Reaction Engineering of Polymer Electrolyte Membrane Fuel Cells

Size: px
Start display at page:

Download "Reaction Engineering of Polymer Electrolyte Membrane Fuel Cells"

Transcription

1 Reaction Engineering of Polymer Electrolyte Membrane Fuel Cells A new approach to elucidate the operation and control of Polymer Electrolyte Membrane (PEM) fuel cells is being developed. A global reactor engineering approach is applied to PEM fuel cells to identify the essential physics that govern the dynamics in PEM fuel cells. Reaction engineering principles are employed to develop a one-dimensional differential PEM fuel cell suitable for elucidating the dynamic performance of PEM cells under well-defined conditions. Polymer Electrolyte Fuel Cells Polymer electrolyte membrane (PEM) fuel cells employ a polymer membrane with acid side groups to conduct protons from the anode to cathode. Water management in the fuel cell is critical for PEM fuel cell operation. Sufficient water must be absorbed into the membrane to ionize the acid groups; excess water can flood the cathode of the fuel cell diminishing fuel cell performance limiting the power output. A schematic of a polymer electrolyte membrane hydrogen-oxygen fuel cell is shown in Figure 1. hydrogen in hydrogen + water out anode e- H + 2 2H + 2e H+ load Polymer Electrolyte oxygen in oxygen + water out cathode + O2 + 4H + 4e 2H 2O Figure 1. Hydrogen-oxygen PEM fuel cell. Hydrogen molecules dissociatively adsorb at the anode and are oxidized to protons. Electrons travel through an external load resistance. Protons diffuse through the PEM under an electrochemical gradient to the cathode. Oxygen molecules adsorb at the cathode, are reduced and react with the protons to produce water. The product water is absorbed into the PEM, or evaporates into the gas streams at the anode and cathode. Proton conductivity in Nafion, and most other polymer electrolytes, increases with water activity, and is maximized when equilibrated with liquid water (water activity a w =1). Operation at a w =1 minimizes the membrane resistance for proton conduction, but results in water condensation which inhibits mass transfer to the electrodes. Our research is focused on finding optimal operational and control schemes for water management in PEM fuel cells. The Fuel Cell as a Chemical Reactor The dynamic response of fuel cells is essential for transportation applications where the power demand will need to respond to variable loads. We have developed a one-dimensional differential reactor that functions as a Stirred Tank Reactor PEM fuel cell to study fuel cell dynamics. The STR PEM fuel cell is one-dimensional and the gas compositions at the anode and cathode can be independently controlled and measured. The dynamic response of the STR PEM fuel cell is much easier to analyze and interpret than for a conventional PEM fuel cell. The performance of larger complex fuel cell reactor systems may be modeled based on collections of the STR PEM fuel cell. Our initial fuel cell studies have with three fundamental questions. 1. Is there an optimum membrane water content that will provide high conductivity while avoiding flooding in the electrodes? 2. Water is produced by the fuel cell reaction; how should the feed streams and their water content be controlled to respond to load variations?

2 3. How should the fuel cell be started up from different initial conditions to achieve the desired power output? The STR PEM fuel cell is shown schematically in Figure 2. The reactants are fed to gas plenums where the residence time is greater than the characteristic diffusion time in the plenum, so the gas phase compositions are uniform, and the only gradients are transverse to the membrane. This is a onedimensional reactor, and both the anode and cathode may be considered as stirred tank reactors (STR PEM fuel cell). Hydrogen in Relative Humidity Sensor Relief Valve RH Sensors Graphite Plate RL Nafion Membrane I V Electrode assembly Oxygen In Thermocouple Fuel Cell Figure 2A. Schematic of the STR PEM fuel cell reactor. The exposed membrane area was ~1.5 cm 2, with gas volumes above the anode and cathode of ~.2 cm 3. The MEA employed Etek electrodes and a Nafion 115 membrane. Figure 2B. Photograph of the STR PEM fuel cell reactor. The graphite plates were fitted into Teflon plates and sandwiched between Al blocks with were heated. Relative humidity sensors measured the temperature and RH in the effluent streams. Ignition in Autohumidification PEM fuel cells The startup and steady state operation of the autohumidification PEM fuel cell was examined. Figure 3 shows the current of the autohumidification PEM fuel cell during startup. The results show classic ignition phenomena. At 5ºC with an external load resistance of 5 Ω and initial water loadings of <1.7 H 2 O/SO 3 the fuel cell approaches an extinguished state, where the steady state current is very low (~.1 ma). When the initial water loading is >1.8 H 2 O/SO 3 the fuel cell ignites and approaches a high current steady state current of ~ 125 ma(moxley, Tulyani et al. 23). Increasing the load resistance can limit the current and result in the fuel cell current being extinguished (see Figure 3B) ohm load 1 λ λ ohm load λ λ 1.4 λ λ.8 Time (s) Time (s) Figure 3A. Start-up of an autohumidification PEM fuel cell with different initial membrane water Figure 3B. Start-up of a PEM fuel cell humidified to an initial water content of λ~2 at 5 C. The

3 loading (λ=water molecules per SO 3 ). The fuel cell was run at 5ºC after initial membrane humidification at 25ºC for varying periods of time. The external resistance was 5 Ω. upper curve was obtained with an external load resistance of 5 Ω; the lower curve was obtained with an external load resistance of 3 Ω. Ignition/extinction is indicative of multiple steady states in PEM fuel cell operation (the same reactor conditions, feed flow rates, temperature and load resistance can result in two different stable operating states). Steady state multiplicity in the autohumidification PEM fuel cell results from a positive feedback between water production and the membrane resistance. The fuel cell reaction to make water is limited by the proton conductivity of the polymer electrolyte. The water produced by reaction decreases the membrane resistance. The lower resistance permits a greater proton current, which leads to more water production. The feedback loop for ignition by water in the STR PEM fuel cell is completely analogous to the classic thermal ignition phenomenon.(moxley, Tulyani et al. 23) The membrane resistance for proton conduction decreases exponentially with water activity in the membrane, a w ; the experimental data for Nafion 115 is fit very well with the expression, R m =1 7 *exp(- 14(a w ).2 ) Ω-cm. (Yang, Benziger, et al. J. Membrane Science 24) Water removal and water production are balanced at steady state. Water production and removal can be expressed as functions of the water activity and steady state can be represented by the intersections of water production and removal curves. Water removal is by convection and scales linearly with the water activity in the membrane. Water production increases sigmoidally with membrane water activity due to the decrease in resistance. Water production also increases with decreasing external load resistance. The steady states are identified in Figure 4..6 Current Density (A/cm2) Unstable state Water Activity (Pw/Po) extinguished state ignited state RL=4 water removal RL=6 RL=8 RL=1 RL=15 RL= Water Activity (Pw/Po) Figure 4. Water production and removal rates for the STR PEM fuel cell. The water production curves are the sigmoidal curves. The water removal line is based on the assumption of equilibrium water activity between the membrane and the gas phases at the anode and cathode. The low water activity region is blown up in the insert at the upper left. Increasing the temperature of the fuel cell has little effect on the sigmoidal water production curves but increases the slope of the water removal line.

