Methods for Calculating Life Insurance Rates


 Agnes Phelps
 3 years ago
 Views:
Transcription
1 World Appled Scences Journal 5 (4): , 03 ISSN IDOSI Pulcatons, 03 DOI: 0.589/dos.wasj Methods for Calculatng Lfe Insurance Rates Madna Movsarovna Magomadova Chechen State Unversty, Grozny, Russa Sumtted: Aug 7, 03; Accepted: Oct, 03; Pulshed: Oct 6, 03 Astract: Ths artcle analyzes the mechansm for modelng the proalty of survval and death for a populaton, wth a vew to determnng the attrutes of mortalty gven dfferent age groups; t looks nto methods of calculatng lfe nsurance rates for shortterm and longterm nsurance and attempts to assess the posslty of determnng rsks for nsurance companes under dfferent types of nsurance. The artcle also presents the general workflow of the lfe nsurance system. The author has conducted a theoretcal analyss of the mortalty process y usng the models developed y A. de Movre (a person s lfespan s dstruted evenly over the nterval (0, ), where the parameter s the lmtng age people don t normally lve past), Gompertz (some parameters are determned ased on statstcal data for a certan populaton) and Makeham (the force of mortalty s calculated usng the µ A + Be formula). The author has eamned the practcal applcaton of all the methods used n the study wth respect to dfferent types of nsurance: t s customary for an nsurance company to enter nto a large numer of contracts; ndvdual clams are ndependent quanttes; the longterm lfe nsurance model s characterzed y that n these cases, one takes nto account changes n the value of money occurrng over tme; the eponental smoothng method s used for shortterm and longterm forecasts and s predcated on the meanweghted value of sales over a certan numer of perods passed. Key words: Model Proalty Insurance event Mathematcal epectaton Mortalty Survval functon Rsk INTRODUCTION Changes n the value of money over tme are counted n; The demographc stuaton n a regon governs the Changes n the value of money over tme are not net cost of lfe nsurance: the lower the populaton s counted n []. agerelated mortalty level, the lower the rsk rate and vce versa. Of great sgnfcance n mplementng lfe nsurance We can dspense wth money value changes for short n a regon s the demographc stuaton stalty factor, nsurance polcy terms. for the nvaralty of agerelated mortalty ndcators n For ths reason, lfe epectancy models that do not tme lets one realze the major prncple ehnd determnng take nto account changes n the value of money over tme lfe nsurance rates rate stalty wth no detrment to the are called shortterm lfe nsurance models []. materal nterests of the polcyholder and the nsurer. Otherwse, when changes n the value of money over When t comes to lfe nsurance, of nterest s tme are taken nto account n calculatons, we are dealng modelng the survval and death proalty wth a vew to wth longterm lfe nsurance models. detectng the attrutes of mortalty for dfferent age To a commercal nsurance company, compared wth groups. one n the Islamc nsurance system called takaful [3], of Ths area s known as actuaral mathematcs and s mportance s not an ndvdual clam or A dsursement characterzed y the use of the proalty theory, on that clam, ut the total sze of payments to mathematcal statstcs and mathematcal modelng polcyholders, who fle ndvdual clams,.e. the total rsk methods []. whch should not eceed the company s captal. Lfe nsurance models are nomnally susumed nto Otherwse, there s a proalty the company can go two large groups wheren, respectvely: ankrupt. Correspondng Author: Magomadova, Chechen State Unversty, Sharpov, 3 street, Grozny, Russa. 653
2 World Appl. Sc. J., 5 (4): , 03 The assessment of ths proalty s crucal to the operaton of a commercal nsurance company. The Man Part: The general workflow of the lfe nsurance system. The sze of dsursements on an nsurance contract s of a fortutous character, whch means that the sze of payments on all contracts s lkewse a chance quantty. The sze of payments s lmted y the nsurance fund whch s formed of premum payments. Based on that, the cumulatve nsurance sze s vared over a certan nterval, the upper lmt whereof equals the sze of all dsursements on all contracts taken together. Therefore, the calculaton of the premum payment T s of great mportance to commercal nsurers. If the proalty of an nsurance event q occurrng s known ahead of tme (ased on former eperence, y analogy, etc.), then theoretcally, wthout takng nto account all the other factors (ncludng the tme factor), the sze of the premum T s calculated usng the followng formula [4]. T S.q where S s an nsurance dsursement; q s the proalty of an nsurance event occurrng. The equaton aove just llustrates the prncple of the fnancal equvalency of polcyholder and nsurer olgatons. Suppose that T s the sze of the premum and q n s the proalty of an nsurance event occurrng (for nstance, the death of a polcyholder n n years after the nsurance polcy comes nto effect). If an nsurance event occurs wthn the frst year of nsurance, the nsurer wll get an amount T (assume that the premum s pad at the egnnng of the year), whle f ths event occurs wthn the second year, the nsurer wll get an amount equalng T, etc. The mathematcal epectaton of ths row of premums s T.q +.T.q +...+n n Although the resultng quantty sums up all the polcyholder s payments, gven the credlty of these havng een pad, when summng the correspondng quanttes we do not take nto account the fact that the premums are pad at dfferent ponts n tme. Wth ths factor n mnd (through dscountng the payment amounts), we fnd the mathematcal epectaton of the uptothemnute cost (actuaral cost) of payments to e ( n ) ( ) E A T q v q v v q v v q n where v /( + ) s a dscount multpler; s a percentage rate. We could admt that t s pad at the end of the year the nsurance event occurred n. Then the mathematcal epectaton of the dsursement wthn the frst year wll e Sq, the second year  Sq, etc. The mathematcal epectaton nclusve of the dsursement tme factor (actuaral cost) s n E S S v q+ v q v q n Based on the prncple of the equvalence of polcyholder and nsurer olgatons, we get an equaton E(S)E(A) whch enales us to derve the sought value of the net premum T. The calculaton of net and gross premums s ased on the nsurance company s model more specfcally, on dervng the total nsurance amount on all nsurance contracts and the credlty of nsurance events occurrng. To ensure a 00% guarantee that the sze of net premums wll eceed the sze of dsursements, the nsurer has to create an nsurance fund the sze of the cumulatve nsurance amount. In ths case, the premum wll equal the nsurance amount. The nsurer determnes for tself the sze of ts acceptale rsk, whch mathematcally can e epressed as the followng n equaton ( < ) ( ) P S P y P S P where P s the proalty; y s a safety guarantee estalshed y the nsurer; st S s a dsursement on the contract; st P s a premum on the contract; s the upper lmt of the safety guarantee. 654
