u) F ( u, u) =[M L M C ] u Du F (u) = Du F 0 NL-GP NL-FCT NL-TVD Low-order nonlinear flux-correction Lin-FCT M L u = M L u L + F ( u L,u L ) linearized flux-correction

4 Family of AFC schemes Kuzmin et al. M L u =[K + D]u + F( u, u) F ( u, u) =[M L M C ] u Du F (u) = Du F 0 NL-GP NL-FCT NL-TVD Low-order nonlinear flux-correction AFC-LPT... Lin-FCT M L u = M L u L + F ( u L,u L ) linearized flux-correction

5 Review of design principles Jameson s Local Extremum Diminishing criterion IF m i u i = X j6=i ij(u j u i ) positive not negative THEN local solution maxima/minima do not increase/decrease

6 Review of design principles Jameson s Local Extremum Diminishing criterion IF m i u i = X j6=i ij(u j u i ) positive not negative THEN local solution maxima/minima do not increase/decrease Semi-discrete high-resolution scheme m i u i = X (k ij + d ij )(u j u i )+ i u i + X ij f ij j6=i j6=i m i = X j m ij not negative by construction of diffusion coefficient controlled by flux limiter

7 Review of design principles Jameson s Local Extremum Diminishing criterion IF m i u i = X j6=i ij(u j u i ) positive not negative THEN local solution maxima/minima do not increase/decrease Semi-discrete high-resolution scheme m i u i = X (k ij + d ij )(u j u i )+ i u i + X ij f ij j6=i j6=i m i = X j m ij not negative by construction of diffusion coefficient controlled by flux limiter Edge-based assembly of operators/vectors is feasible and efficient!

8 Finite Elements Bilinear Q1 FE nodal values at cell vertices Rotated bilinear ~Q1 FE nodal values at cell midpoints integral mean-values at edges

9 Finite Element properties Uniform 128x128 grid of unit square with 5% stochastic disturbance (A) MC ML NEQ NA Q1 8 16,641 82,680 mean value point value ~Q1 par 6 33, ,483 ~Q1 np 6 33, ,478 ~Q1 par 6-7.2E-07 ( ) 33, ,204 ~Q1 np 6-7.2E-07 ( ) 33, ,576

10 Finite Element properties Uniform 128x128 grid of unit square with 5% stochastic disturbance (A) MC ML NEQ NA Q1 8 16,641 82,680 mean value point value ~Q1 par 6 33, ,483 ~Q1 np 6 33, ,478 ~Q1 par 6-7.2E-07 ( ) 33, ,204 ~Q1 np 6-7.2E-07 ( ) 33, ,576

11 Finite Element properties

12 Finite Element properties Q1 FE nz = 369

13 Finite Element properties Q1 FE nz = 369 ~Q1 FE nz = 530

14 Finite Element properties Storage format: CRS, CCS Q1 FE nz 5 = Number of non-zero entries per matrix 10 row ~Q1 FE nz = Number of matrix row Storage format: ELLPACK Q1 ~Q1

15 Solid body rotation Pure convection problem u + r (vu) =0 in =(0, 1) 2 ~Q1 FE NL-FCT sim. time t=2π u = 0 on inflow Velocity field v(x, y) =(0.5 y, x 0.5) Grid size h =1/2 l,l =5, 6,... Stochastic grid disturbance 2 {0%, 1%, 5%} Time step in Crank- Nicolson t =1.28 h Initial = exact solution at t =2 k, k 2 N

16 SBR: L2-error (0% mesh disturbance) Low-order Lin-FCT NL-FCT NL-GP NL-TVD Q1 FE ~Q1 FE 1 1 0,1 0,1 0, , Refinement level Refinement level

17 SBR: L2-error (5% mesh disturbance) Low-order Lin-FCT NL-FCT NL-GP NL-TVD Q1 FE ~Q1 FE 1 1 0,1 0,1 0, , Refinement level Refinement level

18 Rotation of a Gaussian hill Convection-diffusion equation u + r (vu ru) =0 ~Q1 FE NL-FCT time t=5/2π in =( 1, 1) 2 Velocity field, diffusion coefficient v(x, y) =( y, x), =0.001 Analytical solution u(x, y, t) = 1 4 t e r 2 4 t r 2 =(x ˆx) 2 +(y ŷ) 2 Position of the peak ˆx(t) = 0.5 sin t ŷ(t) = 0.5 cos(t) Other parameters as before

19 RGH: L2-error (0% mesh disturbance) Low-order Lin-FCT NL-FCT NL-GP NL-TVD Q1 FE ~Q1 FE ,1 0,1 0,01 0,01 0, , Refinement level Refinement level

20 RGH: dispersion-error (0% mesh disturbance) Low-order Lin-FCT NL-FCT NL-GP NL-TVD Q1 FE ~Q1 FE 5,5 5,5 4,5 4,5 3,5 3,5 2,5 2,5 1,5 1,5 0,5 0,5-0, , Refinement level Refinement level

21 RGH: L2-error (5% mesh disturbance) Low-order Lin-FCT NL-FCT NL-GP NL-TVD Q1 FE ~Q1 FE ,1 0,1 0,01 0,01 0, , Refinement level Refinement level

22 RGH: dispersion-error (5% mesh disturbance) Low-order Lin-FCT NL-FCT NL-GP NL-TVD Q1 FE ~Q1 FE 5,5 5,5 4,5 4,5 3,5 3,5 2,5 2,5 1,5 1,5 0,5 0,5-0, , Refinement level Refinement level

23 Taxonomy of finite elements conforming3:3 non conforming good accuracy good small numerical diffusion small smaller #DOFs, #edges larger irregular sparsity pattern regular

24 Can nonconforming finite elements help to improve performance on many-core hardware? NVIDIA Kepler GK110 Die Shot (taken from:

25 Example: edge-based flux-assembly with Q1 FE 1 OMP 2 OMP 4 OMP 8 OMP 12 OMP Xeon X5680(2x6) CUDA C best GPU performance for large problem sizes Bandwidth (GB/s) best CPU performance if data fits into cache 0 0K 1K 10K 100K 1.000K #edges per color group

26 Example: edge-based flux assembly with Q1 FE OMP 6 on Core i7 EP CUDA on C2070 #edges per color group F i = NX colors k=1 X ij2cg k ij(u j U i ) Bandwidth (GB/s) GB/s Color groups K 375K 250K 125K 0K Accumulated time (ms) w/ transf. 55 ms 23 ms 5,7x 132 ms CUDA OMP 6

27 Example: edge-based flux assembly with ~Q1 FE Bandwidth (GB/s) OMP 6 on Core i7 EP CUDA on C2070 #edges per color group 6-7 GB/s Color groups K 1.125K 750K 375K 0K Accumulated time (ms) w/ transf. 95 ms 32 ms 5,9x 191 ms CUDA OMP 6

28 Summary Nonconforming ~Q1 finite elements can be used within the algebraic flux correction framework are comparable to conforming FEs (accuracy/numerical diffusion) increase number of DOFs as compared to conforming Q1 FEs lead to system matrices with regular structure favorable for HPC Future plans Apply nonconforming AFC schemes to systems of equations Exploit benefits of nonconforming FEs for many-core architectures: speed up parallel (edge-based) assembly loops, implement more efficient matrix structures (ELLPACK), reduce communication costs in parallelized code

29 Acknowledgements AFC schemes D. Kuzmin (University of Erlangen-Nuremberg) CUDA/GPU programming D. Göddeke, D. Ribbrock, M. Geveler (TU Dortmund) Featflow2 M. Köster, P. Zajac (TU Dortmund) Source code freely available at:

Algebraic Flux Correction I. Scalar Conservation Laws

Algebraic Flux Correction I. Scalar Conservation Laws Algebraic Flux Correction I. Scalar Conservation Laws Dmitri Kuzmin 1 and Matthias Möller 2 1 Institute of Applied Mathematics (LS III), University of Dortmund Vogelpothsweg 87, D-44227, Dortmund, Germany

More information

Mixed Precision Iterative Refinement Methods Energy Efficiency on Hybrid Hardware Platforms

Mixed Precision Iterative Refinement Methods Energy Efficiency on Hybrid Hardware Platforms Mixed Precision Iterative Refinement Methods Energy Efficiency on Hybrid Hardware Platforms Björn Rocker Hamburg, June 17th 2010 Engineering Mathematics and Computing Lab (EMCL) KIT University of the State

More information

Advanced Computational Fluid Dynamics AA215A Lecture 5

Advanced Computational Fluid Dynamics AA215A Lecture 5 Advanced Computational Fluid Dynamics AA5A Lecture 5 Antony Jameson Winter Quarter, 0, Stanford, CA Abstract Lecture 5 shock capturing schemes for scalar conservation laws Contents Shock Capturing Schemes

More information

Hardware-Aware Analysis and. Presentation Date: Sep 15 th 2009 Chrissie C. Cui

Hardware-Aware Analysis and. Presentation Date: Sep 15 th 2009 Chrissie C. Cui Hardware-Aware Analysis and Optimization of Stable Fluids Presentation Date: Sep 15 th 2009 Chrissie C. Cui Outline Introduction Highlights Flop and Bandwidth Analysis Mehrstellen Schemes Advection Caching

More information

ME6130 An introduction to CFD 1-1

ME6130 An introduction to CFD 1-1 ME6130 An introduction to CFD 1-1 What is CFD? Computational fluid dynamics (CFD) is the science of predicting fluid flow, heat and mass transfer, chemical reactions, and related phenomena by solving numerically

More information

PyFR: Bringing Next Generation Computational Fluid Dynamics to GPU Platforms

PyFR: Bringing Next Generation Computational Fluid Dynamics to GPU Platforms PyFR: Bringing Next Generation Computational Fluid Dynamics to GPU Platforms P. E. Vincent! Department of Aeronautics Imperial College London! 25 th March 2014 Overview Motivation Flux Reconstruction Many-Core

More information

Express Introductory Training in ANSYS Fluent Lecture 1 Introduction to the CFD Methodology

Express Introductory Training in ANSYS Fluent Lecture 1 Introduction to the CFD Methodology Express Introductory Training in ANSYS Fluent Lecture 1 Introduction to the CFD Methodology Dimitrios Sofialidis Technical Manager, SimTec Ltd. Mechanical Engineer, PhD PRACE Autumn School 2013 - Industry

More information

SOLVING LINEAR SYSTEMS

SOLVING LINEAR SYSTEMS SOLVING LINEAR SYSTEMS Linear systems Ax = b occur widely in applied mathematics They occur as direct formulations of real world problems; but more often, they occur as a part of the numerical analysis

More information

GPU Computing with CUDA Lecture 2 - CUDA Memories. Christopher Cooper Boston University August, 2011 UTFSM, Valparaíso, Chile

GPU Computing with CUDA Lecture 2 - CUDA Memories. Christopher Cooper Boston University August, 2011 UTFSM, Valparaíso, Chile GPU Computing with CUDA Lecture 2 - CUDA Memories Christopher Cooper Boston University August, 2011 UTFSM, Valparaíso, Chile 1 Outline of lecture Recap of Lecture 1 Warp scheduling CUDA Memory hierarchy

More information

Yousef Saad University of Minnesota Computer Science and Engineering. CRM Montreal - April 30, 2008

Yousef Saad University of Minnesota Computer Science and Engineering. CRM Montreal - April 30, 2008 A tutorial on: Iterative methods for Sparse Matrix Problems Yousef Saad University of Minnesota Computer Science and Engineering CRM Montreal - April 30, 2008 Outline Part 1 Sparse matrices and sparsity

More information

An Introduction to Applied Mathematics: An Iterative Process

An Introduction to Applied Mathematics: An Iterative Process An Introduction to Applied Mathematics: An Iterative Process Applied mathematics seeks to make predictions about some topic such as weather prediction, future value of an investment, the speed of a falling

More information

Abstract: We describe the beautiful LU factorization of a square matrix (or how to write Gaussian elimination in terms of matrix multiplication).