4 Fixing the load resistance and cell temperature results in either a one or three intersections of the water production and water removal curves corresponding to steady states. At a high load resistance and high temperature there is a single low current or extinguished steady state. At moderate load resistances and low temperature there are three steady states. In addition to the extinguished state, there is a high current or ignited steady state, and there is an intermediate steady state. Where three steady states exist only two are stable. Both the ignited and extinguished steady states are stable to fluctuations away from the steady state. For example, a positive fluctuation from the ignited state increases the water content in the membrane, at that condition the water removal is greater than the water generated so the system will return to steady state. The middle steady state is unstable, positive fluctuations in the water content from that steady state will cause the system to generate more water than is removed and the fuel cell will evolve towards the ignited steady state; negative fluctuations in water content from the intermediate state will drive the system towards the extinguished state. The critical water content shown in Figure 3 corresponds to the water content of the unstable steady state in Figure 4. According to Figure 4 the critical water activity for ignition is ~.1, which corresponds to a water loading λ~1.7 H 2 O /SO 3. More Steady States Based on the results above it was expected that increasing the cell temperature and increasing the load resistance would increase the rate of water removal and decrease the water production, which should extinguish the fuel cell current. Much to our surprise the behavior was not that simple. Figure 5A shows the steady state polarization curve for the autohumidification PEM fuel cell at 95ºC. This data was taken by changing the load resistance and allowing 2-4 hours for the cell current to come to steady state (the polarization curve took 4 days to obtain!). The current and voltage changed smoothly until the load resistance was increased from 11 to 12 Ω, at which point the steady state current and voltage both decreased abruptly. The resistance was increased stepwise from 12 to 2 Ω and the current and voltage changed smoothly. Starting with a load resistance of 2 Ω the process was reversed. The current and voltage changed smoothly along the same curve as for the increasing resistance, but there was no abrupt change in the current and voltage at 11 Ω. Instead the IV data varied smoothly until the resistance was decreased below 5 Ω, when it jumped up. The polarization curves in Figure 5A show a hysteresis loop, where the steady state current and voltage depend on the direction of approach. The experiments identified 3 stable steady states (which imply a total of 5 steady states). We refer to the three stable steady states by the relative water content in the membrane as inferred from the membrane resistance. The three states are the dry state (extinguished current), low water content state (intermediate current) and high water content state (highest current branch). The dynamics of the transitions between the high and low water content states shown in Figure 5A are unusual. Shown in Figures 5B is the current responses to step changes in the resistance which jump across the hysteresis loop shown in Figure 5A. The response to changes in resistance produce a rapid response followed by a long delay and then a second change in the current to the new steady state.

5 8 fixed RL 1 12 Voltage (mv) low water content stable increasing load resistance high water content stable Cell Load resistance changed at 175 s cell current anode RH cathode RH Relative Humidity Sensors Figure 5A. Polarization curves for autohumidification PEM fuel cell at 95ºC with H 2 flow and O 2 flow of 1 ml/min. The high water content curve was taken after establishing steady state with a load resistance of 2 Ω. The low water content curve was taken after establishing steady state with a load resistance of 2 Ω Time (s) Figure 5B. Fuel cell current at 95ºC and relative humidity in the anode and cathode effluents in response to a step decrease in the external load resistance from 25 Ω to 5 Ω. The switch was made at 175 s. The dynamic responses shown in Figures 5B and 6C show an instantaneous change where the current follows the load. This change corresponds to a condition where the water content in the membrane remains is fixed. There is a longer response that corresponds to the fuel cell membrane adjusting the water content to a new steady state value. The dynamics of transitions between steady states shown took s for a new steady state to be achieved after changing the external load resistance. The reason for the slow dynamics of PEM fuel cells is because the membrane acts as a reservoir for water. The water content of the membrane must equilibrate with the water production and water removal rates from the fuel cell. The characteristic time for water produced to be taken up by the membrane is ~ 1 seconds. 3 Mechanical Properties of Membranes and Fuel Cell Operation The five steady states were only observed above a minimum temperature. We advance the conjecture that the three stable steady states and the stepwise decrease in the membrane resistance result from a coupling of mechanical and chemical effects. The polymer membrane in the MEA is pressed between the graphite plates (with the gas flow channels) and the porous carbon electrodes, spatially confining the membrane. As the membrane takes up water, the proton conductivity increases, but the membrane must also swell. However, being spatially confined, the membrane is not free to swell; it must do work to push the electrodes apart, or to swell into the porous electrode. Water uptake is hindered by these spatial constraints, just like the absorption of water by a sponge is restricted when the sponge is confined between two plates. The energy required for swelling (or shrinking) of the membrane depends on the material properties of the membrane. Increasing temperature and increasing water content both reduce the elastic modulus of the Nafion membrane. Additionally, the glass transition temperature of Nafion decreases with water content, which dramatically alters the elastic modulus. Above a critical temperature and membrane water content, the swelling pressure of the membrane is reduced to the point where it is not sufficient to push the electrodes apart and absorb more water. The effect of the spatially confined MEA on the water uptake is to pin the membrane water content at fixed values until the membrane swelling pressure becomes sufficient to overcome the applied force of the electrodes. By pinning the water content, the proton conductivity is also effectively pinned.

6 The MEA resistance as a function of the sealing on the MEA is plotted in Figure 6B. The initial decrease in the MEA resistance results from improving the membrane-electrode contact reducing the interfacial resistance. The MEA resistance goes through a minimum and then increases as the bolts are tightened further. We attribute the eventual increase in MEA resistance with increased compression to water being squeezed out of the membrane. Applied Pressure by Current Collector Plates Swelling Pressure of Polymer Membrane Carbon electrodes MEA Resistance (ohm) Degrees past finger tight Figure 6A. Schematic of the sealing of the MEA in the STR PEM fuel cell. Figure 6B. Effective MEA resistance as a function of sealing pressure on the MEA. The bolts on the plates sealing the MEA were tightened past figure tight and the MEA resistance was determined from the minimum slope of the polarization curve in the ohmic region. OSCILLATIONS After the STR PEM fuel cell had been operated continuously for over 5 hours the fuel cell started displaying autonomous oscillations. For temperatures between 5-1ºC with external load resistances varying from.2-2 Ω the system would settle into a state with autonomous oscillations after 24 hours. Current, voltage and relative humidity of the anode and cathode effluents were monitored over a broad range of conditions, and autonomous oscillations persisted for 7 hours. (The STR PEM fuel cell operated continuously for 12, hr.) During the time period between 5-12, hr of operation the oscillations had a very regular characteristic shape as shown in Figure 7.