3 World Appl. Sc. J., 5 (4): , 03 The ratonale ehnd these n equatons s that the proalty that the sze of all premums wll eceed the sze of all polcyholder payments should e determned upfront. Accordng to the Lyapunov theorem, nsurance events and nsurance dsursements are dstruted accordng to the normal law [4]. If the chance quantty dstruton law s determned, the aove n equaton s solved easly. Frstly, the proalty that the contnuous quantty X wll get a value that elongs to the nterval (A, ) equals the defnte ntegral of the frequency of the dstruton over the nterval from A to, namely Ðà ( < Ð< ) f d f e a Secondly, the normal dstruton functon equals ( a) where s the mathematcal epectaton of a chance quantty; y s the mean square devaton. Then fð X à Ô P S P Ô where s the Laplace functon. Based on the fnancal equvalence prncple, the sought sze of the net premum can e epressed as the product of the nsurance amount and the net rate epressed as a percentage. The major part of the rate s the net rate whch epresses the cost of the nsurance rsk and ensures the coverng of losses [4]. u S Tn 00 where T s the net rate; u s the sze of the net rate for 00 ru.; S s the sze of a asc nsurance amount. The rate s the gross rate. Tn T f where T s the gross rate; T s the net rate; f s the load fracton n the gross rate. The major part of the rate s the net rate whch epresses the cost of the nsurance rsk and ensures the coverng of losses. The load fracton f can e calculated ased on accountng data. R f + K + V Ï where R s epenses; s the sze of premums collected on ths type ofnsurance; K s the percentage of commsson pad to agents n effectng ths type of nsurance; V s a part of proft n the gross rate the nsurer looks to get on ths type of nsurance. The ass of any actuaral calculatons s the study of the mortalty process of any gven populaton, determnaton of certan patterns and further calculaton of rates. In the nsurance system, the mortalty process s mostly modeled ased on certan analytcal laws,.e. the theoretcal analyss of the state of a populaton over a long perod of tme was conducted [5]. Wth ths theoretcal analyss of mortalty processes, the prmary and smplfed study of reallfe stuatons normally employs standard models that let us derve major patterns. Besdes, the mortalty process s well appromated y the analytcal laws consdered elow. One of the founders of the credlty theory, A. de Movre, suggested n 79 [6] holdng that a person s lfespan s dstruted evenly over the nterval (0, ) where the parameter s the lmtng age people normally don t lve past. For ths model, wth 0 < < f( ) s we get 655
4 World Appl. Sc. J., 5 (4): , 03 Tale :Input data Name of parameter Age (n years) Lmt (n years) Numer of dsursements per year Dsursement n case of death Proalty Use The prmary and most crucal parameter that helps determne correspondng values n the mortalty tale Used n calculatng the cost of rent:postnumerando and pronumerando Used n calculatng the cost of rent: postnumerando and pronumerando Based on the value of ths parameter, the cost of rates s calculated The parameter tes the mechansms of actuaral mathematcs and the proalty theory together: relyng on the value of ths parameter, the polcyholder and the nsurer take a decson Tale : Input data Name of parameter Net premum for shortterm and longterm nsurance Gross premum for shortterm and longterm nsurance Load Use The rate that epresses the cost of the nsurance rsk and ensures the coverng of losses The rate at whch an nsurance contract s entered nto Determnes what part of the gross premum s determned y the nsurer s ependtures assocated wth the mplementaton of the nsurance process, attracton of new clents, etc. Tale 3: Calculaton of the man ndcators of the moralty tale Indcator Formula Parameters Numer of people who survved untl a certan age l l 0. S() l 0 s the ntal populaton; S() s the survval functon; s the age (the tale s formed for any age, ) Numer of people who ded whle transtng from age to age + d ll+ l s the numer of people of age ; l+ s the numer of people of age + The proalty of dyng at age, wthout survvng untl age + q d d s the numer of people who ded whle transtng from age to age + The proalty of survvng untl a certan age P  q q s the proalty of dyng at age, wthout survvng untl age + f s In the Gompertz model, the force of mortalty s calculated va the formula f Be s Later on, n 860 [6], Makeham suggested determnng the force of mortalty usng the formula A + Be where the parameter A takes nto account the occurrence of nsurance events and the summand E takes nto account the effect of age on mortalty. where > > 0 are some parameters determned ased on statstcal data for a certan populaton eng studed. The survval functon s u e s ep udu ep Be du ep B du and the deaths curve s For the Makeham model, the survval functon s B u s ep ( A + Be ) du ep A ( e ) 0 and the deaths curve s ( e ) B f s A + Be ep A e f s B ep B We have a mamum n the pont ln ln B The models presented are used for the theoretcal analyss of the populaton mortalty process. In Tale, one can see the ntal data for the algorthms presented elow. The most commonly used algorthm for solvng actuaral mathematcs prolems works the followng way. 656
5 World Appl. Sc. J., 5 (4): , 03 For convenence, we take the ntal aggregate l 0 to equal l we have ES N EX VarS N VarX We wll further model up the lfe epectancy of an aggregate of people over the net 00 years and wll e takng down the tmes of death. The modelng wll e mplemented ased on the analytcal laws consdered aove. Let s calculate the commutaton numers: ( ) D l + where s the current age; N M w Dj j w Cj j ( ) C d + + l s the percentage rate; l s the numer of people who were stll alve y age. Mortalty tales are used n calculatng the sze of the nsurance rate [7]. Let s take a look at the algorthm for calculatng shortterm nsurance rates. We ll take the sze of an nsurance premum as the unt of measurement for amounts of money. In ths case, dsursements on the th contract X ³ take the values 0 and wth the proalty ( q) and q respectvely. We get EX q 0+ q q EX q 0 + q q VarX EX EX q q Now for the mean value and summary dsursements S X X n Usng Gaussan appromaton for the centered and scaled quantty of summary dsursements, we ll epress the proalty of a dsursement y a tradtonal nsurance company as follows: S ES u ES u ES P( S u) P Ô VarS VarS VarS We fnd those that satsfy the value of the quntle of the normal dstruton, where p s the proalty. p We get the equaton u ES Ô VarS Then u p VarS + ES p We ve otaned the value of a net premum for 00 rules. Let s fnd the sze of the net premum u S Tn 00 where S s the amount the clent wants to get n the event of hs/her death, however paradocal that may sound. We fnd the value of the gross premum Tn T f where f s the load the sze of whch each nsurer determnes for tself. As a result, the algorthm for calculatng shortterm nsurance rates was otaned. When t comes to longterm nsurance, the remanng term of lfe s characterzed y a constant force of mortalty [8]. 657
6 World Appl. Sc. J., 5 (4): , 03 Let s calculate the net premum: t t0 A v f () t dt 0 where f(t) s the densty of the remanng term of lfe. Snce the force of ntensty s gven, we fnd the survval functon usng the formula t S t e and the mortalty functon f(t) f () t e Then the net premum s ( + ) t A e dt 0 Z + t VarZ EZ EZ VarZ A N A T n ( ) + 00 ( ) T T f + The uptothemnute sze of dsursements on an ndvdual contract can e otaned through susttutng for. Consequently Now we can calculate the relatve nsurance markup: Let s determne the sze of rates: As a result, the algorthm for calculatng longterm nsurance rates was otaned. Tale 4: Structure of ntal data for algorthmc models Name of parameter Value entered Age (n years) 5 Insurance polcy term (n years) 5 Lmt (n years) 0 Numer of dsursements per year 6 Insurance amount Proalty of dsursement 0,89 Let s consder the practcal applcaton of the aove methodology usng a specfc eample (Tale 4). We ll frst model up the lfe epectancy parameters, whch s an alternatve method for otanng data needed n calculatng an nsurance company s rates. We ll use the Gompertz law for the modelng; the ntal populaton s people [9]. We ll model the mortalty process through appromaton y the law chosen. Parameters () s(0) 0, e s Åõð 0, , , l , ,3364 d l l , , ð q 0, , , , Thus and so on. The numer of those who ded whle transtng from age to age + s determned through the formula We ll determne the proalty of dyng at age wthout survvng untl age + the followng way: The proalty of survvng untl a certan age s determned as follows: 0 0 The commutaton numers are calculated the smlar way 0,09 e 0,