Abstract: We describe the beautiful LU factorization of a square matrix (or how to write Gaussian elimination in terms of matrix multiplication). MAT 2 (Badger, Spring 202) LU Factorization Selected Notes September 2, 202 Abstract: We describe the beautiful LU factorization of a square matrix (or how to write Gaussian elimination in terms of matrix

More information

LBM BASED FLOW SIMULATION USING GPU COMPUTING PROCESSOR

LBM BASED FLOW SIMULATION USING GPU COMPUTING PROCESSOR LBM BASED FLOW SIMULATION USING GPU COMPUTING PROCESSOR Frédéric Kuznik, frederic.kuznik@insa lyon.fr 1 Framework Introduction Hardware architecture CUDA overview Implementation details A simple case:

More information

MONTE-CARLO SIMULATION OF AMERICAN OPTIONS WITH GPUS. Julien Demouth, NVIDIA

MONTE-CARLO SIMULATION OF AMERICAN OPTIONS WITH GPUS. Julien Demouth, NVIDIA MONTE-CARLO SIMULATION OF AMERICAN OPTIONS WITH GPUS Julien Demouth, NVIDIA STAC-A2 BENCHMARK STAC-A2 Benchmark Developed by banks Macro and micro, performance and accuracy Pricing and Greeks for American

More information

jorge s. marques image processing

jorge s. marques image processing image processing images images: what are they? what is shown in this image? What is this? what is an image images describe the evolution of physical variables (intensity, color, reflectance, condutivity)

More information

5.4 The Heat Equation and Convection-Diffusion

5.4 The Heat Equation and Convection-Diffusion 5.4. THE HEAT EQUATION AND CONVECTION-DIFFUSION c 6 Gilbert Strang 5.4 The Heat Equation and Convection-Diffusion The wave equation conserves energy. The heat equation u t = u xx dissipates energy. The

More information

HIGH PERFORMANCE CONSULTING COURSE OFFERINGS

HIGH PERFORMANCE CONSULTING COURSE OFFERINGS Performance 1(6) HIGH PERFORMANCE CONSULTING COURSE OFFERINGS LEARN TO TAKE ADVANTAGE OF POWERFUL GPU BASED ACCELERATOR TECHNOLOGY TODAY 2006 2013 Nvidia GPUs Intel CPUs CONTENTS Acronyms and Terminology...

More information

Towards real-time image processing with Hierarchical Hybrid Grids

Towards real-time image processing with Hierarchical Hybrid Grids Towards real-time image processing with Hierarchical Hybrid Grids International Doctorate Program - Summer School Björn Gmeiner Joint work with: Harald Köstler, Ulrich Rüde August, 2011 Contents The HHG

More information

HPC enabling of OpenFOAM R for CFD applications

HPC enabling of OpenFOAM R for CFD applications HPC enabling of OpenFOAM R for CFD applications Towards the exascale: OpenFOAM perspective Ivan Spisso 25-27 March 2015, Casalecchio di Reno, BOLOGNA. SuperComputing Applications and Innovation Department,

More information

Mathematics Course 111: Algebra I Part IV: Vector Spaces

Mathematics Course 111: Algebra I Part IV: Vector Spaces Mathematics Course 111: Algebra I Part IV: Vector Spaces D. R. Wilkins Academic Year 1996-7 9 Vector Spaces A vector space over some field K is an algebraic structure consisting of a set V on which are

More information

Computer Graphics. Geometric Modeling. Page 1. Copyright Gotsman, Elber, Barequet, Karni, Sheffer Computer Science - Technion. An Example.

Computer Graphics. Geometric Modeling. Page 1. Copyright Gotsman, Elber, Barequet, Karni, Sheffer Computer Science - Technion. An Example. An Example 2 3 4 Outline Objective: Develop methods and algorithms to mathematically model shape of real world objects Categories: Wire-Frame Representation Object is represented as as a set of points

More information

Trace Layer Import for Printed Circuit Boards Under Icepak

Trace Layer Import for Printed Circuit Boards Under Icepak Tutorial 13. Trace Layer Import for Printed Circuit Boards Under Icepak Introduction: A printed circuit board (PCB) is generally a multi-layered board made of dielectric material and several layers of

More information

Customer Training Material. Lecture 2. Introduction to. Methodology ANSYS FLUENT. ANSYS, Inc. Proprietary 2010 ANSYS, Inc. All rights reserved.

Customer Training Material. Lecture 2. Introduction to. Methodology ANSYS FLUENT. ANSYS, Inc. Proprietary 2010 ANSYS, Inc. All rights reserved. Lecture 2 Introduction to CFD Methodology Introduction to ANSYS FLUENT L2-1 What is CFD? Computational Fluid Dynamics (CFD) is the science of predicting fluid flow, heat and mass transfer, chemical reactions,

More information

1 Finite difference example: 1D implicit heat equation

1 Finite difference example: 1D implicit heat equation 1 Finite difference example: 1D implicit heat equation 1.1 Boundary conditions Neumann and Dirichlet We solve the transient heat equation ρc p t = ( k ) (1) on the domain L/2 x L/2 subject to the following

More information

The Basics of FEA Procedure

The Basics of FEA Procedure CHAPTER 2 The Basics of FEA Procedure 2.1 Introduction This chapter discusses the spring element, especially for the purpose of introducing various concepts involved in use of the FEA technique. A spring