7 cathode RH current anode RH Relative Humidity Time (s) Figure 7. Characteristic autonomous oscillations observed with the STR PEM fuel cell during 5-12, hours of operation. These are stationary states. The feeds were dry with flow rates 1 ml/min H 2, 1 ml/min O 2. The cell temperature is 8ºC, with a load resistance of 1 Ω. The current and voltage show regular relaxation oscillations, resembling the opening and closing of a capacitive switch. The oscillations abruptly rise then decay to a high current plateau; after a period of several thousand seconds the current or voltage precipitously drops, and then rises to approach a low current or voltage. The relative humidity of the anode and cathode effluents tracks the rise and fall of the current oscillations. The cathode effluent relative humidity rises coincident with the current increase. There is a time delay of ~1 s from the current increase until the relative humidity at the anode starts rising. Why are the transitions between states so abrupt? We suspect that membrane swelling and relaxation processes create an interfacial contact switch between the membrane and the electrode. We propose a very simple model for this process. The electrode is composed on micron sized carbon particles, on which Pt nanoparticles are supported. The particles are fused together with binder material and coated onto a woven cloth. The membrane has a smooth surface and contacts the outermost layer of catalyst particles, as suggested in Figure 8(A). As the membrane absorbs water it swells, extruding in the gap between the carbon particles. After it swells sufficiently, it contacts the second layer of catalyst particles, as suggested in Figure 8(C). When contact is made with the second layer of catalyst particles, the interfacial resistance drops by almost a factor of two and the current jumps up. The capacitive double layer of protons that builds up on the catalyst particles is discharged when contact is made. The swollen membrane is stressed; the corrugation of the membrane surface is a high energy state. Stress relaxation of the polymer causes the extruded dimples touching the second layer of catalyst to slowly relax and stretch out in the plane of the membrane. When it breaks contact with the second layer of catalyst particle, the current drops and the water content in the membrane starts to decrease. Some of the protons are drawn off to replenish the double layer, conceivably causing the current undershoot.

8 Carbon support membrane A B C Figure 8. Membrane swelling and the interfacial contact of the electrode and membrane. (A) The membrane initially contacts the top layer of carbon particles. (B) As the membrane takes up water it swells and pushes into the gaps of the catalyst particles, (C) eventually touching the second layer of catalyst particles.

Water Visualization and Flooding in Polymer Electrolyte Membrane Fuel Cells. Brian Holsclaw

Water Visualization and Flooding in Polymer Electrolyte Membrane Fuel Cells. Brian Holsclaw Water Visualization and Flooding in Polymer Electrolyte Membrane Fuel Cells Brian Holsclaw West Virginia University Department of Chemical Engineering Overview Background Objective Experimental Conditions

More information

Keywords: polymer electrolyte membrane fuel cells; stack failure; gasket; indicators

Keywords: polymer electrolyte membrane fuel cells; stack failure; gasket; indicators Description of Gasket Failure in a 7 Cell PEMFC Stack Attila Husar, Maria Serra, Cristian Kunusch* Institut de Robòtica i Informàtica Industrial, Parc Tecnològic de Barcelona. Edifici U C. Llorens i Artigas,

More information

Supporting Information

Supporting Information Supporting Information Wiley-VCH 2007 69451 Weinheim, Germany Methanol Behavior in Direct Methanol Fuel Cells Younkee Paik, Seong-Soo Kim, and Oc Hee Han * Experimental Section Preparation of MEA: Standard

More information

Fuel Cell Activities at TU Graz

Fuel Cell Activities at TU Graz Fuel Cell Activities at TU Graz Viktor Hacker Institute of Chemical Engineering and Environmental Technology Graz University of Technology IEA Workshop TU Graz September 1 st, 2010 Content Lifetime and

More information

Finite Element Modules for Enhancing Undergraduate Transport Courses: Application to Fuel Cell Fundamentals

Finite Element Modules for Enhancing Undergraduate Transport Courses: Application to Fuel Cell Fundamentals Finite Element Modules for Enhancing Undergraduate Transport Courses: Application to Fuel Cell Fundamentals Originally published in 2007 American Society for Engineering Education Conference Proceedings

More information

Electrochemical Kinetics ( Ref. :Bard and Faulkner, Oldham and Myland, Liebhafsky and Cairns) R f = k f * C A (2) R b = k b * C B (3)

Electrochemical Kinetics ( Ref. :Bard and Faulkner, Oldham and Myland, Liebhafsky and Cairns) R f = k f * C A (2) R b = k b * C B (3) Electrochemical Kinetics ( Ref. :Bard and Faulkner, Oldham and Myland, Liebhafsky and Cairns) 1. Background Consider the reaction given below: A B (1) If k f and k b are the rate constants of the forward

More information

Plasma Activated Fuel Cells

Plasma Activated Fuel Cells Plasma Activated Fuel Cells Investigators Mark A. Cappelli, Professor, Mechanical Engineering; Wookyung Kim, Post-Doctoral Research, Mechanical Engineering. Abstract Plasma-activated fuel cell operation

More information

Fundamental issues in subzero PEMFC startup and operation. Jeremy P. Meyers February 1, 2005 DOE Freeze Workshop

Fundamental issues in subzero PEMFC startup and operation. Jeremy P. Meyers February 1, 2005 DOE Freeze Workshop Fundamental issues in subzero PEMFC startup and operation Jeremy P. Meyers February 1, 2005 DOE Freeze Workshop Outline of presentation Motivation Stack performance Technology gaps Recommendations Outline

More information

FUEL CELL CAR SCIENCE KIT ASSEMBLY GUIDE. Battery operation instructions:

FUEL CELL CAR SCIENCE KIT ASSEMBLY GUIDE. Battery operation instructions: FUEL CELL CAR SCIENCE KIT ASSEMBLY GUIDE Battery operation instructions: 1. The removing and inserting of batteries is to be conducted by the adults only. Unscrew the screw holding the battery pack s cover

More information

Figure 1: Exaggerated side-view of a cathode with a four-coating PTFE diffusion layer

Figure 1: Exaggerated side-view of a cathode with a four-coating PTFE diffusion layer How to Make Cathodes with a Diffusion Layer for Single-Chamber Microbial Fuel Cells Joshua Middaugh 6/5/06 Updated by Shaoan Cheng and Wenzong Liu, 5/12/08 Introduction The use of a cathode with a diffusion

More information

Dimensional Change Characteristics for Printed Circuit Board Films

Dimensional Change Characteristics for Printed Circuit Board Films TECHNICAL DATA / PRINTED CIRCUIT BOARD FILM Dimensional Change Characteristics for Printed Circuit Board Films High Complexity PCB Starts With the Right Phototools October 2010 TI-2530 INTRODUCTION Kodak

