Modelingand Rendering Architecture from Photographs: Ahybrid geometry- and image-based approach

Size: px
Start display at page:

Download "Modelingand Rendering Architecture from Photographs: Ahybrid geometry- and image-based approach"

Transcription

1 Modelingand Rendering Architecture from Photographs: Ahbrid geometr- and image-based approach PaulE. Debevec CamilloJ. Talor JitendraMalik UniversitofCaliforniaat Berkele 1 ABSTRACT Wepresentanewapproachformodelingandrenderingeistingarchitectural scenesfrom asparsesetof still photographs. Our modeling approach, which combines both geometr-basedand imagebased techniques, has two components. The first component is a photogrammetricmodelingmethodwhichfacilitatestherecoverof thebasicgeometrofthephotographedscene. Ourphotogrammetric modelingapproachis effective, convenient,androbustbecause it eploits the constraints that are characteristic of architectural scenes. Thesecondcomponentis amodel-basedstereo algorithm, which recovers how the real scene deviates from the basic model. Bmakinguseofthemodel,ourstereotechniquerobustlrecovers accuratedepthfrom widel-spacedimagepairs. Consequentl,our approachcanmodellargearchitecturalenvironmentswithfarfewer photographs than current image-based modeling approaches. For producingrenderings,wepresentview-dependentteturemapping, amethodof compositingmultiple views of ascenethat better simulates geometricdetailonbasicmodels. Ourapproachcanbeused to recovermodelsfor useineither geometr-basedorimage-based rendering sstems. Wepresent results that demonstrate our approach sabilittocreaterealisticrenderingsofarchitecturalscenes from viewpointsfar from theoriginal photographs. CR Descriptors: I.2.10 [Artificial Intelligence]: Vision and Scene Understanding - Modeling and recover of phsical attributes; I.3.7 [Computer Graphics]: Three-Dimensional GraphicsandRealism-Color,shading,shadowing,andtetureI.4.8[Image Processing]: Scene Analsis -Stereo; J.6 [Computer-Aided Engineering]: Computer-aideddesign(CAD). 1 INTRODUCTION Efforts to model the appearance and dnamics of the real world have producedsome of the most compelling imager in computer graphics. In particular, efforts to model architectural scenes, from the Amiens Cathedral to the Giza Pramids to Berkele s Soda Hall, have produced impressive walk-throughs and inspiring flbs. Clearl, it is anattractive applicationtobe ableto eplorethe world sarchitectureunencumberedb fences,gravit, customs,or jetlag. 1 Computer Science Division, Universit of California at Berkele, Berkele,CA alsohttp://www.cs.berkele.edu/ debevec/research (a) Geometr Based user input Modeling Program model Rendering Algorithm renderings teture maps (b) Hbrid Approach images basic model Model Based Stereo depth maps Image Warping renderings user input Photogrammetric Modeling Program (c) Image Based images Stereo Correspondence depth maps Image Warping renderings (user input) Unfortunatel, current geometr-based methods (Fig. 1a) of modeling eisting architecture, in which amodeling program is used to manuall position the elements of the scene, have several drawbacks. First,theprocessisetremellabor-intensive,tpicall involving surveing the site, locating and digitizing architectural plans(ifavailable),orconvertingeistingcaddata(again,ifavailable). Second,it is difficulttoverifwhethertheresultingmodelis accurate. Most disappointing,though, is that the renderings of the resultingmodelsarenoticeablcomputer-generated;eventhosethat emploliberalteture-mappinggenerallfailtoresemblerealphotographs. Figure 1: Schematic of how our hbrid approach combines geometr-basedandimage-basedapproachestomodelingandrenderingarchitecturefromphotographs. Recentl, creating models directl from photographs has received increased interest in computer graphics. Since real images areusedas input, suchanimage-basedsstem(fig. 1c) hasanadvantagein producingphotorealistic renderings as output. Some of the most promisingof thesesstems[16, 13] rel on the computer visiontechniqueofcomputationalstereopsistoautomaticalldeterminethestructureofthescenefromthemultiplephotographsavailable. As aconsequence,however,thesesstemsareonl as strong as the underling stereoalgorithms. This has causedproblems because state-of-the-art stereo algorithms have anumber of significantweaknesses;inparticular,thephotographsneedtoappearver similar for reliable results to be obtained. Becauseof this, current image-basedtechniquesmustusemancloselspacedimages,and insomecasesemplosignificantamountsofuserinputforeachimagepair to supervisethe stereoalgorithm. In this framework, capturingthedataforarealisticallrenderablemodelwouldrequirean impracticalnumberofcloselspacedphotographs,andderivingthe depthfromthephotographscouldrequireanimpracticalamountof userinput. Theseconcessionstotheweaknessof stereoalgorithms bode poorl for creating large-scale, freel navigable virtual environmentsfrom photographs. Ourresearchaims tomaketheprocessofmodelingarchitectural