More information

AeroFluidX: A Next Generation GPU-Based CFD Solver for Engineering Applications

AeroFluidX: A Next Generation GPU-Based CFD Solver for Engineering Applications AeroFluidX: A Next Generation GPU-Based CFD Solver for Engineering Applications Dr. Bjoern Landmann Dr. Kerstin Wieczorek Stefan Bachschuster 18.03.2015 FluiDyna GmbH, Lichtenbergstr. 8, 85748 Garching

More information

Høgskolen i Narvik Sivilingeniørutdanningen STE6237 ELEMENTMETODER. Oppgaver

Høgskolen i Narvik Sivilingeniørutdanningen STE6237 ELEMENTMETODER. Oppgaver Høgskolen i Narvik Sivilingeniørutdanningen STE637 ELEMENTMETODER Oppgaver Klasse: 4.ID, 4.IT Ekstern Professor: Gregory A. Chechkin e-mail: chechkin@mech.math.msu.su Narvik 6 PART I Task. Consider two-point

More information

Accelerating CFD using OpenFOAM with GPUs

Accelerating CFD using OpenFOAM with GPUs Accelerating CFD using OpenFOAM with GPUs Authors: Saeed Iqbal and Kevin Tubbs The OpenFOAM CFD Toolbox is a free, open source CFD software package produced by OpenCFD Ltd. Its user base represents a wide

More information

AN INTRODUCTION TO NUMERICAL METHODS AND ANALYSIS

AN INTRODUCTION TO NUMERICAL METHODS AND ANALYSIS AN INTRODUCTION TO NUMERICAL METHODS AND ANALYSIS Revised Edition James Epperson Mathematical Reviews BICENTENNIAL 0, 1 8 0 7 z ewiley wu 2007 r71 BICENTENNIAL WILEY-INTERSCIENCE A John Wiley & Sons, Inc.,

More information

Iterative Solvers for Linear Systems

Iterative Solvers for Linear Systems 9th SimLab Course on Parallel Numerical Simulation, 4.10 8.10.2010 Iterative Solvers for Linear Systems Bernhard Gatzhammer Chair of Scientific Computing in Computer Science Technische Universität München

More information

Component Ordering in Independent Component Analysis Based on Data Power

Component Ordering in Independent Component Analysis Based on Data Power Component Ordering in Independent Component Analysis Based on Data Power Anne Hendrikse Raymond Veldhuis University of Twente University of Twente Fac. EEMCS, Signals and Systems Group Fac. EEMCS, Signals

More information

Solving Systems of Linear Equations Using Matrices

Solving Systems of Linear Equations Using Matrices Solving Systems of Linear Equations Using Matrices What is a Matrix? A matrix is a compact grid or array of numbers. It can be created from a system of equations and used to solve the system of equations.

More information

Part II: Finite Difference/Volume Discretisation for CFD

Part II: Finite Difference/Volume Discretisation for CFD Part II: Finite Difference/Volume Discretisation for CFD Finite Volume Metod of te Advection-Diffusion Equation A Finite Difference/Volume Metod for te Incompressible Navier-Stokes Equations Marker-and-Cell

More information

Finite Elements for 2 D Problems

Finite Elements for 2 D Problems Finite Elements for 2 D Problems General Formula for the Stiffness Matrix Displacements (u, v) in a plane element are interpolated from nodal displacements (ui, vi) using shape functions Ni as follows,

More information

6. Cholesky factorization

6. Cholesky factorization 6. Cholesky factorization EE103 (Fall 2011-12) triangular matrices forward and backward substitution the Cholesky factorization solving Ax = b with A positive definite inverse of a positive definite matrix

More information

Poisson Equation Solver Parallelisation for Particle-in-Cell Model

Poisson Equation Solver Parallelisation for Particle-in-Cell Model WDS'14 Proceedings of Contributed Papers Physics, 233 237, 214. ISBN 978-8-7378-276-4 MATFYZPRESS Poisson Equation Solver Parallelisation for Particle-in-Cell Model A. Podolník, 1,2 M. Komm, 1 R. Dejarnac,

More information

Grid adaptivity for systems of conservation laws

Grid adaptivity for systems of conservation laws Grid adaptivity for systems of conservation laws M. Semplice 1 G. Puppo 2 1 Dipartimento di Matematica Università di Torino 2 Dipartimento di Scienze Matematiche Politecnico di Torino Numerical Aspects

More information

Back to Elements - Tetrahedra vs. Hexahedra

Back to Elements - Tetrahedra vs. Hexahedra Back to Elements - Tetrahedra vs. Hexahedra Erke Wang, Thomas Nelson, Rainer Rauch CAD-FEM GmbH, Munich, Germany Abstract This paper presents some analytical results and some test results for different

More information

GPU System Architecture. Alan Gray EPCC The University of Edinburgh

GPU System Architecture. Alan Gray EPCC The University of Edinburgh GPU System Architecture EPCC The University of Edinburgh Outline Why do we want/need accelerators such as GPUs? GPU-CPU comparison Architectural reasons for GPU performance advantages GPU accelerated systems

More information

7. LU factorization. factor-solve method. LU factorization. solving Ax = b with A nonsingular. the inverse of a nonsingular matrix

7. LU factorization. factor-solve method. LU factorization. solving Ax = b with A nonsingular. the inverse of a nonsingular matrix 7. LU factorization EE103 (Fall 2011-12) factor-solve method LU factorization solving Ax = b with A nonsingular the inverse of a nonsingular matrix LU factorization algorithm effect of rounding error sparse

More information

An Additive Neumann-Neumann Method for Mortar Finite Element for 4th Order Problems

An Additive Neumann-Neumann Method for Mortar Finite Element for 4th Order Problems An Additive eumann-eumann Method for Mortar Finite Element for 4th Order Problems Leszek Marcinkowski Department of Mathematics, University of Warsaw, Banacha 2, 02-097 Warszawa, Poland, Leszek.Marcinkowski@mimuw.edu.pl