More information

A CRITICAL NATIONAL NEED IDEA

A CRITICAL NATIONAL NEED IDEA A CRITICAL NATIONAL NEED IDEA Advanced Manufacturing Technologies A Solution for Manufacturing High Volume Precision Micro Scale Components Submitted by: Rockford Engineering Associates LLC 605 Fulton

More information

Fuel Cells for Renewable Energy and for Transportation IFCBC Meeting 24.12.2006 Prof. E. Peled School of Chemistry Tel Aviv University, Israel

Fuel Cells for Renewable Energy and for Transportation IFCBC Meeting 24.12.2006 Prof. E. Peled School of Chemistry Tel Aviv University, Israel Fuel Cells for Renewable Energy and for Transportation IFCBC Meeting 24.12.2006 Prof. E. Peled School of Chemistry Tel Aviv University, Israel TAU PU for laptops 1 Outline The problem: dependence on oil

More information

Electrochemical Impedance Spectroscopy (EIS): A Powerful and Cost- Effective Tool for Fuel Cell Diagnostics

Electrochemical Impedance Spectroscopy (EIS): A Powerful and Cost- Effective Tool for Fuel Cell Diagnostics Electrochemical Impedance Spectroscopy (EIS): A Powerful and Cost- Effective Tool for Fuel Cell Diagnostics Electrochemical Impedance Spectroscopy (EIS) is a powerful diagnostic tool that you can use to

More information

European COMSOL Conference, Hannover, Germany 04.-06.11.2008

European COMSOL Conference, Hannover, Germany 04.-06.11.2008 Zentrum für BrennstoffzellenTechnik Presented at the COMSOL Conference 28 Hannover European COMSOL Conference, Hannover, Germany 4.-6.11.28 Modeling Polybenzimidazole/Phosphoric Acid Membrane Behaviour

More information

Field Test to Demonstrate Real-Time In-Situ Detection of Volatile Organic Compounds Hazmat Spill Center, Nevada Test Site September 19-25, 2001

Field Test to Demonstrate Real-Time In-Situ Detection of Volatile Organic Compounds Hazmat Spill Center, Nevada Test Site September 19-25, 2001 Field Test to Demonstrate Real-Time In-Situ Detection of Volatile Organic Compounds Hazmat Spill Center, Nevada Test Site September 19-2, 21 Clifford K. Ho Sandia National Laboratories Albuquerque, NM

More information

Control of High Efficiency PEM Fuel Cells for Long Life, Low Power Applications Part I

Control of High Efficiency PEM Fuel Cells for Long Life, Low Power Applications Part I Control of High Efficiency PEM Fuel Cells for Long Life, Low Power Applications Part I Jekanthan Thangavelautham Postdoctoral Associate Field and Space Robotics Laboratory Motivation Conventional Power

More information

RESULTS OF ICARUS 9 EXPERIMENTS RUN AT IMRA EUROPE

RESULTS OF ICARUS 9 EXPERIMENTS RUN AT IMRA EUROPE Roulette, T., J. Roulette, and S. Pons. Results of ICARUS 9 Experiments Run at IMRA Europe. in Sixth International Conference on Cold Fusion, Progress in New Hydrogen Energy. 1996. Lake Toya, Hokkaido,

More information

IV.H.2 New York State Hi-Way Initiative*

IV.H.2 New York State Hi-Way Initiative* IV.H.2 New York State Hi-Way Initiative* Richard Bourgeois, P.E. General Electric Global Research 1 Research Circle Niskayuna NY 12309 Phone: (518) 387-4550; E-mail: richard.bourgeois@crd.ge.com DOE Technology

More information

LEAD CRYSTAL. User Manual. Valve-regulated lead-crystal batteries Energy storage Cells

LEAD CRYSTAL. User Manual. Valve-regulated lead-crystal batteries Energy storage Cells Engineering Production Sales LEAD CRYSTAL Valve-regulated lead-crystal batteries Energy storage Cells User Manual www.axcom-battery-technology.de info@.axcom-battery-technology.de Chapter 1: 1. Introduction

More information

EXPERIMENT #9 CORROSION OF METALS

EXPERIMENT #9 CORROSION OF METALS EXPERIMENT #9 CORROSION OF METALS Objective The objective of this experiment is to measure the corrosion rate of two different metals and to show the effectiveness of the use of inhibitors to protect metals

More information

Performance of Carbon-PTFE Electrodes and PTFE Separators in Electrochemical Double Layer Capacitors (EDLCs)

Performance of Carbon-PTFE Electrodes and PTFE Separators in Electrochemical Double Layer Capacitors (EDLCs) Performance of Carbon-PTFE Electrodes and PTFE Separators in Electrochemical Double Layer Capacitors (EDLCs) David Zuckerbrod, Robert Sassa, Marianne Szabo, Meagan Mizenko Abstract: W. L. Gore & Associates

More information

Eveready Carbon Zinc (Zn/MnO ² ) Application Manual

Eveready Carbon Zinc (Zn/MnO ² ) Application Manual Page 1 of 13 Eveready Carbon Zinc (Zn/MnO ² ) Application Manual Eveready carbon zinc batteries are marketed in two basic categories--classic and Super Heavy Duty. The Classic category, our least expensive

More information

An Electrochemical-Based Fuel Cell Model Suitable for Electrical Engineering Automation Approach

An Electrochemical-Based Fuel Cell Model Suitable for Electrical Engineering Automation Approach An Electrochemical-Based Fuel Cell Model Suitable for Electrical Engineering Automation Approach Jeferson M. Corrêa (IEEE Student Member) Felix A. Farret (Non-Member) Luciane N. Canha (Non-Member) Marcelo

More information

Balance of Fuel Cell Power Plant (BOP)

Balance of Fuel Cell Power Plant (BOP) Balance of Fuel Cell Power Plant (BOP) Docent Jinliang Yuan December, 2008 Department of Energy Sciences Lund Institute of Technology (LTH), Sweden Balance of Fuel Cell Power Plant In addition to stack,

More information

Technical Support Services Accelerated Learning Through the Visual Presentation of Technical Information

Technical Support Services Accelerated Learning Through the Visual Presentation of Technical Information TSS Module 8 pdf documents Text in pdf documents may appear fuzzy or blocky due to file compression. To change the appearence in Acrobat TM Reader TM 3.X, go to the menu item: File / Preferences / General

More information

CHAPTER 6 AN INTRODUCTION TO METABOLISM. Section B: Enzymes

CHAPTER 6 AN INTRODUCTION TO METABOLISM. Section B: Enzymes CHAPTER 6 AN INTRODUCTION TO METABOLISM Section B: Enzymes 1. Enzymes speed up metabolic reactions by lowering energy barriers 2. Enzymes are substrate specific 3. The active site in an enzyme s catalytic