2 scenes more convenient, more accurate, and more photorealistic thanthemethodscurrentlavailable. Todothis,wehavedeveloped anewapproachthatdrawsonthestrengthsofbothgeometr-based andimage-basedmethods,asillustratedinfig. 1b. Theresultisthat ourapproachtomodelingandrenderingarchitecturerequiresonla sparsesetofphotographsandcanproducerealisticrenderingsfrom arbitrar viewpoints. In our approach, abasic geometric model of the architectureis recoveredinteractivelwith aneas-to-usephotogrammetricmodelingsstem,novelviewsarecreatedusingviewdependentteturemapping,andadditional geometricdetail canbe recovered automaticall through stereo correspondence. The final images can be rendered with current image-based rendering techniques. Because onl photographs are required, our approach to modeling architecture is neither invasive nor does it require architecturalplans,cadmodels,orspecializedinstrumentationsuchas surveingequipment,gpssensorsor rangescanners. 1.1 Background and Related Work The process of recovering 3D structure from 2D images has been acentral endeavorwithin computer vision, and the processof rendering such recovered structures is asubject receiving increased interest in computer graphics. Although no general technique eists to derivemodelsfrom images,fourparticular areasof research haveprovidedresultsthatareapplicabletotheproblemofmodeling andrendering architectural scenes. Theare: Camera Calibration, Structure from Motion, Stereo Correspondence, and Image-Based Rendering Camera Calibration Recovering3D structure from images becomes asimpler problem whenthecamerasusedarecalibrated,thatis,themappingbetween imagecoordinatesanddirectionsrelativeto eachcamerais known. This mappingis determined b,among other parameters,the camera sfocal length and its pattern of radial distortion. Camera calibrationisawell-studiedproblembothinphotogrammetrandcomputer vision;somesuccessfulmethods include[20] and[5]. While there has beenrecent progress in the useof uncalibratedviews for 3D reconstruction [7], we have found camera calibration to be a straightforward processthatconsiderablsimplifiestheproblem Structure from Motion Given the 2D projection of apoint in the world, its position in 3D spacecouldbe anwhereon ara etendingout in aparticular direction from the camera soptical center. However, when the projections of asufficient numberof points in the world are observed inmultipleimagesfromdifferentpositions,itistheoreticallpossibletodeducethe3dlocationsofthepoints aswellas thepositions oftheoriginal cameras,uptoanunknownfactor ofscale. This problem has been studied in the area of photogrammetr for theprincipal purposeof producingtopographicmaps. In 1913, Kruppa[10] provedthefundamentalresultthat giventwo viewsof five distinct points, one could recover the rotation and translation betweenthetwocamerapositionsaswellasthe3dlocationsofthe points(uptoascalefactor). Sincethen,theproblem smathematical andalgorithmicaspectshavebeeneploredstartingfromthefundamentalworkofullman[21] andlonguet-higgins[11],intheearl 1980s. Faugeras sbook[6]overviewsthestateoftheartasof1992. So far, ake realization has been that the recover of structure is versensitivetonoiseinimagemeasurementswhenthetranslation betweentheavailablecamerapositions is small. Attention has turned to using more than two views with image streammethodssuchas[19]orrecursiveapproaches(e.g. [1]). [19] showsecellentresultsforthecaseoforthographiccameras,butdirect solutions for the perspective case remain elusive. In general, linear algorithms for the problem fail to make use of all available informationwhilenonlinearminimizationmethodsarepronetodifficultiesarisingfromlocalminimaintheparameterspace. Analternativeformulation oftheproblem[17] useslines ratherthanpoints as image measurements, but the previousl stated concerns were shown to remain largel valid. For purposes of computer graphics,thereis etanotherproblem: themodelsrecoveredbthesealgorithms consistof sparsepoint fields or individual line segments, whicharenot directlrenderableassolid3dmodels. In our approach, we eploit the fact that we are tring to recovergeometricmodelsofarchitecturalscenes,notarbitrar threedimensional point sets. This enables us to include additional constraints not tpicall availableto structurefrom motion algorithms and to overcomethe problems of numerical instabilit that plague suchapproaches. Ourapproachis demonstratedinausefulinteractivesstemfor buildingarchitecturalmodelsfrom photographs Stereo Correspondence The geometricaltheor of structure from motion assumesthat one isabletosolvethecorrespondenceproblem,whichistoidentifthe pointsin twoor moreimagesthatareprojections ofthesamepoint in the world. In humans, correspondingpoints in the two slightl differing images on the retinas are determined bthe visual corte intheprocesscalledbinocularstereopsis. Years of research(e.g. [2, 4, 8, 9, 12, 15]) have shownthat determiningstereocorrespondencesbcomputeris difficultproblem. Ingeneral,currentmethodsaresuccessfulonlwhentheimagesare similarinappearance,asinthecaseofhumanvision,whichis usuallobtainedbusingcamerasthatarecloselspacedrelativetothe objectsinthescene. Whenthedistancebetweenthecameras(often called the baseline) becomes large, surfaces in the images ehibit different degreesof foreshortening,different patterns of occlusion, andlargedisparitiesintheirlocationsinthetwoimages,allofwhich