More information

Solution of Linear Systems

Solution of Linear Systems Chapter 3 Solution of Linear Systems In this chapter we study algorithms for possibly the most commonly occurring problem in scientific computing, the solution of linear systems of equations. We start

More information

Building a Top500-class Supercomputing Cluster at LNS-BUAP

Building a Top500-class Supercomputing Cluster at LNS-BUAP Building a Top500-class Supercomputing Cluster at LNS-BUAP Dr. José Luis Ricardo Chávez Dr. Humberto Salazar Ibargüen Dr. Enrique Varela Carlos Laboratorio Nacional de Supercómputo Benemérita Universidad

More information

MEL 807 Computational Heat Transfer (2-0-4) Dr. Prabal Talukdar Assistant Professor Department of Mechanical Engineering IIT Delhi

MEL 807 Computational Heat Transfer (2-0-4) Dr. Prabal Talukdar Assistant Professor Department of Mechanical Engineering IIT Delhi MEL 807 Computational Heat Transfer (2-0-4) Dr. Prabal Talukdar Assistant Professor Department of Mechanical Engineering IIT Delhi Time and Venue Course Coordinator: Dr. Prabal Talukdar Room No: III, 357

More information

GPGPU accelerated Computational Fluid Dynamics

GPGPU accelerated Computational Fluid Dynamics t e c h n i s c h e u n i v e r s i t ä t b r a u n s c h w e i g Carl-Friedrich Gauß Faculty GPGPU accelerated Computational Fluid Dynamics 5th GACM Colloquium on Computational Mechanics Hamburg Institute

More information

A CODE VERIFICATION EXERCISE FOR THE UNSTRUCTURED FINITE-VOLUME CFD SOLVER ISIS-CFD

A CODE VERIFICATION EXERCISE FOR THE UNSTRUCTURED FINITE-VOLUME CFD SOLVER ISIS-CFD European Conference on Computational Fluid Dynamics ECCOMAS CFD 2006 P. Wesseling, E. Oñate and J. Périaux (Eds) c TU Delft, The Netherlands, 2006 A CODE VERIFICATION EXERCISE FOR THE UNSTRUCTURED FINITE-VOLUME

More information

P013 INTRODUCING A NEW GENERATION OF RESERVOIR SIMULATION SOFTWARE

P013 INTRODUCING A NEW GENERATION OF RESERVOIR SIMULATION SOFTWARE 1 P013 INTRODUCING A NEW GENERATION OF RESERVOIR SIMULATION SOFTWARE JEAN-MARC GRATIEN, JEAN-FRANÇOIS MAGRAS, PHILIPPE QUANDALLE, OLIVIER RICOIS 1&4, av. Bois-Préau. 92852 Rueil Malmaison Cedex. France

More information

4.3 Results... 27 4.3.1 Drained Conditions... 27 4.3.2 Undrained Conditions... 28 4.4 References... 30 4.5 Data Files... 30 5 Undrained Analysis of

4.3 Results... 27 4.3.1 Drained Conditions... 27 4.3.2 Undrained Conditions... 28 4.4 References... 30 4.5 Data Files... 30 5 Undrained Analysis of Table of Contents 1 One Dimensional Compression of a Finite Layer... 3 1.1 Problem Description... 3 1.1.1 Uniform Mesh... 3 1.1.2 Graded Mesh... 5 1.2 Analytical Solution... 6 1.3 Results... 6 1.3.1 Uniform

More information

Optimization of Supply Chain Networks

Optimization of Supply Chain Networks Optimization of Supply Chain Networks M. Herty TU Kaiserslautern September 2006 (2006) 1 / 41 Contents 1 Supply Chain Modeling 2 Networks 3 Optimization Continuous optimal control problem Discrete optimal

More information

Elementary Matrices and The LU Factorization

Elementary Matrices and The LU Factorization lementary Matrices and The LU Factorization Definition: ny matrix obtained by performing a single elementary row operation (RO) on the identity (unit) matrix is called an elementary matrix. There are three

More information

Hierarchically Parallel FE Software for Assembly Structures : FrontISTR - Parallel Performance Evaluation and Its Industrial Applications

Hierarchically Parallel FE Software for Assembly Structures : FrontISTR - Parallel Performance Evaluation and Its Industrial Applications CO-DESIGN 2012, October 23-25, 2012 Peing University, Beijing Hierarchically Parallel FE Software for Assembly Structures : FrontISTR - Parallel Performance Evaluation and Its Industrial Applications Hiroshi

More information

December 4, 2013 MATH 171 BASIC LINEAR ALGEBRA B. KITCHENS

December 4, 2013 MATH 171 BASIC LINEAR ALGEBRA B. KITCHENS December 4, 2013 MATH 171 BASIC LINEAR ALGEBRA B KITCHENS The equation 1 Lines in two-dimensional space (1) 2x y = 3 describes a line in two-dimensional space The coefficients of x and y in the equation

More information

Ridgeway Kite Innova've Technology for Reservoir Engineers A Massively Parallel Architecture for Reservoir Simula'on

Ridgeway Kite Innova've Technology for Reservoir Engineers A Massively Parallel Architecture for Reservoir Simula'on Innova've Technology for Reservoir Engineers A Massively Parallel Architecture for Reservoir Simula'on Garf Bowen 16 th Dec 2013 Summary Introduce RKS Reservoir Simula@on HPC goals Implementa@on Simple

More information

MATH 304 Linear Algebra Lecture 18: Rank and nullity of a matrix.