7 World Appl. Sc. J., 5 (4): , 03 D 99803,3364 ( + 0, 09474) 93, 4 98 N Dj 04898, j + C 96, , , We ll calculate shortterm nsurance rates. The numer of nsurance contracts s N450; the nsurance amount s py. The proalty of death takng place wthn a year s q 0, st In ths case, dsursements on the contract X take the values 0 and wth the proalty ( q) and q respectvely. Consequently, EX q 0 + q q 0, VarX EX EX q q 0, 0486 Now for the mean value and summary dsursements S X X n Tn T 3, , 08 ðóá. 00 The gross rate equals 3467, ,85 ðóá. 0, We can calculate longterm lfe nsurance rates the smlar way. CONCLUSION We shouldn t, nevertheless, forget that multple scentfc studes reveal the need to keep track of polcyholders gender n determnng lfe nsurance rates. Furthermore, mortalty n men depends on the socal, economc, poltcal stuaton n the country [0]. Mortalty n women s a relatvely steady ndcator, thanks to the attrutes of women s psychology, ehavor, eng less stressprone compared wth men. The resdence factor (whether he/she lves n the country or a town/cty) doesn t have a tangle effect on the proalty of death we can gnore t n uldng nsurance rates. we have ES N EX 300 0,003, VarS N VarX 300 0,003,75434 Usng Gaussan appromaton for the centered and scaled sze of summary dsursements, we ll epress the proalty of a dsursement y the company as follows: S ES u ES u, P( S u) P Ô VarS VarS, If we need the proalty to equal 0,89, the quantty u,809556, has to equal 0,87 (whch satsfes the value of the quantle of the normal dstruton),.e. è 0,87, , , the sze of the nsurance amount for 00 rules. For ru. the net rate wll e Inferences: Thus, the use of mortalty tales n calculatng net lfe nsurance rates leads to a decrease n the net cost of nsurance for the most actve group of polcyholders. We get a far layout of the rsk of ncurrng materal losses assocated wth a person s lfe epectancy (etween all polcyholders); the consstency of nsurance operatons s oosted; the relalty of nsurance companes ncreases; reducng the cost of nsurance for the most proale polcyholders enales nsurance companes to rng n more customers, whch rngs the nsurance rates down for all polcyholders. Let s consder the practcal applcaton of the aove methods for dfferent types of nsurance:. It s customary for an nsurance company to enter nto a large numer of contracts. Therefore, what s mportant to t s not an ndvdual clam and effectng a dsursement on that clam ut the total sze of dsursements, S, across all ndvdual clams. Let s assume that the company has entered nto N nsurance contracts and s ndvdual clams on these contracts. Then 659
8 World Appl. Sc. J., 5 (4): , 03 n S k k We ll call the amount S the summary rsk. If the summary rsk S doesn t eceed the company s captal, then the company wll succeed n fulfllng ts olgatons efore ts clents. But f S > u, the company won t e ale to dsurse all ndvdual clams. In ths case, the company could go ankrupt. Thus, the proalty (R) of the company gong ankrupt can e epressed va the formula R P{ S > u} In other words, the proalty (R) of the company gong ankrupt equals the value of the addtonal functon of the dstruton of the summary rsk n the pont u, where u s the company s captal. Accordngly, the proalty of the company not gong ankrupt equals the value of the functon of the dstruton of the summary rsk n the pont u. The calculaton of these proaltes s crucal to the company, for t s on the ass of these calculatons that the company makes ts mportant decsons. We ll assume that ndvdual clams are ndependent quanttes. The numer of polcyholders nsured wth a company s normally very hgh. Therefore, there s always a need to calculate the dstruton of the amount of a large numer of deposts. It s clear that manual calculaton methods usng generatng functons are not helpful here. Consequently, t s practcally mpossle to effect an accurate calculaton of the attrutes of the summary rsk of the sum of a large numer of summands. In a stuaton of ths knd, we can resort to the lmt theorems of the proalty theory. The ratonale ehnd these theorems s that gven some qute general condtons, the functon of the dstruton of the sum of ndependent chance quanttes at N 8 overlaps wth the functon of the dstruton of some specfc chance quantty. Ths enales us to employ ths specfc dstruton functon n solvng practcal prolems, nstead of usng the functon of the dstruton of the sum, whch s hard to compute. Note that the error resultng from ths susttuton s qute small and does satsfy practcal requrements wth respect to the accuracy of calculatons. For the further calculaton of the attrutes of the summary rsk on shortterm polces we use the Posson theorem: P{ a } In other words, the captal of the company u (provded that the proalty of the company not gong ankrupt s not less than 95%) must satsfy the condton P P N k k u 0,95 And accordng to the Posson theorem { u} 0,95 Numerc calculatons are done usng the tale of quntles of the level 0,95 of the Posson dstruton. Eample: There are N 3000 ndvduals aged 38 and N 000 ndvduals aged 8 nsured wth the company. The company pays the polcyholder s hers a dsursement to the tune of rules n the event of hs/her death wthn one year and pays nothng f he/she lves for over one year after enterng nto the contract. Usng the Posson method, we ll calculate the sze of the nsurance dsursement whch guarantees that the proalty of the company gong ankrupt won t eceed 5%. Soluton: Let s make the sze of the nsurance dsursement our unt. Usng the lfe epectancy tales, we fnd q 0, q 0,00 8 Therefore, accordng to the Posson theorem, the summary rsk from polcyholders aged 38 (8) can e consdered as a chance quantty dstruted y the Posson law wth the parameter N q 38 N q 8 660
9 World Appl. Sc. J., 5 (4): , 03 Then, the company s summary rsk s the Posson chance quantty wth the parameter P P + 0 Consequently, the proalty of the company not gong ankrupt appromately equals { u} where s the Posson chance quantty wth the parameter 0; u s the company s captal. The prolem says t has to e { u} 0,95 From ths condton we have u 0,95 where 0,95 s the quntle of the level 0,95 of the Posson dstruton wth the parameter 0. Usng the quntle tale, we fnd that u 5 0,95 The net premum for the frst polcyholder group equals + q38 0,003 and for the second group + q8 0, 00 Thus, through net premums the company wll get the amount , , 00 0 The remanng amount needed wll e consttuted y the nsurance markup. Snce the nsurance markup consttutes 50% of the sze of net premums, the company has to ncrease net premums y 50%. Consequently, for the frst polcyholder group the sze of a premum wll e 0,003,5 0,0045 Aand for the second group 0,00,5 0,005 The longterm nsurance model s characterzed y that n ths case we count n changes n the value of money over tme. Wth full lfe nsurance, there s no uncertanty n the fact of presentng a clam y the polcyholder: the clam wll e fled for sure the moment the