More information

Modern Construction Materials Prof. Ravindra Gettu Department of Civil Engineering Indian Institute of Technology, Madras

Modern Construction Materials Prof. Ravindra Gettu Department of Civil Engineering Indian Institute of Technology, Madras Modern Construction Materials Prof. Ravindra Gettu Department of Civil Engineering Indian Institute of Technology, Madras Module - 2 Lecture - 2 Part 2 of 2 Review of Atomic Bonding II We will continue

More information

Paper No. 4071 APPLICATION OF EQCM TO THE STUDY OF CO2 CORROSION

Paper No. 4071 APPLICATION OF EQCM TO THE STUDY OF CO2 CORROSION Paper No. 471 APPLICATION OF EQCM TO THE STUDY OF CO2 CORROSION Yang Yang, Bruce Brown and Srdjan Nešić Institute for Corrosion and Multiphase Technology, Department of Chemical and Biomolecular Engineering

More information

COPPER BARS FOR THE HALL-HÉROULT PROCESS

COPPER BARS FOR THE HALL-HÉROULT PROCESS COPPER BARS FOR THE HALL-HÉROULT PROCESS René von Kaenel, Louis Bugnion, Jacques Antille, Laure von Kaenel KAN-NAK Ltd., Route de Sion 35, 3960 Sierre, Switzerland Keywords: Copper, Collector bars, Productivity

More information

Name Class Date. You do twice as much work. b. You lift two identical books one meter above the ground.

Name Class Date. You do twice as much work. b. You lift two identical books one meter above the ground. Exercises 9.1 Work (pages 145 146) 1. Circle the letter next to the correct mathematical equation for work. work = force distance work = distance force c. work = force distance d. work = force distance

More information

Free piston Stirling engine for rural development

Free piston Stirling engine for rural development Free piston Stirling engine for rural development R. Krasensky, Intern, Stirling development, r.krasensky@rrenergy.nl W. Rijssenbeek, Managing director, w.rijssenbeek@rrenergy.nl Abstract: This paper presents

More information

Determination of the enthalpy of combustion using a bomb calorimeter TEC

Determination of the enthalpy of combustion using a bomb calorimeter TEC Determination of the enthalpy of TEC Related concepts First law of thermodynamics, Hess s law of constant heat summation, enthalpy of combustion, enthalpy of formation, heat capacity. Principle The bomb

More information

Chemical Engineering - CHEN

Chemical Engineering - CHEN Auburn University 1 Chemical Engineering - CHEN Courses CHEN 2100 PRINCIPLES OF CHEMICAL ENGINEERING (4) LEC. 3. LAB. 3. Pr. (CHEM 1110 or CHEM 1117 or CHEM 1030) and (MATH 1610 or MATH 1613 or MATH 1617

More information

2 MATTER. 2.1 Physical and Chemical Properties and Changes

2 MATTER. 2.1 Physical and Chemical Properties and Changes 2 MATTER Matter is the material of which the universe is composed. It has two characteristics: It has mass; and It occupies space (i.e., it has a volume). Matter can be found in three generic states: Solid;

More information

Power Supplies. 1.0 Power Supply Basics. www.learnabout-electronics.org. Module

Power Supplies. 1.0 Power Supply Basics. www.learnabout-electronics.org. Module Module 1 www.learnabout-electronics.org Power Supplies 1.0 Power Supply Basics What you ll learn in Module 1 Section 1.0 Power Supply Basics. Basic functions of a power supply. Safety aspects of working

More information

INTA Renewable Energy Area activities

INTA Renewable Energy Area activities INSTITUTO NACIONAL DE TECNICA AEROESPACIAL 1. Introduction INTA Renewable Energy Area activities INTA, the National Institute for Aerospace Technology in Spain, is a public agency devoted to aerospace

More information

Science Standard Articulated by Grade Level Strand 5: Physical Science

Science Standard Articulated by Grade Level Strand 5: Physical Science Concept 1: Properties of Objects and Materials Classify objects and materials by their observable properties. Kindergarten Grade 1 Grade 2 Grade 3 Grade 4 PO 1. Identify the following observable properties

More information

Fundamentals of Mass Flow Control

Fundamentals of Mass Flow Control Fundamentals of Mass Flow Control Critical Terminology and Operation Principles for Gas and Liquid MFCs A mass flow controller (MFC) is a closed-loop device that sets, measures, and controls the flow of

More information

Continuous flow direct water heating for potable hot water

Continuous flow direct water heating for potable hot water Continuous flow direct water heating for potable hot water An independently produced White Paper for Rinnai UK 2013 www.rinnaiuk.com In the 35 years since direct hot water systems entered the UK commercial

More information

Fuel Cell as a Green Energy Generator in Aerial Industry

Fuel Cell as a Green Energy Generator in Aerial Industry Civil Aviation Technology College Fuel Cell as a Green Energy Generator in Aerial Industry Presented by: Mehdi Saghafi 16 April, 2012 Table of Content Introduction Principle & Performance of Fuel Cell

More information

User Guide. 9708 Dissolved Oxygen Probes

User Guide. 9708 Dissolved Oxygen Probes User Guide 9708 Dissolved Oxygen Probes Introduction The Thermo Scientific Orion 9708 dissolved oxygen probe simplifies measurements of dissolved oxygen, particularly Biochemical Oxygen Demand (BOD).

More information

A Practical Guide to Free Energy Devices

A Practical Guide to Free Energy Devices A Practical Guide to Free Energy Devices Electrolysis Patents No 14: Last updated: 28th January 2006 Author: Patrick J. Kelly Please note that this is a re-worded excerpt from this patent. If the content

More information

Electrochemistry Revised 04/29/15

Electrochemistry Revised 04/29/15 INTRODUCTION TO ELECTROCHEMISTRY: CURRENT, VOLTAGE, BATTERIES, & THE NERNST EQUATION Experiment partially adapted from J. Chem. Educ., 2008, 85 (8), p 1116 Introduction Electrochemical cell In this experiment,

More information

Operator Quick Guide EC SENSOR

Operator Quick Guide EC SENSOR Operator Quick Guide EC SENSOR Revision G - 24/04/2008 General Information About This Guide The information in this guide has been carefully checked and is believed to be accurate. However, Hach Ultra

More information

High Rate Oxide Deposition onto Web by Reactive Sputtering from Rotatable Magnetrons

High Rate Oxide Deposition onto Web by Reactive Sputtering from Rotatable Magnetrons High Rate Oxide Deposition onto Web by Reactive Sputtering from Rotatable Magnetrons D.Monaghan, V. Bellido-Gonzalez, M. Audronis. B. Daniel Gencoa, Physics Rd, Liverpool, L24 9HP, UK. www.gencoa.com,

More information

FUEL CELL FUNDAMENTALS

FUEL CELL FUNDAMENTALS FUEL CELL FUNDAMENTALS RYAN P. O'HAYRE Department of Metallurgical and Materials Engineering Colorado School of Mines [PhD, Materials Science and Engineering, Stanford University] SUK-WON CHA School of

More information

Vacuum Evaporation Recap

Vacuum Evaporation Recap Sputtering Vacuum Evaporation Recap Use high temperatures at high vacuum to evaporate (eject) atoms or molecules off a material surface. Use ballistic flow to transport them to a substrate and deposit.