MATH 304 Linear Algebra Lecture 18: Rank and nullity of a matrix. MATH 304 Linear Algebra Lecture 18: Rank and nullity of a matrix. Nullspace Let A = (a ij ) be an m n matrix. Definition. The nullspace of the matrix A, denoted N(A), is the set of all n-dimensional column

More information

Chapter 6. Linear Programming: The Simplex Method. Introduction to the Big M Method. Section 4 Maximization and Minimization with Problem Constraints

Chapter 6. Linear Programming: The Simplex Method. Introduction to the Big M Method. Section 4 Maximization and Minimization with Problem Constraints Chapter 6 Linear Programming: The Simplex Method Introduction to the Big M Method In this section, we will present a generalized version of the simplex method that t will solve both maximization i and

More information

8. Linear least-squares

8. Linear least-squares 8. Linear least-squares EE13 (Fall 211-12) definition examples and applications solution of a least-squares problem, normal equations 8-1 Definition overdetermined linear equations if b range(a), cannot

More information

Integration of a fin experiment into the undergraduate heat transfer laboratory

Integration of a fin experiment into the undergraduate heat transfer laboratory Integration of a fin experiment into the undergraduate heat transfer laboratory H. I. Abu-Mulaweh Mechanical Engineering Department, Purdue University at Fort Wayne, Fort Wayne, IN 46805, USA E-mail: mulaweh@engr.ipfw.edu

More information

Solving Simultaneous Equations and Matrices

Solving Simultaneous Equations and Matrices Solving Simultaneous Equations and Matrices The following represents a systematic investigation for the steps used to solve two simultaneous linear equations in two unknowns. The motivation for considering

More information

www.xenon.com.au STORAGE HIGH SPEED INTERCONNECTS HIGH PERFORMANCE COMPUTING VISUALISATION GPU COMPUTING

www.xenon.com.au STORAGE HIGH SPEED INTERCONNECTS HIGH PERFORMANCE COMPUTING VISUALISATION GPU COMPUTING www.xenon.com.au STORAGE HIGH SPEED INTERCONNECTS HIGH PERFORMANCE COMPUTING GPU COMPUTING VISUALISATION XENON Accelerating Exploration Mineral, oil and gas exploration is an expensive and challenging

More information

ANALYTICAL AND EXPERIMENTAL EVALUATION OF SPRING BACK EFFECTS IN A TYPICAL COLD ROLLED SHEET

ANALYTICAL AND EXPERIMENTAL EVALUATION OF SPRING BACK EFFECTS IN A TYPICAL COLD ROLLED SHEET International Journal of Mechanical Engineering and Technology (IJMET) Volume 7, Issue 1, Jan-Feb 2016, pp. 119-130, Article ID: IJMET_07_01_013 Available online at http://www.iaeme.com/ijmet/issues.asp?jtype=ijmet&vtype=7&itype=1

More information

Matrix Multiplication

Matrix Multiplication Matrix Multiplication CPS343 Parallel and High Performance Computing Spring 2016 CPS343 (Parallel and HPC) Matrix Multiplication Spring 2016 1 / 32 Outline 1 Matrix operations Importance Dense and sparse

More information

HPC with Multicore and GPUs

HPC with Multicore and GPUs HPC with Multicore and GPUs Stan Tomov Electrical Engineering and Computer Science Department University of Tennessee, Knoxville CS 594 Lecture Notes March 4, 2015 1/18 Outline! Introduction - Hardware

More information

Numerical Methods for Differential Equations

Numerical Methods for Differential Equations Numerical Methods for Differential Equations Course objectives and preliminaries Gustaf Söderlind and Carmen Arévalo Numerical Analysis, Lund University Textbooks: A First Course in the Numerical Analysis

More information

Scalable Distributed Schur Complement Solvers for Internal and External Flow Computations on Many-Core Architectures

Scalable Distributed Schur Complement Solvers for Internal and External Flow Computations on Many-Core Architectures Scalable Distributed Schur Complement Solvers for Internal and External Flow Computations on Many-Core Architectures Dr.-Ing. Achim Basermann, Dr. Hans-Peter Kersken, Melven Zöllner** German Aerospace

More information

High Performance Computing in CST STUDIO SUITE

High Performance Computing in CST STUDIO SUITE High Performance Computing in CST STUDIO SUITE Felix Wolfheimer GPU Computing Performance Speedup 18 16 14 12 10 8 6 4 2 0 Promo offer for EUC participants: 25% discount for K40 cards Speedup of Solver

More information

Job scheduling of parametric computational mechanics studies on Cloud Computing infrastructures

Job scheduling of parametric computational mechanics studies on Cloud Computing infrastructures HPC-Cetraro 2012 1/29 Job scheduling of parametric computational mechanics studies on Cloud Computing infrastructures Carlos García Garino Cristian Mateos Elina Pacini HPC 2012 High Perfomance Computing,

More information

ACCELERATING COMMERCIAL LINEAR DYNAMIC AND NONLINEAR IMPLICIT FEA SOFTWARE THROUGH HIGH- PERFORMANCE COMPUTING

ACCELERATING COMMERCIAL LINEAR DYNAMIC AND NONLINEAR IMPLICIT FEA SOFTWARE THROUGH HIGH- PERFORMANCE COMPUTING ACCELERATING COMMERCIAL LINEAR DYNAMIC AND Vladimir Belsky Director of Solver Development* Luis Crivelli Director of Solver Development* Matt Dunbar Chief Architect* Mikhail Belyi Development Group Manager*

More information

Model Order Reduction for Linear Convective Thermal Flow

Model Order Reduction for Linear Convective Thermal Flow Model Order Reduction for Linear Convective Thermal Flow Christian Moosmann, Evgenii B. Rudnyi, Andreas Greiner, Jan G. Korvink IMTEK, April 24 Abstract Simulation of the heat exchange between a solid

More information

Finite Element Formulation for Plates - Handout 3 -

Finite Element Formulation for Plates - Handout 3 - Finite Element Formulation for Plates - Handout 3 - Dr Fehmi Cirak (fc286@) Completed Version Definitions A plate is a three dimensional solid body with one of the plate dimensions much smaller than the