makesit muchmoredifficult for the computertodeterminecorrect stereocorrespondences.unfortunatel,thealternativeofimproving stereocorrespondencebusingimagestakenfromnearblocations has the disadvantagethat computingdepthbecomesver sensitive tonoisein imagemeasurements. In this paper,we showthat havinganapproimatemodelof the photographedscenemakes it possibleto robustl determine stereo correspondences from images taken from widel varing viewpoints. Specificall, the model enables us to warp the images to eliminate unequalforeshorteningandto predict major instancesof occlusionbeforetringto findcorrespondences Image-Based Rendering In animage-basedrenderingsstem, the modelconsistsof aset of images of asceneand their correspondingdepth maps. When the depth of ever point in an image is known, the image can be rerenderedfrom annearbpoint ofview bprojectingthepiels of the image to their proper 3D locations and reprojecting them onto anew image plane. Thus, anew image of the sceneis created b warping the images accordingto their depthmaps. Aprincipal attraction of image-basedrendering is that it offers amethodof rendering arbitraril comple scenes with aconstantamount of computationrequiredperpiel. Usingthis propert,[23] demonstrated howregularl spacedsntheticimages (with their computeddepth maps)couldbewarpedandcompositedinrealtimetoproduceavirtualenvironment. Morerecentl,[13]presentedareal-timeimage-basedrendering sstem that used panoramic photographs with depth computed, in part,fromstereocorrespondence.onefindingofthepaperwasthat etracting reliable depth estimates from stereo is ver difficult. The method was nonetheless able to obtain acceptable results for nearbviews usinguserinput to aidthe stereodepthrecover: the correspondencemapforeachimagepairwasseededwith100to500 user-suppliedpointcorrespondencesandalsopost-processed.even 2

3 with userassistance,theimagesusedstill hadtobecloselspaced; thelargestbaselinedescribedinthepaperwas fivefeet. Therequirementthat samplesbe closetogether is aserious limitation to generating afreel navigable virtual environment. Covering the size of just one cit block would require thousands of panoramic images spaced five feet apart. Clearl, acquiring so manphotographsisimpractical. Moreover,evenadenselatticeof ground-basedphotographswouldonlallowrenderingstobegeneratedfrom withinafewfeetoftheoriginal cameralevel,precluding anvirtualfl-bsofthescene. Etendingthedenselatticeofphotographs into three dimensionswould clearl makethe acquisition process even more difficult. The approachdescribedin this paper takesadvantageof thestructureinarchitecturalscenessothatit requiresonlasparsesetofphotographs. Foreample,ourapproach hasieldedavirtualfl-aroundofabuildingfrom justtwelvestandardphotographs. 1.2 Overview In this paper we present three new modeling and rendering techniques: photogrammetric modeling, view-dependent teture mapping, andmodel-basedstereo. Weshow how thesetechniquescan be used in conjunction to ield aconvenient, accurate, and photorealistic methodof modelingandrendering architecture from photographs. Inourapproach,thephotogrammetricmodelingprogram isusedtocreateabasicvolumetricmodelofthescene,whichisthen usedto constrainstereomatching. Our renderingmethod compositesinformationfrommultipleimageswithview-dependentteturemapping. Our approach is successful becauseit splits the task of modelingfrom imagesintotaskswhichareeasilaccomplishedb aperson(butnotacomputeralgorithm), andtaskswhichareeasil performedbacomputeralgorithm (butnotaperson). In Section 2, we present our photogrammetric modeling method. Inessence,wehaverecastthestructurefrommotionproblem not as the recover of individual point coordinates, but as the recoveroftheparametersofaconstrainedhierarchofparametric primitives. The result is that accurate architectural models can be recoveredrobustlfromjustafewphotographsandwithaminimal numberof user-suppliedcorrespondences. InSection3,wepresentview-dependentteturemapping,and showhowitcanbeusedtorealisticallrendertherecoveredmodel. Unlike traditional teture-mapping, in which asingle static image is used to color in each face of the model, view-dependent teturemappinginterpolates betweentheavailablephotographsofthe scenedependingon the user spoint of view. This results in more lifelike animations that better capturesurfacespecularities andunmodeledgeometricdetail. Lastl, in Section 4, we present model-based stereo, which is usedtoautomaticallrefineabasicmodelofaphotographedscene. This techniquecanbeusedto recoverthestructure ofarchitectural ornamentation that would be difficult to recover with photogrammetricmodeling. Inparticular,weshowthatprojectingpairsofimages onto an initial approimatemodel allows conventionalstereo techniques to robustl recover ver accurate depth measurements from imageswith widelvaringviewpoints. 2 Photogrammetric Modeling In this sectionwepresentour methodfor photogrammetricmodeling, in which the computer determines the parameters of ahierarchicalmodelof parametricpolhedralprimitives toreconstructthe architectural scene. Wehaveimplemented this methodin Faç ade, aneas-to-useinteractivemodelingprogramthatallows theuserto constructageometricmodelofascenefromdigitizedphotographs. WefirstoverviewFaç adefromthepointofviewoftheuser,thenwe describeour model representation, andthen we eplain our reconstructionalgorithm. Lastl,wepresentresultsfromusingFaç adeto reconstructseveralarchitectural scenes. 