polcyholder passes away. There s no fortuty to the sze of the clam ether: the company has to pay the polcyholder s hers the amount, as s requred y the contract. Ths s what sets full nsurance apart from shortterm types of nsurance. It s clear that the sze of the nsurance premum p has to e much hgher than the sze of the nsurance dsursement. In ths regard, the queston then arses: how does the company manage to come up wth the money for the dsursement of clams? Indeed, wth full lfe nsurance, all polcyholders hers wll fle clams wth the company for sure. The thng s the company receves the nsurance premum p at the moment the contract s eng entered nto and t pays the dsursement a lot later. Wthn ths perod of tme (whch equals the remanng term of lfe T() of the polcyholder, where s hs/her age) the nsurance premum makes the company proft and grows va the followng y the amount T pe where s the ntensty, %. Thus, the company s proft from enterng one full nsurance contract s T ( ) pe In order to get the amount at the moment of the polcyholder s death (.e. n T() years after the concluson of the contract), the nsurance company, accordng to the formula for changes n the value of money over tme, has to get from hm/her the amount T z : e at the moment the contract s eng entered nto. 66
10 ( + a) ( a + ) a + ( + a)( a + ) World Appl. Sc. J., 5 (4): , 03 The amount z s a chance quantty that epresses the e Q s the forecast polcy sales volume wthn the uptodate (.e. as of the moment the contract s eng current perod; entered nto) sze of the future nsurance dsursement. The average sze p0of ths quantty s desgnated y s the smoothng constant; the nsurance company as the net premum. Q t s the sales volume over the perod t; Numerc calculatons are done usng the Erlang Q t  s the smoothed sales volume for the perod t . model. The smoothng constant s taken y an analyst Eample: Let s assume that lfe epectancy s descred nteractvely wthn the nterval from 0 to. Its value s usng the Erlang model and the average lfe epectancy s low when there s lttle change n sales and tends to 80 years. when there are strong fluctuatons on the nsurance We ll calculate the net premum for polcyholders market. aged 0 and 30, the ntensty equalng 0%. Eample: We need to calculate the forecast value of Soluton: The average lfe epectancy n the Erlang model possle shortterm polcy sales n May 0, f n Aprl equals A. 0 the company entered nto nsurance contracts and n March forecast sales consttuted 9 contracts. Then Soluton: The forecast value s calculated va the formula a a + + a A + Q Qt + ( ) Qt the value A 40 0, we get À À ,0933 0,086 We can demonstrate that the functon of the dstruton F z(t) of the uptodate sze of the future nsurance dsursement z, under full lfe nsurance, s epressed va the followng formula (usng the Erlang model): ln t a t Fz t t, t () ( + a), ( 0,) The eponental smoothng method s used for shortterm and longterm forecasts and s predcated on the meanweghted value of sales over a certan numer of perods passed. The forecast value s calculated va the formula ( ) t Q Qt + Q where Q s the forecast volume of polcy sales for May 0; s the smoothng constant; Q t s the sales volume for Aprl 0; Q t  s the forecast sales volume for March 0. As we can see, the value of the smoothng constant s low ecause there s lttle change n sales over the gven perod. Then Q 0, + ( 0,) 9 9, 9 REFERENCES. Gerer, H., 995. Lfe Insurance Mathematcs. M., Mr, nd 995. (In Englsh: SprngerVerlag, ed.). Chetyrkn, E.M., 000. Fnancal Mathematcs: Tetook M.: Delo, pp: Sddq, M.N., Insurance n an Islamc Economy.  London: Islamc Foundaton. 4. Bowers, N., H. Gerer and D. Jones, 00. Actuaral Mathematcs. M.: Yanus, pp: Fyodorova, T.A., 008, Insurance. M.: Economst, pp: Skpper, H. and K. Black, 999. Lfe and Health Insurance. Prentce Hall ISBN ; pp: Shkhov, A.K., 00. Insurance Law. M.: Yursprudentsya, pp: 8. 66
11 World Appl. Sc. J., 5 (4): , Gantenen, M. and M. Mata, 008, Swss Annutes 0. Khan, M. and A. Mrakhor, 990. Economc and Lfe Insurance: Secure Returns, Asset Protecton Development and Cultural Change, 38:. and Prvacy. Wley ISBN ; 9. Laronov, V.G., S.N. Selevanov and N.A. Kozhurova, Insurance. M.: URAO, 008. pp:
benefit is 2, paid if the policyholder dies within the year, and probability of death within the year is ).
REVIEW OF RISK MANAGEMENT CONCEPTS LOSS DISTRIBUTIONS AND INSURANCE Loss and nsurance: When someone s subject to the rsk of ncurrng a fnancal loss, the loss s generally modeled usng a random varable or
More informationAn Alternative Way to Measure Private Equity Performance
An Alternatve Way to Measure Prvate Equty Performance Peter Todd Parlux Investment Technology LLC Summary Internal Rate of Return (IRR) s probably the most common way to measure the performance of prvate
More informationInstitute of Informatics, Faculty of Business and Management, Brno University of Technology,Czech Republic
Lagrange Multplers as Quanttatve Indcators n Economcs Ivan Mezník Insttute of Informatcs, Faculty of Busness and Management, Brno Unversty of TechnologCzech Republc Abstract The quanttatve role of Lagrange
More informationLecture 3: Force of Interest, Real Interest Rate, Annuity
Lecture 3: Force of Interest, Real Interest Rate, Annuty Goals: Study contnuous compoundng and force of nterest Dscuss real nterest rate Learn annutymmedate, and ts present value Study annutydue, and
More informationStress test for measuring insurance risks in nonlife insurance
PROMEMORIA Datum June 01 Fnansnspektonen Författare Bengt von Bahr, Younes Elonq and Erk Elvers Stress test for measurng nsurance rsks n nonlfe nsurance Summary Ths memo descrbes stress testng of nsurance
More informationThe OC Curve of Attribute Acceptance Plans
The OC Curve of Attrbute Acceptance Plans The Operatng Characterstc (OC) curve descrbes the probablty of acceptng a lot as a functon of the lot s qualty. Fgure 1 shows a typcal OC Curve. 10 8 6 4 1 3 4
More informationThe Application of Fractional Brownian Motion in Option Pricing
Vol. 0, No. (05), pp. 738 http://dx.do.org/0.457/jmue.05.0..6 The Applcaton of Fractonal Brownan Moton n Opton Prcng Qngxn Zhou School of Basc Scence,arbn Unversty of Commerce,arbn zhouqngxn98@6.com
More informationTrafficlight a stress test for life insurance provisions
MEMORANDUM Date 006097 Authors Bengt von Bahr, Göran Ronge Traffclght a stress test for lfe nsurance provsons Fnansnspetonen P.O. Box 6750 SE113 85 Stocholm [Sveavägen 167] Tel +46 8 787 80 00 Fax
More informationPSYCHOLOGICAL RESEARCH (PYC 304C) Lecture 12
14 The Chsquared dstrbuton PSYCHOLOGICAL RESEARCH (PYC 304C) Lecture 1 If a normal varable X, havng mean µ and varance σ, s standardsed, the new varable Z has a mean 0 and varance 1. When ths standardsed
More informationAnalysis of Premium Liabilities for Australian Lines of Business
Summary of Analyss of Premum Labltes for Australan Lnes of Busness Emly Tao Honours Research Paper, The Unversty of Melbourne Emly Tao Acknowledgements I am grateful to the Australan Prudental Regulaton
More informationTrafficlight extended with stress test for insurance and expense risks in life insurance
PROMEMORIA Datum 0 July 007 FI Dnr 07117130 Fnansnspetonen Författare Bengt von Bahr, Göran Ronge Traffclght extended wth stress test for nsurance and expense rss n lfe nsurance Summary Ths memorandum
More informationSolution: Let i = 10% and d = 5%. By definition, the respective forces of interest on funds A and B are. i 1 + it. S A (t) = d (1 dt) 2 1. = d 1 dt.