More information

Curriculum Structure for Master of Engineering in Mechanical Engineering Degree Program (2013) Chiang Mai University Plan A1 Degree Requirements

Curriculum Structure for Master of Engineering in Mechanical Engineering Degree Program (2013) Chiang Mai University Plan A1 Degree Requirements Curriculum Structure for Master of Engineering in Mechanical Engineering Degree Program (2013) Chiang Mai University Plan A1 Degree Requirements Total: 36 credits Curriculum Structure: A. Thesis 36 credits

More information

Introduction to the Finite Element Method (FEM)

Introduction to the Finite Element Method (FEM) Introduction to the Finite Element Method (FEM) ecture First and Second Order One Dimensional Shape Functions Dr. J. Dean Discretisation Consider the temperature distribution along the one-dimensional

More information

3.2 Sources, Sinks, Saddles, and Spirals

3.2 Sources, Sinks, Saddles, and Spirals 3.2. Sources, Sinks, Saddles, and Spirals 6 3.2 Sources, Sinks, Saddles, and Spirals The pictures in this section show solutions to Ay 00 C By 0 C Cy D 0. These are linear equations with constant coefficients

More information

Large-Scale Reservoir Simulation and Big Data Visualization

Large-Scale Reservoir Simulation and Big Data Visualization Large-Scale Reservoir Simulation and Big Data Visualization Dr. Zhangxing John Chen NSERC/Alberta Innovates Energy Environment Solutions/Foundation CMG Chair Alberta Innovates Technology Future (icore)

More information

Multigrid preconditioning for nonlinear (degenerate) parabolic equations with application to monument degradation

Multigrid preconditioning for nonlinear (degenerate) parabolic equations with application to monument degradation Multigrid preconditioning for nonlinear (degenerate) parabolic equations with application to monument degradation M. Donatelli 1 M. Semplice S. Serra-Capizzano 1 1 Department of Science and High Technology

More information

Imperial College London

Imperial College London Imperial College London Department of Computing GiMMiK - Generating Bespoke Matrix Multiplication Kernels for Various Hardware Accelerators; Applications in High-Order Computational Fluid Dynamics Author:

More information

GPU Acceleration of the SENSEI CFD Code Suite

GPU Acceleration of the SENSEI CFD Code Suite GPU Acceleration of the SENSEI CFD Code Suite Chris Roy, Brent Pickering, Chip Jackson, Joe Derlaga, Xiao Xu Aerospace and Ocean Engineering Primary Collaborators: Tom Scogland, Wu Feng (Computer Science)

More information

OpenFOAM Optimization Tools

OpenFOAM Optimization Tools OpenFOAM Optimization Tools Henrik Rusche and Aleks Jemcov h.rusche@wikki-gmbh.de and a.jemcov@wikki.co.uk Wikki, Germany and United Kingdom OpenFOAM Optimization Tools p. 1 Agenda Objective Review optimisation

More information

MODELING, SIMULATION AND DESIGN OF CONTROL CIRCUIT FOR FLEXIBLE ENERGY SYSTEM IN MATLAB&SIMULINK

MODELING, SIMULATION AND DESIGN OF CONTROL CIRCUIT FOR FLEXIBLE ENERGY SYSTEM IN MATLAB&SIMULINK MODELING, SIMULATION AND DESIGN OF CONTROL CIRCUIT FOR FLEXIBLE ENERGY SYSTEM IN MATLAB&SIMULINK M. Pies, S. Ozana VSB-Technical University of Ostrava Faculty of Electrotechnical Engineering and Computer

More information

GTC 2014 San Jose, California

GTC 2014 San Jose, California GTC 2014 San Jose, California An Approach to Parallel Processing of Big Data in Finance for Alpha Generation and Risk Management Yigal Jhirad and Blay Tarnoff March 26, 2014 GTC 2014: Table of Contents

More information

Understanding and Applying Kalman Filtering

Understanding and Applying Kalman Filtering Understanding and Applying Kalman Filtering Lindsay Kleeman Department of Electrical and Computer Systems Engineering Monash University, Clayton 1 Introduction Objectives: 1. Provide a basic understanding

More information

How To Write A Program For The Pd Framework

How To Write A Program For The Pd Framework Enhanced divergence-free elements for efficient incompressible flow simulations in the PDE framework Peano, Miriam Mehl, Christoph Zenger, Fakultät für Informatik TU München Germany Outline Derivation

More information

Computer Graphics Hardware An Overview

Computer Graphics Hardware An Overview Computer Graphics Hardware An Overview Graphics System Monitor Input devices CPU/Memory GPU Raster Graphics System Raster: An array of picture elements Based on raster-scan TV technology The screen (and

More information

WEEK #3, Lecture 1: Sparse Systems, MATLAB Graphics

WEEK #3, Lecture 1: Sparse Systems, MATLAB Graphics WEEK #3, Lecture 1: Sparse Systems, MATLAB Graphics Visualization of Matrices Good visuals anchor any presentation. MATLAB has a wide variety of ways to display data and calculation results that can be

More information

Tutorial for Assignment #3 Heat Transfer Analysis By ANSYS (Mechanical APDL) V.13.0

Tutorial for Assignment #3 Heat Transfer Analysis By ANSYS (Mechanical APDL) V.13.0 Tutorial for Assignment #3 Heat Transfer Analysis By ANSYS (Mechanical APDL) V.13.0 1 Problem Description This exercise consists of an analysis of an electronics component cooling design using fins: All

More information

GPGPU acceleration in OpenFOAM

GPGPU acceleration in OpenFOAM Carl-Friedrich Gauß Faculty GPGPU acceleration in OpenFOAM Northern germany OpenFoam User meeting Braunschweig Institute of Technology Thorsten Grahs Institute of Scientific Computing/move-csc 2nd October