2.1 The User s View Constructing ageometric model of an architectural scene using Faç adeisanincrementalandstraightforwardprocess. Tpicall,the userselectsasmallnumberofphotographstobeginwith,andmodelsthesceneonepieceatatime. Theusermarefinethemodeland includemoreimagesintheprojectuntilthemodelmeetsthedesired levelofdetail. Fig. 2(a)and(b)showsthetwotpesofwindowsusedinFaç ade: image viewers and model viewers. The user instantiates the componentsof the model, marks edgesin the images, andcorresponds theedgesintheimagestotheedgesinthemodel. Wheninstructed, Faç adecomputesthesizesandrelativepositionsofthemodelcomponentsthat bestfit theedgesmarkedinthephotographs. Components of the model, called blocks, are parameterized geometric primitives such as boes, prisms, and surfaces of revolution. Abo,foreample,isparameterizedbits length,width,and height. The user models the scene as acollection of such blocks, creatingnewblockclassesas desired. Of course,the userdoesnot needto specif numerical values for the blocks parameters, since thesearerecoveredbtheprogram. The userma chooseto constrainthe sizesand positions of an oftheblocks. InFig. 2(b),mostoftheblockshavebeenconstrained to have equal length and width. Additionall, the four pinnacles havebeenconstrainedto havethesameshape. Blocksmaalsobe placedin constrainedrelations to oneother. For eample,manof theblocksinfig. 2(b) havebeenconstrainedtositcenteredandon topoftheblockbelow. Suchconstraintsarespecifiedusingagraphical3Dinterface. Whensuchconstraintsareprovided,theareused tosimplif thereconstructionproblem. The user marks edge features in the images using apoint-andclickinterface;agradient-basedtechniqueasin[14] canbeusedto align the edges with sub-piel accurac. Weuse edge rather than point features since the are easier to localize and less likel to be completel obscured. Onl asection of each edge needs to be marked,making it possibleto usepartiall visibleedges. For each markededge,the user alsoindicates the correspondingedgein the model. Generall,accuratereconstructionsareobtainedifthereare as man correspondences in the images as there are free camera andmodelparameters. Thus,Faç adereconstructsscenesaccuratel evenwhenjustaportionof thevisibleedgesandmarkedintheimages, and when just aportion of the model edges are given correspondences. Atantime,theusermainstructthecomputertoreconstructthe scene. The computer then solves for the parameters of the model that causeit to align with the markedfeatures in the images. During thereconstruction,the computercomputesanddisplas thelocationsfromwhichthephotographsweretaken. Forsimplemodels consistingofjustafewblocks,afullreconstructiontakesonlafew seconds;for more complemodels, it cantakeafew minutes. For this reason,theusercaninstruct thecomputerto emplofaster but less precisereconstructionalgorithms (see Sec. 2.4) during theintermediatestagesof modeling. Toverifthetheaccuracoftherecoveredmodelandcamerapositions,Faç adecanprojectthemodelintotheoriginalphotographs. Tpicall, the projected model deviates from the photographs b lessthanapiel. Fig. 2(c)showstheresultsofprojectingtheedges ofthemodelinfig. 2(b) intotheoriginal photograph. Lastl,the usermageneratenovelviews of themodelbpositioningavirtualcameraatandesiredlocation. Faç adewillthenuse theview-dependentteture-mappingmethodofsection3torender anovelviewofthescenefromthedesiredlocation. Fig. 2(d)shows anaerial renderingof thetowermodel. 2.2 Model Representation Thepurposeofourchoiceofmodelrepresentationistorepresentthe sceneas asurfacemodelwith as fewparametersas possible: when 3

4 (a) (b) (c) (d) Figure 2: (a) Aphotographof the Campanile, Berkele sclocktower,with markededges shown in green. (b) The model recoveredb our photogrammetricmodelingmethod. Althoughonltheleftpinnaclewasmarked,theremainingthree(includingonenotvisible)wererecovered from smmetrical constraints in the model. Our method allows an number of images to be used, but in this case constraints of smmetr madeit possibleto recoveranaccurate3d modelfromasinglephotograph. (c) Theaccuracof themodelis verifiedbreprojectingit into the original photographthroughthe recoveredcameraposition. (d) Asnthetic viewof the Campanilegeneratedusing the view-dependent teture-mappingmethoddescribedin Section3. Arealphotographfrom this position wouldbe difficult to takesincethe cameraposition is 250feet abovetheground. themodelhasfewerparameters,theuserneedstospeciffewercorrespondences,andthecomputercanreconstructthemodelmoreefficientl. In Faç ade, the sceneis representedas aconstrainedhierarchical model of parametric polhedral primitives, called blocks. Each block has asmall set of parameters which serve to define its size and shape. Each coordinate of each verte of the block is thenepressedaslinearcombinationoftheblock sparameters,relative to an internal coordinate frame. For eample, for the wedge block in Fig. 3, the coordinates of the verte P o are written in terms of theblockparameters width, height, andlength as P o = (,width;,height;length ) T.Eachblockis alsogivenanassociatedboundingbo. wedge_height P 0 Bounding Bo z wedge_width wedge_depth Figure3: Awedgeblockwith its parametersandboundingbo. roof z first_store z ground_plane z z entrance roof ground_plane g (X) 1 first_store g (X) 2 entrance (a) (b) Figure 4: (a) Ageometric model of asimple building. (b) The model shierarchical representation. The nodes in the tree represent parametric primitives (called blocks) while the links contain thespatialrelationshipsbetweentheblocks. TheblocksinFaç adeareorganizedinahierarchicaltreestructure asshowninfig. 