Chapter 9 Revew problems 9.1 Interest rate measurement Example 9.1. Fund A accumulates at a smple nterest rate of 10%. Fund B accumulates at a smple dscount rate of 5%. Fnd the pont n tme at whch the forces
More informationThe Mathematical Derivation of Least Squares
Pscholog 885 Prof. Federco The Mathematcal Dervaton of Least Squares Back when the powers that e forced ou to learn matr algera and calculus, I et ou all asked ourself the ageold queston: When the hell
More informationTime Value of Money. Types of Interest. Compounding and Discounting Single Sums. Page 1. Ch. 6  The Time Value of Money. The Time Value of Money
Ch. 6  The Tme Value of Money Tme Value of Money The Interest Rate Smple Interest Compound Interest Amortzng a Loan FIN21 Ahmed Y, Dasht TIME VALUE OF MONEY OR DISCOUNTED CASH FLOW ANALYSIS Very Important
More informationSmall pots lump sum payment instruction
For customers Small pots lump sum payment nstructon Please read these notes before completng ths nstructon About ths nstructon Use ths nstructon f you re an ndvdual wth Aegon Retrement Choces Self Invested
More informationCan Auto Liability Insurance Purchases Signal Risk Attitude?
Internatonal Journal of Busness and Economcs, 2011, Vol. 10, No. 2, 159164 Can Auto Lablty Insurance Purchases Sgnal Rsk Atttude? ChuShu L Department of Internatonal Busness, Asa Unversty, Tawan ShengChang
More information7.5. Present Value of an Annuity. Investigate
7.5 Present Value of an Annuty Owen and Anna are approachng retrement and are puttng ther fnances n order. They have worked hard and nvested ther earnngs so that they now have a large amount of money on
More informationTHE DISTRIBUTION OF LOAN PORTFOLIO VALUE * Oldrich Alfons Vasicek
HE DISRIBUION OF LOAN PORFOLIO VALUE * Oldrch Alfons Vascek he amount of captal necessary to support a portfolo of debt securtes depends on the probablty dstrbuton of the portfolo loss. Consder a portfolo
More informationAnswer: A). There is a flatter IS curve in the high MPC economy. Original LM LM after increase in M. IS curve for low MPC economy
4.02 Quz Solutons Fall 2004 MultpleChoce Questons (30/00 ponts) Please, crcle the correct answer for each of the followng 0 multplechoce questons. For each queston, only one of the answers s correct.
More informationSection 5.4 Annuities, Present Value, and Amortization
Secton 5.4 Annutes, Present Value, and Amortzaton Present Value In Secton 5.2, we saw that the present value of A dollars at nterest rate per perod for n perods s the amount that must be deposted today
More informationSimple Interest Loans (Section 5.1) :
Chapter 5 Fnance The frst part of ths revew wll explan the dfferent nterest and nvestment equatons you learned n secton 5.1 through 5.4 of your textbook and go through several examples. The second part
More informationFINANCIAL MATHEMATICS. A Practical Guide for Actuaries. and other Business Professionals
FINANCIAL MATHEMATICS A Practcal Gude for Actuares and other Busness Professonals Second Edton CHRIS RUCKMAN, FSA, MAAA JOE FRANCIS, FSA, MAAA, CFA Study Notes Prepared by Kevn Shand, FSA, FCIA Assstant
More information8.5 UNITARY AND HERMITIAN MATRICES. The conjugate transpose of a complex matrix A, denoted by A*, is given by
6 CHAPTER 8 COMPLEX VECTOR SPACES 5. Fnd the kernel of the lnear transformaton gven n Exercse 5. In Exercses 55 and 56, fnd the mage of v, for the ndcated composton, where and are gven by the followng
More informationIntrayear Cash Flow Patterns: A Simple Solution for an Unnecessary Appraisal Error
Intrayear Cash Flow Patterns: A Smple Soluton for an Unnecessary Apprasal Error By C. Donald Wggns (Professor of Accountng and Fnance, the Unversty of North Florda), B. Perry Woodsde (Assocate Professor
More informationUnderwriting Risk. Glenn Meyers. Insurance Services Office, Inc.
Underwrtng Rsk By Glenn Meyers Insurance Servces Offce, Inc. Abstract In a compettve nsurance market, nsurers have lmted nfluence on the premum charged for an nsurance contract. hey must decde whether
More informationCommunication Networks II Contents
8 / 1  Communcaton Networs II (Görg)  www.comnets.unbremen.de Communcaton Networs II Contents 1 Fundamentals of probablty theory 2 Traffc n communcaton networs 3 Stochastc & Marovan Processes (SP
More informationNumber of Levels Cumulative Annual operating Income per year construction costs costs ($) ($) ($) 1 600,000 35,000 100,000 2 2,200,000 60,000 350,000
Problem Set 5 Solutons 1 MIT s consderng buldng a new car park near Kendall Square. o unversty funds are avalable (overhead rates are under pressure and the new faclty would have to pay for tself from
More informationTime Series Analysis in Studies of AGN Variability. Bradley M. Peterson The Ohio State University
Tme Seres Analyss n Studes of AGN Varablty Bradley M. Peterson The Oho State Unversty 1 Lnear Correlaton Degree to whch two parameters are lnearly correlated can be expressed n terms of the lnear correlaton
More informationDEFINING %COMPLETE IN MICROSOFT PROJECT
CelersSystems DEFINING %COMPLETE IN MICROSOFT PROJECT PREPARED BY James E Aksel, PMP, PMISP, MVP For Addtonal Informaton about Earned Value Management Systems and reportng, please contact: CelersSystems,
More informationPowerofTwo Policies for Single Warehouse MultiRetailer Inventory Systems with Order Frequency Discounts
Powerofwo Polces for Sngle Warehouse MultRetaler Inventory Systems wth Order Frequency Dscounts José A. Ventura Pennsylvana State Unversty (USA) Yale. Herer echnon Israel Insttute of echnology (Israel)
More informationLecture 3: Annuity. Study annuities whose payments form a geometric progression or a arithmetic progression.
Lecture 3: Annuty Goals: Learn contnuous annuty and perpetuty. Study annutes whose payments form a geometrc progresson or a arthmetc progresson. Dscuss yeld rates. Introduce Amortzaton Suggested Textbook
More informationFinite Math Chapter 10: Study Guide and Solution to Problems
Fnte Math Chapter 10: Study Gude and Soluton to Problems Basc Formulas and Concepts 10.1 Interest Basc Concepts Interest A fee a bank pays you for money you depost nto a savngs account. Prncpal P The amount
More information1. Math 210 Finite Mathematics
1. ath 210 Fnte athematcs Chapter 5.2 and 5.3 Annutes ortgages Amortzaton Professor Rchard Blecksmth Dept. of athematcal Scences Northern Illnos Unversty ath 210 Webste: http://math.nu.edu/courses/math210
More informationSupport Vector Machines
Support Vector Machnes Max Wellng Department of Computer Scence Unversty of Toronto 10 Kng s College Road Toronto, M5S 3G5 Canada wellng@cs.toronto.edu Abstract Ths s a note to explan support vector machnes.