More information

Calculation of Liquefied Natural Gas (LNG) Burning Rates

Calculation of Liquefied Natural Gas (LNG) Burning Rates Calculation of Liquefied Natural Gas (LNG) Burning Rates Carolina Herrera, R. Mentzer, M. Sam Mannan, and S. Waldram Mary Kay O Connor Process Safety Center Artie McFerrin Department of Chemical Engineering

More information

Hands-on electrochemical impedance spectroscopy Discussion session. Literature:

Hands-on electrochemical impedance spectroscopy Discussion session. Literature: Hands-on electrochemical impedance spectroscopy Discussion session Literature: Program for the day 10.00-10.30 General electrochemistry (shjj) 11.10-11.20 Relationship between EIS and electrochemical processes

More information

Ultracapacitors Help P21 To Provide Fuel Cell Based Backup Power For Telecoms

Ultracapacitors Help P21 To Provide Fuel Cell Based Backup Power For Telecoms Ultracapacitors Help P21 To Provide Fuel Cell Based Backup Power For Telecoms Introduction P21 develops, produces, and sells fuel cell based backup systems. They are used in base station networks where

More information

Determination of the enthalpy of combustion using a bomb calorimeter TEC. Safety precautions

Determination of the enthalpy of combustion using a bomb calorimeter TEC. Safety precautions Safety precautions Naphthalene is harmful if swallowed. May cause cancer. Is further very toxic to aquatic organisms and can have long-term harmful effects in bodies of water. Equipment 1 Bomb calorimeter

More information

Milwaukee USER MANUAL

Milwaukee USER MANUAL Milwaukee USER MANUAL PORTABLE DISSOLVED OXYGEN METER MODEL: MW600 Smart DO Meter PROBE PREPARATION: The meter is supplied with a 9V battery. Slide off the battery compartment cover on the back of the

More information

Chemical Bonds. Chemical Bonds. The Nature of Molecules. Energy and Metabolism < < Covalent bonds form when atoms share 2 or more valence electrons.

Chemical Bonds. Chemical Bonds. The Nature of Molecules. Energy and Metabolism < < Covalent bonds form when atoms share 2 or more valence electrons. The Nature of Molecules Chapter 2 Energy and Metabolism Chapter 6 Chemical Bonds Molecules are groups of atoms held together in a stable association. Compounds are molecules containing more than one type

More information

High Energy Rechargeable Li-S Cells for EV Application. Status, Challenges and Solutions

High Energy Rechargeable Li-S Cells for EV Application. Status, Challenges and Solutions High Energy Rechargeable Li-S Cells for EV Application. Status, Challenges and Solutions Yuriy Mikhaylik, Igor Kovalev, Riley Schock, Karthikeyan Kumaresan, Jason Xu and John Affinito Sion Power Corporation

More information

Aluminium Technology & Production in Russia

Aluminium Technology & Production in Russia L Aluminium Technology & Production in Russia Victor Mann, Deputy General Manager, s Construction Division Soderberg technology Over 80% of aluminium in Russia is manufactured on the basis of Soderberg

More information

Effect of polytetrafluoroethylene distribution in the gas diffusion layer on water flooding in proton exchange membrane fuel cells

Effect of polytetrafluoroethylene distribution in the gas diffusion layer on water flooding in proton exchange membrane fuel cells Chinese Journal of Catalysis 35 (2014) 468 473 available at www.sciencedirect.com journal homepage: www.elsevier.com/locate/chnjc Article Effect of polytetrafluoroethylene distribution in the gas diffusion

More information

CHEMISTRY STANDARDS BASED RUBRIC ATOMIC STRUCTURE AND BONDING

CHEMISTRY STANDARDS BASED RUBRIC ATOMIC STRUCTURE AND BONDING CHEMISTRY STANDARDS BASED RUBRIC ATOMIC STRUCTURE AND BONDING Essential Standard: STUDENTS WILL UNDERSTAND THAT THE PROPERTIES OF MATTER AND THEIR INTERACTIONS ARE A CONSEQUENCE OF THE STRUCTURE OF MATTER,

More information

ZETA POTENTIAL ANALYSIS OF NANOPARTICLES

ZETA POTENTIAL ANALYSIS OF NANOPARTICLES ZETA POTENTIAL ANALYSIS OF NANOPARTICLES SEPTEMBER 2012, V 1.1 4878 RONSON CT STE K SAN DIEGO, CA 92111 858-565 - 4227 NANOCOMPOSIX.COM Note to the Reader: We at nanocomposix have published this document

More information

Practical Examples of Galvanic Cells

Practical Examples of Galvanic Cells 56 Practical Examples of Galvanic Cells There are many practical examples of galvanic cells in use in our everyday lives. We are familiar with batteries of all types. One of the most common is the lead-acid

More information

Carbon Dioxide Membrane Separation for Carbon Capture using Direct FuelCell Systems

Carbon Dioxide Membrane Separation for Carbon Capture using Direct FuelCell Systems Carbon Dioxide Membrane Separation for Carbon Capture using Direct FuelCell Systems DFC Technology Used as Electrochemical Membrane for CO 2 Purification and Capture during Power Generation FCE s Direct

More information

States of Matter CHAPTER 10 REVIEW SECTION 1. Name Date Class. Answer the following questions in the space provided.