4(b). Eachnodeofthetreerepresentsanindividual block,whilethelinksinthetreecontainthespatialrelationshipsbetweenblocks,calledrelations. Suchhierarchicalstructuresarealso usedintraditional modelingsstems. Therelationbetweenablockanditsparentismostgenerallrepresentedas arotationmatri R andatranslationvector t. This representationrequiressiparameters: threeeachfor R and t. Inarchitectural scenes,however,therelationship betweentwo blocks usuall has asimple form that canbe representedwith fewer parameters, andfaçadeallowstheusertobuildsuchconstraintson R and t intothemodel. Therotation R betweenablockandits parentcan bespecifiedinoneofthreewas: first,asanunconstrainedrotation, requiring three parameters; second,as arotation about aparticular coordinateais,requiringjust oneparameter;or third, as afiedor nullrotation, requiringnoparameters. Likewise, Faç ade allows for constraints to be placed on each component of the translation vector t. Specificall, the user can constrainthe boundingboes of two blocks to align themselves in some manner along eachdimension. For eample, in order to ensurethattheroof blockin Fig. 4lies ontopof thefirststor block, the usercan require thatthe maimum etentof the firststor block be equal to the minimum etent of the roof block. With this constraint, the translation along the ais is computed (t = (firststor MA X, roof MIN )) rather than representedas aparameterof themodel. Eachparameterof eachinstantiatedblockis actuallareference to anamedsmbolic variable, as illustrated in Fig. 5. As aresult, two parameters of different blocks (or of the same block) can be equatedbhavingeachparameterreferencethesamesmbol. This facilit allows theuser to equatetwo or more of the dimensionsin amodel, which makes modeling smmetrical blocks and repeated structuremoreconvenient. Importantl,theseconstraintsreducethe numberofdegreesoffreedominthemodel,which,aswewillshow, simplifiesthestructure recoverproblem. Once the blocks and their relations have beenparameterized, it is straightforward to derive epressions for the world coordinates of the block vertices. Consider the set of edges which link aspecific block in the model to the ground plane as shown in Fig. 4. 4

5 ToappearintheSIGGRAPH 96 conferenceproceedings BLOCKS Block1 tpe: wedge length width height name: "building_length" value: 20.0 name: "building_width" value: 10.0 VARIABLES Thus, the unknown model parameters and camera positions are computedbminimizing O withrespecttothesevariables. Oursstemusesthe the error function Err i from [17], describedbelow. Block2 tpe: bo length width height name:"roof_height" value: 2.0 name: "first_store_height" value: 4.0 Figure5: Representationofblockparametersassmbolreferences. Asinglevariablecanbereferencedbthemodelinmultipleplaces, allowingconstraintsofsmmetrto beembeddedin themodel. Let g 1(X);:::;g n(x) representtherigidtransformationsassociated with each of these links, where X represents the vector of all the model parameters. The world coordinates P w(x) of aparticular blockverte P (X) is then: P w(x) =g 1(X):::g n(x)p (X) (1) Similarl, the world orientation v w(x) of aparticular line segment v(x) is: v w(x) =g 1(X):::g n(x)v(x) (2) Intheseequations,thepointvectors P and P w andtheorientation vectors v and v w arerepresentedin homogeneouscoordinates. Modelingthescenewithpolhedralblocks,asopposedtopoints, line segments, surface patches, or polgons, is advantageousfor a numberof reasons: Mostarchitecturalscenesarewellmodeledbanarrangement ofgeometricprimitives. Blocksimplicitlcontaincommonarchitecturalelementssuch asparallel lines andright angles. Manipulatingblockprimitives is convenientsincetheareat asuitablhighlevelofabstraction;individualfeaturessuchas points andlines arelessmanageable. Asurface model of the scene is readil obtained from the blocks,sothereis noneedtoinfersurfacesfrom discretefeatures. Modelinginterms ofblocksandrelationshipsgreatlreduces the number of parameters that the reconstruction algorithm needsto recover. Thelastpointiscrucialtotherobustnessofourreconstructionalgorithm andtheviabilit of ourmodelingsstem,andis illustrated bestwith aneample. Themodelin Fig. 2is parameterizedbjust 33variables(the unknowncamerapositionaddssimore). If each blockin the scenewere unconstrained(in its dimensionsandposition),themodelwouldhave240parameters;ifeachlinesegmentin the scenewere treated independentl,the model wouldhave2,896 parameters. Thisreductioninthenumberofparametersgreatlenhancesthe robustnessandefficiencof themethodas comparedto traditionalstructurefrommotionalgorithms. Lastl,sincethenumber of correspondencesneededto suitabl overconstrainthe minimizationis roughlproportionaltothenumberofparametersinthe model,thisreductionmeansthatthenumberofcorrespondencesrequiredoftheuseris manageable. 