More informationOn the Optimal Control of a Cascade of HydroElectric Power Stations
On the Optmal Control of a Cascade of HydroElectrc Power Statons M.C.M. Guedes a, A.F. Rbero a, G.V. Smrnov b and S. Vlela c a Department of Mathematcs, School of Scences, Unversty of Porto, Portugal;
More informationTime Value of Money Module
Tme Value of Money Module O BJECTIVES After readng ths Module, you wll be able to: Understand smple nterest and compound nterest. 2 Compute and use the future value of a sngle sum. 3 Compute and use the
More informationThursday, December 10, 2009 Noon  1:50 pm Faraday 143
1. ath 210 Fnte athematcs Chapter 5.2 and 4.3 Annutes ortgages Amortzaton Professor Rchard Blecksmth Dept. of athematcal Scences Northern Illnos Unversty ath 210 Webste: http://math.nu.edu/courses/math210
More informationStudy on CET4 Marks in China s Graded English Teaching
Study on CET4 Marks n Chna s Graded Englsh Teachng CHE We College of Foregn Studes, Shandong Insttute of Busness and Technology, P.R.Chna, 264005 Abstract: Ths paper deploys Logt model, and decomposes
More informationCalculation of Sampling Weights
Perre Foy Statstcs Canada 4 Calculaton of Samplng Weghts 4.1 OVERVIEW The basc sample desgn used n TIMSS Populatons 1 and 2 was a twostage stratfed cluster desgn. 1 The frst stage conssted of a sample
More informationProject Networks With MixedTime Constraints
Project Networs Wth MxedTme Constrants L Caccetta and B Wattananon Western Australan Centre of Excellence n Industral Optmsaton (WACEIO) Curtn Unversty of Technology GPO Box U1987 Perth Western Australa
More information8.4. Annuities: Future Value. INVESTIGATE the Math. 504 8.4 Annuities: Future Value
8. Annutes: Future Value YOU WILL NEED graphng calculator spreadsheet software GOAL Determne the future value of an annuty earnng compound nterest. INVESTIGATE the Math Chrstne decdes to nvest $000 at
More informationOptimal Pricing for IntegratedServices Networks. with Guaranteed Quality of Service &
Optmal Prcng for IntegratedServces Networks wth Guaranteed Qualty of Servce & y Qong Wang * Jon M. Peha^ Marvn A. Sru # Carnege Mellon Unversty Chapter n Internet Economcs, edted y Joseph Baley and Lee
More informationMultiplePeriod Attribution: Residuals and Compounding
MultplePerod Attrbuton: Resduals and Compoundng Our revewer gave these authors full marks for dealng wth an ssue that performance measurers and vendors often regard as propretary nformaton. In 1994, Dens
More informationLoss analysis of a life insurance company applying discretetime riskminimizing hedging strategies
Insurance: Mathematcs and Economcs 42 2008 1035 1049 www.elsever.com/locate/me Loss analyss of a lfe nsurance company applyng dscretetme rskmnmzng hedgng strateges An Chen Netspar, he Netherlands Department
More informationADVERSE SELECTION IN INSURANCE MARKETS: POLICYHOLDER EVIDENCE FROM THE U.K. ANNUITY MARKET *
ADVERSE SELECTION IN INSURANCE MARKETS: POLICYHOLDER EVIDENCE FROM THE U.K. ANNUITY MARKET * Amy Fnkelsten Harvard Unversty and NBER James Poterba MIT and NBER * We are grateful to Jeffrey Brown, PerreAndre
More information10.2 Future Value and Present Value of an Ordinary Simple Annuity
348 Chapter 10 Annutes 10.2 Future Value and Present Value of an Ordnary Smple Annuty In compound nterest, 'n' s the number of compoundng perods durng the term. In an ordnary smple annuty, payments are
More informationHow Sets of Coherent Probabilities May Serve as Models for Degrees of Incoherence
1 st Internatonal Symposum on Imprecse Probabltes and Ther Applcatons, Ghent, Belgum, 29 June 2 July 1999 How Sets of Coherent Probabltes May Serve as Models for Degrees of Incoherence Mar J. Schervsh
More informationIn our example i = r/12 =.0825/12 At the end of the first month after your payment is received your amount in the account, the balance, is
Payout annutes: Start wth P dollars, e.g., P = 100, 000. Over a 30 year perod you receve equal payments of A dollars at the end of each month. The amount of money left n the account, the balance, earns
More informationCHOLESTEROL REFERENCE METHOD LABORATORY NETWORK. Sample Stability Protocol
CHOLESTEROL REFERENCE METHOD LABORATORY NETWORK Sample Stablty Protocol Background The Cholesterol Reference Method Laboratory Network (CRMLN) developed certfcaton protocols for total cholesterol, HDL
More informationSUPPLIER FINANCING AND STOCK MANAGEMENT. A JOINT VIEW.
SUPPLIER FINANCING AND STOCK MANAGEMENT. A JOINT VIEW. Lucía Isabel García Cebrán Departamento de Economía y Dreccón de Empresas Unversdad de Zaragoza Gran Vía, 2 50.005 Zaragoza (Span) Phone: 976761000
More information"Research Note" APPLICATION OF CHARGE SIMULATION METHOD TO ELECTRIC FIELD CALCULATION IN THE POWER CABLES *
Iranan Journal of Scence & Technology, Transacton B, Engneerng, ol. 30, No. B6, 789794 rnted n The Islamc Republc of Iran, 006 Shraz Unversty "Research Note" ALICATION OF CHARGE SIMULATION METHOD TO ELECTRIC
More informationAn Overview of Financial Mathematics
An Overvew of Fnancal Mathematcs Wllam Benedct McCartney July 2012 Abstract Ths document s meant to be a quck ntroducton to nterest theory. It s wrtten specfcally for actuaral students preparng to take
More informationUsing Series to Analyze Financial Situations: Present Value
2.8 Usng Seres to Analyze Fnancal Stuatons: Present Value In the prevous secton, you learned how to calculate the amount, or future value, of an ordnary smple annuty. The amount s the sum of the accumulated
More informationA Master Time Value of Money Formula. Floyd Vest
A Master Tme Value of Money Formula Floyd Vest For Fnancal Functons on a calculator or computer, Master Tme Value of Money (TVM) Formulas are usually used for the Compound Interest Formula and for Annutes.
More informationRisk Model of LongTerm Production Scheduling in Open Pit Gold Mining
Rsk Model of LongTerm Producton Schedulng n Open Pt Gold Mnng R Halatchev 1 and P Lever 2 ABSTRACT Open pt gold mnng s an mportant sector of the Australan mnng ndustry. It uses large amounts of nvestments,
More informationADVERSE SELECTION IN INSURANCE MARKETS: POLICYHOLDER EVIDENCE FROM THE U.K. ANNUITY MARKET
ADVERSE SELECTION IN INSURANCE MARKETS: POLICYHOLDER EVIDENCE FROM THE U.K. ANNUITY MARKET Amy Fnkelsten Harvard Unversty and NBER James Poterba MIT and NBER Revsed May 2003 ABSTRACT In ths paper, we nvestgate
More informationThe covariance is the two variable analog to the variance. The formula for the covariance between two variables is
Regresson Lectures So far we have talked only about statstcs that descrbe one varable. What we are gong to be dscussng for much of the remander of the course s relatonshps between two or more varables.