States of Matter CHAPTER 10 REVIEW SECTION 1. Name Date Class. Answer the following questions in the space provided. CHAPTER 10 REVIEW States of Matter SECTION 1 SHORT ANSWER Answer the following questions in the space provided. 1. Identify whether the descriptions below describe an ideal gas or a real gas. ideal gas

More information

sensors ISSN 1424-8220 www.mdpi.com/journal/sensors

sensors ISSN 1424-8220 www.mdpi.com/journal/sensors Sensors 2010, 10, 6395-05; doi:10.3390/s1006395 OPEN ACCESS sensors ISSN 1424-8220 www.mdpi.com/journal/sensors Article In-situ Monitoring of Internal Local Temperature and Voltage of Proton Exchange Membrane

More information

Development of a Long-Range Underwater Vehicle

Development of a Long-Range Underwater Vehicle DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Development of a Long-Range Underwater Vehicle Russ E. Davis Scripps Institution of Oceanography, University of California

More information

Chapter 1. Introduction of Electrochemical Concepts

Chapter 1. Introduction of Electrochemical Concepts Chapter 1. Introduction of Electrochemical Concepts Electrochemistry concerned with the interrelation of electrical and chemical effects. Reactions involving the reactant the electron. Chemical changes

More information

Efficiency and Open Circuit Voltage

Efficiency and Open Circuit Voltage 2 Efficiency and Open Circuit Voltage In this chapter we consider the efficiency of fuel cells how it is defined and calculated, and what the limits are. The energy considerations give us information about

More information

STANDARD CLEANING AND CALIBRATION PROCEDURE FOR TGA-50(H) AND TGA-51(H)

STANDARD CLEANING AND CALIBRATION PROCEDURE FOR TGA-50(H) AND TGA-51(H) STANDARD CLEANING AND CALIBRATION PROCEDURE FOR TGA-50(H) AND TGA-51(H) by Joseph F. Greenbeck, Jr. And Courtney W. Taylor INTRODUCTION The following procedure is to be used for the maintenance and calibration

More information

CONDENSATION IN FILM CONTAINERS DURING COOLING AND WARMING

CONDENSATION IN FILM CONTAINERS DURING COOLING AND WARMING CONDENSATION IN FILM CONTAINERS DURING COOLING AND WARMING TIM PADFIELD Abstract. Film in sealed metal cans is vulnerable to condensation damage during cooling for storage. Film in cardboard boxes is vulnerable

More information

Chapter 8 Maxwell relations and measurable properties

Chapter 8 Maxwell relations and measurable properties Chapter 8 Maxwell relations and measurable properties 8.1 Maxwell relations Other thermodynamic potentials emerging from Legendre transforms allow us to switch independent variables and give rise to alternate

More information

Membranes for Energy Conversion and Energy Storage with Fuel Cells and Batteries

Membranes for Energy Conversion and Energy Storage with Fuel Cells and Batteries Membranes for Energy Conversion and Energy Storage with Fuel Cells and Batteries Dr. Bernd Bauer / FUMATECH FuMA-Tech Gesellschaft für funktionelle Membranen und Anlagentechnologie 1 1 There are no alternatives

More information

Removal of Liquid Water Droplets in Gas Channels of Proton Exchange Membrane Fuel Cell

Removal of Liquid Water Droplets in Gas Channels of Proton Exchange Membrane Fuel Cell 第 五 届 全 球 华 人 航 空 科 技 研 讨 会 Removal of Liquid Water Droplets in Gas Channels of Proton Exchange Membrane Fuel Cell Chin-Hsiang Cheng 1,*, Wei-Shan Han 1, Chun-I Lee 2, Huan-Ruei Shiu 2 1 Department of

More information

5s Solubility & Conductivity

5s Solubility & Conductivity 5s Solubility & Conductivity OBJECTIVES To explore the relationship between the structures of common household substances and the kinds of solvents in which they dissolve. To demonstrate the ionic nature

More information

Earth Sciences -- Grades 9, 10, 11, and 12. California State Science Content Standards. Mobile Climate Science Labs

Earth Sciences -- Grades 9, 10, 11, and 12. California State Science Content Standards. Mobile Climate Science Labs Earth Sciences -- Grades 9, 10, 11, and 12 California State Science Content Standards Covered in: Hands-on science labs, demonstrations, & activities. Investigation and Experimentation. Lesson Plans. Presented

More information

Multi-pollutant control solutions for coal based power plants

Multi-pollutant control solutions for coal based power plants Multi-pollutant control solutions for coal based power plants By Luca Mancuso and Hans Janssen Content SOx control Wet Scrubbers Open towers Dual Flow Tray Technology Semi-Dry SDA CFB Scrubbers Dust control

More information

Thermal Storage Unit Using the Triple Point of Hydrogen

Thermal Storage Unit Using the Triple Point of Hydrogen Storage Unit Using the Triple Point of Hydrogen I. Charles 1, A. Coynel 1, C. Daniel 2 1 CEA/DSM/INAC/SBT, 38 054 Grenoble Cedex 09, France 2 CNES, Toulouse, 31055 Cedex 4, France ABSTRACT The French space

More information

NASDAQ:BLDP TSX:BLD. Smarter Solutions for a Clean Energy Future

NASDAQ:BLDP TSX:BLD. Smarter Solutions for a Clean Energy Future NASDAQ:BLDP TSX:BLD Smarter Solutions for a Clean Energy Future Fuel Cell Engineering Services Smarter Solutions for a Clean Energy Future Corporate Background Ballard Power Systems, Inc. is a recognized

More information

moehwald Bosch Group

moehwald Bosch Group moehwald Bosch Group Division Testing Technology for Fuel Cells Moehwald GmbH Michelinstraße 21 Postfach 14 56 66424 Homburg, Germany Tel.: +49 (0) 68 41 / 707-0 Fax: +49 (0) 68 41 / 707-183 www.moehwald.de

More information

Determination of Capacitor Life as a Function of Operating Voltage and Temperature David Evans Evans Capacitor Company

Determination of Capacitor Life as a Function of Operating Voltage and Temperature David Evans Evans Capacitor Company Determination of Capacitor Life as a Function of Operating Voltage and Temperature David Evans Evans Capacitor Company Background Potentiostatically charged Hybrid capacitors age predictably by a mechanism

More information

Milwaukee USER MANUAL. Milwaukee. Smart DO Meter PORTABLE DISSOLVED OXYGEN METER MODEL: SM600. Authorized Dealer: ISMIL600 11/01

Milwaukee USER MANUAL. Milwaukee. Smart DO Meter PORTABLE DISSOLVED OXYGEN METER MODEL: SM600. Authorized Dealer: ISMIL600 11/01 Milwaukee Milwaukee USER MANUAL PORTABLE DISSOLVED OXYGEN METER MODEL: SM600 Smart DO Meter Authorized Dealer: ISMIL600 11/01 PROBE PREPARATION: The meter is supplied with a 9V battery. Slide off the battery

More information

Vincenzo Esposito. Università di Roma Tor Vergata

Vincenzo Esposito. Università di Roma Tor Vergata Vincenzo Esposito Università di Roma Tor Vergata What is a fuel cell? It is an electrochemical device with a high energetic conversion yield. It convert indirectly the chemical energy of a fuel into electric

More information

The Properties of Water

The Properties of Water 1 Matter & Energy: Properties of Water, ph, Chemical Reactions EVPP 110 Lecture GMU Dr. Largen Fall 2003 2 The Properties of Water 3 Water - Its Properties and Its Role in the Fitness of Environment importance