2.3 Reconstruction Algorithm Our reconstruction algorithm works b minimizing an objective function O that sums the disparit betweenthe projected edges of the model and the edges markedin the images, i.e. O = P Err i where Err i represents the disparit computed for edge feature i. image plane Camera Coordinate Sstem m z image edge <R, t> v World Coordinate Sstem z d 3D line h(s) h 1 ( 1, 1 ) predicted line: m + m + m z f = 0 P(s) Observed edge segment h 2 ( 2, 2 ) (a) (b) Figure 6: (a) Projection of astraight line onto acamera simage plane. (b) Theerrorfunctionusedin thereconstructionalgorithm. Theheavlinerepresentstheobservededgesegment(markedbthe user)andthelighterlinerepresentsthemodeledgepredictedbthe currentcameraandmodelparameters. Fig. 6(a) shows how astraight line in the model projects onto the image plane of acamera. The straight line can be defined b a pair of vectors hv;d i where v represents the direction of the line and d representsapointontheline. Thesevectorscanbecomputed fromequations2and1respectivel. Thepositionofthecamerawith respecttoworldcoordinatesisgivenintermsofarotationmatri R j andatranslationvector t j.thenormalvectordenotedb m inthe figureis computedfrom thefollowing epression: m = R j(v (d, t j)) (3) Theprojection of theline ontothe imageplaneis simpl theintersectionoftheplanedefinedb m withtheimageplane,locatedat z =,f where f is thefocallengthofthecamera. Thus,theimage edgeis definedbtheequation m + m, m zf =0. Fig. 6(b)showshowtheerror betweentheobservedimageedge f( 1; 1); ( 2; 2)g and the predicted image line is calculated for eachcorrespondence. Points onthe observededgesegmentcanbe parameterized b a single scalar variable s 2 [0;l] where l is the lengthoftheedge. Welet h(s) bethefunctionthatreturnstheshortestdistancefromapointonthesegment, p(s),tothepredictededge. With thesedefinitions,thetotal errorbetweentheobservededge segmentandthepredictededgeis calculatedas: Err i = where: Z l 0 A = B = h 2 (s)ds = m ( = m ;m ;m z) T l 3 (h2 1+h 1h 2+h 2 2) = m T (A T BA)m l 0 1:5 3(m 2 + 1m 2 ) 0:5 Thefinalobjectivefunction O isthesumoftheerrortermsresulting from eachcorrespondence. Weminimize O using avariant of thenewton-raphsonmethod,whichinvolvescalculatingthegradient andhessianof O with respectto the parameters of the camera (4) 5

6 and the model. As we have shown, it is simple to construct smbolicepressionsfor m intermsoftheunknownmodelparameters. The minimization algorithm differentiates these epressions smbolicall to evaluate the gradient and Hessian after each iteration. The procedureis inepensivesince the epressions for d and v in Equations2and1haveaparticularlsimpleform. 2.4 Computing an Initial Estimate TheobjectivefunctiondescribedinSection2.3sectionisnon-linear with respecttothemodelandcameraparametersandconsequentl can have local minima. If the algorithm begins at arandom location in the parameter space,it stands little chanceof convergingto thecorrectsolution. Toovercomethis problemwehavedeveloped amethodto directl computeagoodinitial estimate for the model parametersandcamerapositionsthatisnearthecorrectsolution. In practice, our initial estimate method consistentl enables the nonlinearminimization algorithm toconvergetothecorrectsolution. Ourinitialestimatemethodconsistsoftwoproceduresperformed in sequence. The first procedure estimates the camera rotations whilethesecondestimatesthecameratranslationsandtheparametersofthemodel. Bothinitialestimateproceduresarebaseduponan eaminationof Equation3. From this equationthe following constraints canbededuced: m T R jv 0 = (5) m T 0 R j(d, = t j ) (6) Givenanobservededge u ij themeasurednormal m 0 totheplane passingthroughthecameracenteris: m 0 = 1 1,f! 2 2,f Fromtheseequations,weseethatanmodeledgesofknownorientationconstrainthe possiblevaluesfor R j.sincemost architectural models containmansuchedges(e.g. horizontalandvertical lines), each camera rotation can be usuall be estimated from the modelindependentofthemodelparametersandindependentofthe camera slocationinspace. Ourmethoddoesthisbminimizingthe following objectivefunction O 1 thatsums theetentsto whichthe rotations R j violatetheconstraintsarisingfrom Equation5: O 1 = X i! (7) (m T R jv i) 2 ; v i 2f^; ^; ^zg (8) Once initial estimates for the camera rotations are computed, Equation 6is used to obtain initial estimates of the model parameters and camera locations. Equation 6reflects the constraint that allofthepointsonthelinedefinedbthetuple hv; di shouldlieon theplanewithnormalvector m passingthroughthecameracenter. This constraintis epressedinthefollowing objectivefunction O 2 where P i(x) and Q i(x) areepressionsfortheverticesofanedge ofthemodel. O 2 = X i (m T R j (P i(x), t j)) 2 +(m T R j (Q i(x), t j)) 2 (9) In the specialcasewhere all of the blockrelations in the model have aknown rotation, this objective function becomes asimple quadraticform whichis easilminimizedbsolvingasetoflinear equations. Oncetheinitialestimateisobtained,thenon-linearminimization overtheentireparameterspaceisappliedtoproducethebestpossiblereconstruction. Tpicall,theminimization requiresfewer than ten iterations and adjusts the parameters of the modelb at most a few percentfrom the initial estimates. The edges of the recovered models tpicall conform to the original photographs to within a piel. Figure7: Threeoftwelvephotographsusedtoreconstructtheentire eterior of UniversitHigh Schoolin Urbana, Illinois. Thesuperimposedlines indicatetheedgestheuserhas marked. (a) (c) Figure 8: The high school model, reconstructedfrom twelve photographs. (a) Overheadview.