More information

Direct Methods for Solving Linear Systems. Matrix Factorization

Direct Methods for Solving Linear Systems. Matrix Factorization Direct Methods for Solving Linear Systems Matrix Factorization Numerical Analysis (9th Edition) R L Burden & J D Faires Beamer Presentation Slides prepared by John Carroll Dublin City University c 2011

More information

Parallel Programming at the Exascale Era: A Case Study on Parallelizing Matrix Assembly For Unstructured Meshes

Parallel Programming at the Exascale Era: A Case Study on Parallelizing Matrix Assembly For Unstructured Meshes Parallel Programming at the Exascale Era: A Case Study on Parallelizing Matrix Assembly For Unstructured Meshes Eric Petit, Loïc Thebault, Quang V. Dinh May 2014 EXA2CT Consortium 2 WPs Organization Proto-Applications

More information

FRIEDRICH-ALEXANDER-UNIVERSITÄT ERLANGEN-NÜRNBERG

FRIEDRICH-ALEXANDER-UNIVERSITÄT ERLANGEN-NÜRNBERG FRIEDRICH-ALEXANDER-UNIVERSITÄT ERLANGEN-NÜRNBERG INSTITUT FÜR INFORMATIK (MATHEMATISCHE MASCHINEN UND DATENVERARBEITUNG) Lehrstuhl für Informatik 10 (Systemsimulation) Massively Parallel Multilevel Finite

More information

PREDICTION OF MACHINE TOOL SPINDLE S DYNAMICS BASED ON A THERMO-MECHANICAL MODEL

PREDICTION OF MACHINE TOOL SPINDLE S DYNAMICS BASED ON A THERMO-MECHANICAL MODEL PREDICTION OF MACHINE TOOL SPINDLE S DYNAMICS BASED ON A THERMO-MECHANICAL MODEL P. Kolar, T. Holkup Research Center for Manufacturing Technology, Faculty of Mechanical Engineering, CTU in Prague, Czech

More information

4.3 Draft 5/27/04 2004 J.E. Akin 1

4.3 Draft 5/27/04 2004 J.E. Akin 1 4. Draft 5/7/04 004 J.E. Akin Chapter INTRODUCTION. Finite Element Methods The goal of this text is to introduce finite element methods from a rather broad perspective. We will consider the basic theory

More information

The elements used in commercial codes can be classified in two basic categories:

The elements used in commercial codes can be classified in two basic categories: CHAPTER 3 Truss Element 3.1 Introduction The single most important concept in understanding FEA, is the basic understanding of various finite elements that we employ in an analysis. Elements are used for

More information

Multi-GPU Jacobian Accelerated Computing for Soft Field Tomography

Multi-GPU Jacobian Accelerated Computing for Soft Field Tomography Multi-GPU Jacobian Accelerated Computing for Soft Field Tomography A. Borsic, E. A. Attardo, R. J. Halter Thayer School Of Engineering, Dartmouth College, 8000 Cummings Hall Hanover, NH 03755, US E-mail:

More information

Finite Element Formulation for Beams - Handout 2 -

Finite Element Formulation for Beams - Handout 2 - Finite Element Formulation for Beams - Handout 2 - Dr Fehmi Cirak (fc286@) Completed Version Review of Euler-Bernoulli Beam Physical beam model midline Beam domain in three-dimensions Midline, also called

More information

Introduction to GP-GPUs. Advanced Computer Architectures, Cristina Silvano, Politecnico di Milano 1

Introduction to GP-GPUs. Advanced Computer Architectures, Cristina Silvano, Politecnico di Milano 1 Introduction to GP-GPUs Advanced Computer Architectures, Cristina Silvano, Politecnico di Milano 1 GPU Architectures: How do we reach here? NVIDIA Fermi, 512 Processing Elements (PEs) 2 What Can It Do?

More information

Parallel Programming Survey

Parallel Programming Survey Christian Terboven 02.09.2014 / Aachen, Germany Stand: 26.08.2014 Version 2.3 IT Center der RWTH Aachen University Agenda Overview: Processor Microarchitecture Shared-Memory

More information

10.2 ITERATIVE METHODS FOR SOLVING LINEAR SYSTEMS. The Jacobi Method

10.2 ITERATIVE METHODS FOR SOLVING LINEAR SYSTEMS. The Jacobi Method 578 CHAPTER 1 NUMERICAL METHODS 1. ITERATIVE METHODS FOR SOLVING LINEAR SYSTEMS As a numerical technique, Gaussian elimination is rather unusual because it is direct. That is, a solution is obtained after

More information

Benchmark Hadoop and Mars: MapReduce on cluster versus on GPU

Benchmark Hadoop and Mars: MapReduce on cluster versus on GPU Benchmark Hadoop and Mars: MapReduce on cluster versus on GPU Heshan Li, Shaopeng Wang The Johns Hopkins University 3400 N. Charles Street Baltimore, Maryland 21218 {heshanli, shaopeng}@cs.jhu.edu 1 Overview

More information

Dimensionless form of equations

Dimensionless form of equations Dimensionless form of equations Motivation: sometimes equations are normalized in order to facilitate the scale-up of obtained results to real flow conditions avoid round-off due to manipulations with

More information

Computer Graphics CS 543 Lecture 12 (Part 1) Curves. Prof Emmanuel Agu. Computer Science Dept. Worcester Polytechnic Institute (WPI)

Computer Graphics CS 543 Lecture 12 (Part 1) Curves. Prof Emmanuel Agu. Computer Science Dept. Worcester Polytechnic Institute (WPI) Computer Graphics CS 54 Lecture 1 (Part 1) Curves Prof Emmanuel Agu Computer Science Dept. Worcester Polytechnic Institute (WPI) So Far Dealt with straight lines and flat surfaces Real world objects include

More information