More informationANALYZING THE RELATIONSHIPS BETWEEN QUALITY, TIME, AND COST IN PROJECT MANAGEMENT DECISION MAKING
ANALYZING THE RELATIONSHIPS BETWEEN QUALITY, TIME, AND COST IN PROJECT MANAGEMENT DECISION MAKING Matthew J. Lberatore, Department of Management and Operatons, Vllanova Unversty, Vllanova, PA 19085, 6105194390,
More informationChapter 11 Practice Problems Answers
Chapter 11 Practce Problems Answers 1. Would you be more wllng to lend to a frend f she put all of her lfe savngs nto her busness than you would f she had not done so? Why? Ths problem s ntended to make
More informationReporting Forms ARF 113.0A, ARF 113.0B, ARF 113.0C and ARF 113.0D FIRB Corporate (including SME Corporate), Sovereign and Bank Instruction Guide
Reportng Forms ARF 113.0A, ARF 113.0B, ARF 113.0C and ARF 113.0D FIRB Corporate (ncludng SME Corporate), Soveregn and Bank Instructon Gude Ths nstructon gude s desgned to assst n the completon of the FIRB
More informationENTERPRISE RISK MANAGEMENT IN INSURANCE GROUPS: MEASURING RISK CONCENTRATION AND DEFAULT RISK
ETERPRISE RISK MAAGEMET I ISURACE GROUPS: MEASURIG RISK COCETRATIO AD DEFAULT RISK ADIE GATZERT HATO SCHMEISER STEFA SCHUCKMA WORKIG PAPERS O RISK MAAGEMET AD ISURACE O. 35 EDITED BY HATO SCHMEISER CHAIR
More informationgreatest common divisor
4. GCD 1 The greatest common dvsor of two ntegers a and b (not both zero) s the largest nteger whch s a common factor of both a and b. We denote ths number by gcd(a, b), or smply (a, b) when there s no
More informationSection 5.3 Annuities, Future Value, and Sinking Funds
Secton 5.3 Annutes, Future Value, and Snkng Funds Ordnary Annutes A sequence of equal payments made at equal perods of tme s called an annuty. The tme between payments s the payment perod, and the tme
More informationHollinger Canadian Publishing Holdings Co. ( HCPH ) proceeding under the Companies Creditors Arrangement Act ( CCAA )
February 17, 2011 Andrew J. Hatnay ahatnay@kmlaw.ca Dear Sr/Madam: Re: Re: Hollnger Canadan Publshng Holdngs Co. ( HCPH ) proceedng under the Companes Credtors Arrangement Act ( CCAA ) Update on CCAA Proceedngs
More informationCredit Limit Optimization (CLO) for Credit Cards
Credt Lmt Optmzaton (CLO) for Credt Cards Vay S. Desa CSCC IX, Ednburgh September 8, 2005 Copyrght 2003, SAS Insttute Inc. All rghts reserved. SAS Propretary Agenda Background Tradtonal approaches to credt
More informationFAST SIMULATION OF EQUITYLINKED LIFE INSURANCE CONTRACTS WITH A SURRENDER OPTION. Carole Bernard Christiane Lemieux
Proceedngs of the 2008 Wnter Smulaton Conference S. J. Mason, R. R. Hll, L. Mönch, O. Rose, T. Jefferson, J. W. Fowler eds. FAST SIMULATION OF EQUITYLINKED LIFE INSURANCE CONTRACTS WITH A SURRENDER OPTION
More informationThe Development of Web Log Mining Based on ImproveKMeans Clustering Analysis
The Development of Web Log Mnng Based on ImproveKMeans Clusterng Analyss TngZhong Wang * College of Informaton Technology, Luoyang Normal Unversty, Luoyang, 471022, Chna wangtngzhong2@sna.cn Abstract.
More informationModule 2 LOSSLESS IMAGE COMPRESSION SYSTEMS. Version 2 ECE IIT, Kharagpur
Module LOSSLESS IMAGE COMPRESSION SYSTEMS Lesson 3 Lossless Compresson: Huffman Codng Instructonal Objectves At the end of ths lesson, the students should be able to:. Defne and measure source entropy..
More informationSTATISTICAL DATA ANALYSIS IN EXCEL
Mcroarray Center STATISTICAL DATA ANALYSIS IN EXCEL Lecture 6 Some Advanced Topcs Dr. Petr Nazarov 1401013 petr.nazarov@crpsante.lu Statstcal data analyss n Ecel. 6. Some advanced topcs Correcton for
More informationFormula of Total Probability, Bayes Rule, and Applications
1 Formula of Total Probablty, Bayes Rule, and Applcatons Recall that for any event A, the par of events A and A has an ntersecton that s empty, whereas the unon A A represents the total populaton of nterest.
More informationThe Greedy Method. Introduction. 0/1 Knapsack Problem
The Greedy Method Introducton We have completed data structures. We now are gong to look at algorthm desgn methods. Often we are lookng at optmzaton problems whose performance s exponental. For an optmzaton
More informationOptimal Bidding Strategies for Generation Companies in a DayAhead Electricity Market with Risk Management Taken into Account
Amercan J. of Engneerng and Appled Scences (): 86, 009 ISSN 94700 009 Scence Publcatons Optmal Bddng Strateges for Generaton Companes n a DayAhead Electrcty Market wth Rsk Management Taken nto Account
More information6. EIGENVALUES AND EIGENVECTORS 3 = 3 2
EIGENVALUES AND EIGENVECTORS The Characterstc Polynomal If A s a square matrx and v s a nonzero vector such that Av v we say that v s an egenvector of A and s the correspondng egenvalue Av v Example :
More informationCausal, Explanatory Forecasting. Analysis. Regression Analysis. Simple Linear Regression. Which is Independent? Forecasting
Causal, Explanatory Forecastng Assumes causeandeffect relatonshp between system nputs and ts output Forecastng wth Regresson Analyss Rchard S. Barr Inputs System Cause + Effect Relatonshp The job of
More informationModeling Motorcycle Insurance Rate Reduction due to Mandatory Safety Courses
Modelng Motorcycle Insurance Rate Reducton due to Mandatory Safety Courses Shujuan Huang 1 Vadveloo Jeyaraj 1 Valdez mlano 1 Garry D. Lapdus 2 1 Mathematc Department Unversty of Connectcut Storrs CT 06269
More informationVasicek s Model of Distribution of Losses in a Large, Homogeneous Portfolio
Vascek s Model of Dstrbuton of Losses n a Large, Homogeneous Portfolo Stephen M Schaefer London Busness School Credt Rsk Electve Summer 2012 Vascek s Model Important method for calculatng dstrbuton of
More informationQUANTUM MECHANICS, BRAS AND KETS
PH575 SPRING QUANTUM MECHANICS, BRAS AND KETS The followng summares the man relatons and defntons from quantum mechancs that we wll be usng. State of a phscal sstem: The state of a phscal sstem s represented
More information1. Fundamentals of probability theory 2. Emergence of communication traffic 3. Stochastic & Markovian Processes (SP & MP)
6.3 /  Communcaton Networks II (Görg) SS20  www.comnets.unbremen.de Communcaton Networks II Contents. Fundamentals of probablty theory 2. Emergence of communcaton traffc 3. Stochastc & Markovan Processes
More informationForecasting the Direction and Strength of Stock Market Movement
Forecastng the Drecton and Strength of Stock Market Movement Jngwe Chen Mng Chen Nan Ye cjngwe@stanford.edu mchen5@stanford.edu nanye@stanford.edu Abstract  Stock market s one of the most complcated systems
More information10. (# 45, May 2001). At time t = 0, 1 is deposited into each of Fund X and Fund Y. Fund X accumulates at a force of interest
1 Exam FM questons 1. (# 12, May 2001). Bruce and Robbe each open up new bank accounts at tme 0. Bruce deposts 100 nto hs bank account, and Robbe deposts 50 nto hs. Each account earns an annual e ectve
More informationx f(x) 1 0.25 1 0.75 x 1 0 1 1 0.04 0.01 0.20 1 0.12 0.03 0.60
BIVARIATE DISTRIBUTIONS Let be a varable that assumes the values { 1,,..., n }. Then, a functon that epresses the relatve frequenc of these values s called a unvarate frequenc functon. It must be true
More informationEstimating Total Claim Size in the Auto Insurance Industry: a Comparison between Tweedie and ZeroAdjusted Inverse Gaussian Distribution
Estmatng otal Clam Sze n the Auto Insurance Industry: a Comparson between weede and ZeroAdjusted Inverse Gaussan Dstrbuton Autora: Adrana Bruscato Bortoluzzo, Italo De Paula Franca, Marco Antono Leonel
More informationLinear Circuits Analysis. Superposition, Thevenin /Norton Equivalent circuits
Lnear Crcuts Analyss. Superposton, Theenn /Norton Equalent crcuts So far we hae explored tmendependent (resste) elements that are also lnear. A tmendependent elements s one for whch we can plot an / cure.