(b) Rearview.(c) Aerialviewshowingtherecoveredcamerapositions. Twonearlcoincidentcameras can be observed in front of the building; their photographs were takenfromthesecondstorofabuildingacrossthestreet. Figure 9: Asnthetic view of Universit High School. This is a framefromananimationof flingaroundtheentirebuilding. (b) 6

7 (a) (b) (c) Figure10: ReconstructionofHooverTower,Stanford,CA(a)Originalphotograph,withmarkededgesindicated. (b)modelrecovered fromthesinglephotographshownin(a). (c)teture-mappedaerial viewfromthevirtualcamerapositionindicatedin (b). Regionsnot seenin(a) areindicatedin blue. 2.5 Results Fig. 2showed the results of using Faç ade to reconstruct aclock tower from asingle image. Figs. 7and 8show the results of using Faç ade to reconstruct ahigh schoolbuilding from twelve photographs. (Themodelwas originall constructedfrom just fiveimages;theremainingimageswereaddedtotheprojectforpurposesof generatingrenderingsusingthetechniquesofsection3.) Thephotographsweretakenwithacalibrated35mmstillcamerawithastandard50mmlensanddigitizedwiththePhotoCDprocess. Imagesat the piel resolution were processedto correctfor lens distortion,thenfiltereddownto pielsforuseinthemodelingsstem. Fig. 8showssomeviewsoftherecoveredmodeland camerapositions,andfig. 9showsasntheticviewofthebuilding generatedbthetechniqueinsec. 3. Fig. 10 shows the reconstruction of another tower from asingle photograph. The domewas modeledspeciallsincethe reconstructionalgorithmdoesnotrecovercurvedsurfaces. Theuserconstrainedatwo-parameterhemisphereblocktositcenteredontopof thetower, andmanualladjustedits heightandwidth toalign with the photograph. Eachof the models presentedtook approimatel four hourstocreate. 3 View-Dependent Teture-Mapping In this sectionwe present view-dependentteture-mapping, an effective method of rendering the scene that involves projecting the originalphotographsontothemodel. Thisformofteture-mapping is most effective when the model conforms closel to the actual structureof thescene,andwhentheoriginal photographsshowthe sceneinsimilarlightingconditions. InSection4wewill showhow view-dependent teture-mapping can be used in conjunction with model-basedstereotoproducerealisticrenderingswhentherecoveredmodelonlapproimatelmodels thestructureofthescene. Since the camera positions of the original photographs are recoveredduringthe modelingphase,projectingthe imagesonto the model is straightforward. In this section we first describehow we projectasingleimageontothemodel,andthenhowwemergeseveral image projections to render the entire model. Unlike traditional teture-mapping, our method projects different images onto themodeldependingontheuser sviewpoint. Asaresult,ourviewdependentteture mapping can give abetter illusion of additional geometricdetailinthemodel. 3.1 Projecting asingle Image Theprocessof teture-mappingasingleimageontothemodelcan be thought of as replacing each camera with aslide projector that projects the original imageontothe model. Whenthemodel is not conve,itis possiblethatsomeparts ofthemodelwill shadowotherswithrespecttothecamera. Whilesuchshadowedregionscould bedeterminedusinganobject-spacevisiblesurfacealgorithm,oran image-spaceracastingalgorithm, weuseanimage-spaceshadow mapalgorithm basedon[22] sinceit is efficientlimplementedusingz-buffer hardware. Fig. 11,upperleft, showsthe results of mappingasingle image onto the high school building model. The recoveredcamera position for the projected imageis indicatedin the lower left corner of theimage. Becauseofself-shadowing,noteverpointonthemodel within thecamera sviewingfrustum is mapped. 3.2 Compositing Multiple Images In general, each photograph will view onl apiece of the model. Thus,it is usuallnecessartousemultiple imagesinorder torendertheentire modelfrom anovelpointof view. Thetop imagesof Fig. 11showtwodifferent imagesmappedontothemodelandrenderedfromanovelviewpoint. Somepielsarecoloredinjustoneof the renderings, while some are coloredin both. Thesetwo renderings can be merged into acompositerendering b consideringthe correspondingpiels intherenderedviews. If apielis mappedin onlonerendering,itsvaluefromthatrenderingisusedinthecomposite. If it is mappedinmorethanonerendering,therendererhas todecidewhichimage(or combinationof images)to use. It wouldbeconvenient,ofcourse,iftheprojectedimageswould agree perfectl where the overlap. However, the images will not necessarilagreeifthereisunmodeledgeometricdetailinthebuilding,orifthesurfacesofthebuildingehibitnon-lambertianreflection. In this case, the best image to use is clearl the one with the viewingangleclosesttothat ofthe renderedview. However,using theimageclosestinangleateverpielmeansthatneighboringrenderedpielsmabesampledfrom differentoriginalimages. When thishappens,specularitandunmodeledgeometricdetailcancause visible seams in the rendering. Toavoid this problem, we smooth thesetransitions throughweightedaveragingas infig. 