More information

Steady Heat Conduction

Steady Heat Conduction Steady Heat Conduction In thermodynamics, we considered the amount of heat transfer as a system undergoes a process from one equilibrium state to another. hermodynamics gives no indication of how long

More information

Chemical Waves in the Belousov-Zhabotinsky Reaction: Determining a Rate Constant with a Ruler

Chemical Waves in the Belousov-Zhabotinsky Reaction: Determining a Rate Constant with a Ruler Chemical Waves in the Belousov-Zhabotinsky Reaction: Determining a Rate Constant with a Ruler John A. Pojman Department of Chemistry and Biochemistry, The University of Southern Mississippi, Hattiesburg,

More information

Effect of the Hydrodynamic Conditions on the Electrochemical Degradation of Phenol on a BDD Anode

Effect of the Hydrodynamic Conditions on the Electrochemical Degradation of Phenol on a BDD Anode Portugaliae Electrochimica Acta 2011, 29(5), 343-348 DOI: 1152/pea.201105343 PORTUGALIAE ELECTROCHIMICA ACTA ISSN 1647-1571 Effect of the Hydrodynamic Conditions on the Electrochemical Degradation of Phenol

More information

A meaningful, cost-effective solution for polishing reverse osmosis permeate

A meaningful, cost-effective solution for polishing reverse osmosis permeate A meaningful, cost-effective solution for polishing reverse osmosis permeate Electrodeionization or EDI, is a continuous and chemicalfree process of removing ionized and ionizable species from the feed

More information

Lecture 9 Solving Material Balances Problems Involving Non-Reactive Processes

Lecture 9 Solving Material Balances Problems Involving Non-Reactive Processes CHE 31. INTRODUCTION TO CHEMICAL ENGINEERING CALCULATIONS Lecture 9 Solving Material Balances Problems Involving Non-Reactive Processes Component and Overall Material Balances Consider a steady-state distillation

More information

A Guide to the Safe Use of Secondary Lithium Ion Batteries in Notebook-type Personal Computers

A Guide to the Safe Use of Secondary Lithium Ion Batteries in Notebook-type Personal Computers A Guide to the Safe Use of Secondary Lithium Ion Batteries in Notebook-type Personal Computers April 20, 2007 Japan Electronics and Information Technology Industries Association and Battery Association

More information

GenTech Practice Questions

GenTech Practice Questions GenTech Practice Questions Basic Electronics Test: This test will assess your knowledge of and ability to apply the principles of Basic Electronics. This test is comprised of 90 questions in the following

More information

and LUMINOUS CHEMICAL VAPOR DEPOSITION INTERFACE ENGINEERING HirotsuguYasuda University of Missouri-Columbia Columbia, Missouri, U.S.A.

and LUMINOUS CHEMICAL VAPOR DEPOSITION INTERFACE ENGINEERING HirotsuguYasuda University of Missouri-Columbia Columbia, Missouri, U.S.A. LUMINOUS CHEMICAL VAPOR DEPOSITION and INTERFACE ENGINEERING HirotsuguYasuda University of Missouri-Columbia Columbia, Missouri, U.S.A. MARCEL MARCEL DEKKER. NEW YORK DEKKER Contents Preface iii Part I.

More information

Current Loop Tuning Procedure. Servo Drive Current Loop Tuning Procedure (intended for Analog input PWM output servo drives) General Procedure AN-015

Current Loop Tuning Procedure. Servo Drive Current Loop Tuning Procedure (intended for Analog input PWM output servo drives) General Procedure AN-015 Servo Drive Current Loop Tuning Procedure (intended for Analog input PWM output servo drives) The standard tuning values used in ADVANCED Motion Controls drives are conservative and work well in over 90%

More information

DOWEX Resins as Organic Solvent Desiccants

DOWEX Resins as Organic Solvent Desiccants Product Information DOWEX Resins as Organic Solvent Desiccants DOWEX* ion exchange resins can be used as desiccants for organic solvents, after having been dried to a low moisture level, in a manner similar

More information

Physical & Chemical Properties. Properties

Physical & Chemical Properties. Properties Physical & Chemical Properties Properties Carbon black can be broadly defined as very fine particulate aggregates of carbon possessing an amorphous quasi-graphitic molecular structure. The most significant

More information

Concepts in Syngas Manufacture

Concepts in Syngas Manufacture CATALYTIC SCIENCE SERIES VOL. 10 Series Editor: Graham J. Hutchings Concepts in Syngas Manufacture Jens Rostrup-Nielsen Lars J. Christiansen Haldor Topsoe A/S, Denmark Imperial College Press Contents Preface

More information

Automotive Lithium-ion Batteries

Automotive Lithium-ion Batteries Automotive Lithium-ion Batteries 330 Automotive Lithium-ion Batteries Akihiko Maruyama Ryuji Kono Yutaka Sato Takenori Ishizu Mitsuru Koseki Yasushi Muranaka, Dr. Eng. OVERVIEW: A new of high-power lithium-ion

More information

III. Reaction Kinetics

III. Reaction Kinetics III. Reaction Kinetics Lecture 13: Butler-Volmer equation Notes by ChangHoon Lim (and MZB) 1. Interfacial Equilibrium At lecture 11, the reaction rate R for the general Faradaic half-cell reaction was

More information

New York City Fire Code & Energy Storage Systems

New York City Fire Code & Energy Storage Systems New York City Fire Code & Energy Storage Systems Winnie Lei on behalf of Tamara Saakian, P.E. Director of Engineering & Technology Management Technology Management Unit Bureau of Fire Prevention Fire Department

More information

Measurement by Ion Selective Electrodes

Measurement by Ion Selective Electrodes Measurement by Ion Selective Electrodes Adrian Vazquez May 8, 2012 Why Use Ion Selective Electrodes? Responsive over a wide concentration range Not affected by color or turbidity of sample Rugged and durable

More information

FUEL CELLS FOR BUILDING APPLICATIONS

FUEL CELLS FOR BUILDING APPLICATIONS FUEL CELLS FOR BUILDING APPLICATIONS This publication was prepared under ASHRAE Research Project 1058-RP in cooperation with TC 9.5, Cogeneration Systems. About the Author Michael W. Ellis, Ph.D., P.E.,

More information

MCQ - ENERGY and CLIMATE

MCQ - ENERGY and CLIMATE 1 MCQ - ENERGY and CLIMATE 1. The volume of a given mass of water at a temperature of T 1 is V 1. The volume increases to V 2 at temperature T 2. The coefficient of volume expansion of water may be calculated

More information

Chemical Reactions Practice Test

Chemical Reactions Practice Test Chemical Reactions Practice Test Chapter 2 Name Date Hour _ Multiple Choice Identify the choice that best completes the statement or answers the question. 1. The only sure evidence for a chemical reaction

More information