More informationExtending Probabilistic Dynamic Epistemic Logic
Extendng Probablstc Dynamc Epstemc Logc Joshua Sack May 29, 2008 Probablty Space Defnton A probablty space s a tuple (S, A, µ), where 1 S s a set called the sample space. 2 A P(S) s a σalgebra: a set
More informationFinancial Mathemetics
Fnancal Mathemetcs 15 Mathematcs Grade 12 Teacher Gude Fnancal Maths Seres Overvew In ths seres we am to show how Mathematcs can be used to support personal fnancal decsons. In ths seres we jon Tebogo,
More informationEE201 Circuit Theory I 2015 Spring. Dr. Yılmaz KALKAN
EE201 Crcut Theory I 2015 Sprng Dr. Yılmaz KALKAN 1. Basc Concepts (Chapter 1 of Nlsson  3 Hrs.) Introducton, Current and Voltage, Power and Energy 2. Basc Laws (Chapter 2&3 of Nlsson  6 Hrs.) Voltage
More informationTuition Fee Loan application notes
Tuton Fee Loan applcaton notes for new parttme EU students 2012/13 About these notes These notes should be read along wth your Tuton Fee Loan applcaton form. The notes are splt nto three parts: Part 1
More informationIn our example i = r/12 =.0825/12 At the end of the first month after your payment is received your amount owed is. P (1 + i) A
Amortzed loans: Suppose you borrow P dollars, e.g., P = 100, 000 for a house wth a 30 year mortgage wth an nterest rate of 8.25% (compounded monthly). In ths type of loan you make equal payments of A dollars
More informationBond futures. Bond futures contracts are futures contracts that allow investor to buy in the
Bond futures INRODUCION Bond futures contracts are futures contracts that allow nvestor to buy n the future a theoretcal government notonal bond at a gven prce at a specfc date n a gven quantty. Compared
More informationBERNSTEIN POLYNOMIALS
OnLne Geometrc Modelng Notes BERNSTEIN POLYNOMIALS Kenneth I. Joy Vsualzaton and Graphcs Research Group Department of Computer Scence Unversty of Calforna, Davs Overvew Polynomals are ncredbly useful
More information+ + +   This circuit than can be reduced to a planar circuit
MeshCurrent Method The meshcurrent s analog of the nodeoltage method. We sole for a new set of arables, mesh currents, that automatcally satsfy KCLs. As such, meshcurrent method reduces crcut soluton to
More informationForecasting the Demand of Emergency Supplies: Based on the CBR Theory and BP Neural Network
700 Proceedngs of the 8th Internatonal Conference on Innovaton & Management Forecastng the Demand of Emergency Supples: Based on the CBR Theory and BP Neural Network Fu Deqang, Lu Yun, L Changbng School
More informationAn Evaluation of the Extended Logistic, Simple Logistic, and Gompertz Models for Forecasting Short Lifecycle Products and Services
An Evaluaton of the Extended Logstc, Smple Logstc, and Gompertz Models for Forecastng Short Lfecycle Products and Servces Charles V. Trappey a,1, Hsnyng Wu b a Professor (Management Scence), Natonal Chao
More informationOptimal allocation of safety and security resources
397 A publcaton of VOL. 31, 2013 CHEMICAL ENGINEERING TRANSACTIONS Guest Edtors: Eddy De Rademaeker, Bruno Fabano, Smberto Senn Buratt Copyrght 2013, AIDIC Servz S.r.l., ISBN 9788895608228; ISSN 19749791
More information1 Approximation Algorithms
CME 305: Dscrete Mathematcs and Algorthms 1 Approxmaton Algorthms In lght of the apparent ntractablty of the problems we beleve not to le n P, t makes sense to pursue deas other than complete solutons
More informationISLM Model 1 C' dy = di
 odel Solow Assumptons  demand rrelevant n long run; assumes economy s operatng at potental GDP; concerned wth growth  Assumptons  supply s rrelevant n short run; assumes economy s operatng below potental
More informationInterchangeability of the median operator with the present value operator
Appled Economcs Letters, 20, 5, Frst Interchangeablty of the medan operator wth the present value operator Gary R. Skoog and James E. Cecka* Department of Economcs, DePaul Unversty, East Jackson Boulevard,
More informationIDENTIFICATION AND CORRECTION OF A COMMON ERROR IN GENERAL ANNUITY CALCULATIONS
IDENTIFICATION AND CORRECTION OF A COMMON ERROR IN GENERAL ANNUITY CALCULATIONS Chrs Deeley* Last revsed: September 22, 200 * Chrs Deeley s a Senor Lecturer n the School of Accountng, Charles Sturt Unversty,
More informationControl Charts for Means (Simulation)
Chapter 290 Control Charts for Means (Smulaton) Introducton Ths procedure allows you to study the run length dstrbuton of Shewhart (Xbar), Cusum, FIR Cusum, and EWMA process control charts for means usng
More informationInterest Rate Forwards and Swaps
Interest Rate Forwards and Swaps Forward rate agreement (FRA) mxn FRA = agreement that fxes desgnated nterest rate coverng a perod of (nm) months, startng n m months: Example: Depostor wants to fx rate
More information