12. Figure 11: The process of assembling projected images to form a composite rendering. The top two pictures show two images projectedontothemodelfromtheir respectiverecoveredcamerapositions. Thelower left pictureshowstheresultsof compositingthese two renderingsusing our view-dependentweighting function. The lower right picture shows the results of compositing renderingsof all twelve original images. Some piels near the front edge of the roof not seen in an image have beenfilled in with the hole-filling algorithmfrom[23]. Even with this weighting, neighboring piels can still be sampledfromdifferentviewsattheboundarofaprojectedimage,since thecontribution of animagemustbezerooutsideits boundar. To 7

8 ToappearintheSIGGRAPH 96 conferenceproceedings view 1 virtual view view 2 a 2 a 1 (a) (b) model Figure 12: The weighting function used in view-dependentteture mapping. The piel in the virtual view correspondingto the point on the model is assignedaweightedaverageof the corresponding pielsinactualviews1and2. Theweights w 1 and w 2 areinversel inversel proportional to the magnitude of angles a 1 and a 2. Alternatel,moresophisticatedweightingfunctionsbasedonepected foreshorteningandimageresamplingcanbeused. addressthis, thepielweights are rampeddownneartheboundar of the projectedimages. Althoughthis method does not guarantee smoothtransitionsinallcases,wehavefoundthatiteliminatesmost artifacts inrenderingsandanimations arisingfrom suchseams. If an original photograph features an unwanted car, tourist, or otherobjectinfrontofthearchitectureofinterest,theunwantedobjectwill beprojectedontothesurfaceofthemodel. Topreventthis from happening,theusermamaskouttheobjectbpaintingover theobstructionwithareservedcolor. Therenderingalgorithm will thensettheweights foranpielscorrespondingtothemaskedregionstozero,anddecreasetheweightsofthepielsneartheboundarasbeforetominimizeseams. Anregionsinthecompositeimagewhichareoccludedineverprojectedimagearefilledinusing thehole-fillingmethodfrom [23]. Inthediscussionsofar,projectedimageweightsarecomputedat everpielofeverprojectedrendering. Sincetheweightingfunction is smooth (though not constant) across flat surfaces, it is not generallnot necessarto computeit for ever pielof everface of the model. For eample, using asingle weight for each face of the model, computed at the face s center, produces acceptable results. B coarselsubdividing large faces, the results are visuall indistinguishablefromthecasewhereauniqueweightis computed foreverpiel. Importantl,this techniquesuggestsareal-timeimplementation of view-dependent teture mapping using ateturemapping graphics pipeline to render the projected views, and - channelblendingtocompositethem. Forcomplemodelswheremostimagesareentireloccludedfor the tpical view, it canbe ver inefficient to project ever original photographtothenovelviewpoint. Someefficienttechniquestodetermine suchvisibilit aprioriinarchitectural scenesthroughspatial partitioning arepresentedin [18]. 4 Model-BasedStereopsis ThemodelingsstemdescribedinSection2allowstheusertocreateabasicmodel of ascene,but in generalthescenewill haveadditionalgeometricdetail(suchasfriezesandcornices)notcaptured in the model. In this section we present anew method of recoveringsuchadditionalgeometricdetailautomaticallthroughstereo correspondence, which we call model-based stereo. Model-based stereodiffers fromtraditional stereointhatit measureshowtheactual scenedeviatesfrom the approimatemodel,rather thantring tomeasurethestructureofthescenewithoutanpriorinformation. Themodelservesto placethe imagesinto acommonframe of referencethat makes the stereo correspondencepossibleevenfor im- (c) (d) Figure13: View-dependentteturemapping. (a)adetailviewofthe highschoolmodel. (b)arenderingofthemodelfromthesamepositionusingview-dependentteturemapping. Notethatalthoughthe modeldoesnotcapturetheslightlrecessedwindows,thewindows appear properlrecessedbecausethe teturemap is sampled primarilfromaphotographwhichviewedthewindowsfromapproimatelthesamedirection. (c) Thesamepieceofthemodelviewed fromadifferent angle, usingthe sameteturemap as in (b). Since thetetureisnotselectedfromanimagethatviewedthemodelfrom approimatelthesameangle,therecessedwindowsappearunnatural. (d) Amore natural result obtained b using view-dependent teturemapping. Sincethe angleof view in (d) is different than in (b),adifferentcompositionoforiginalimagesisusedtoteture-map themodel. agestakenfrom relativelfar apart. Thestereocorrespondenceinformationcanthenbeusedtorendernovelviewsofthesceneusing image-basedrenderingtechniques. As in traditional stereo, given two images (which we call the ke andoffset), model-basedstereo computes the associateddepth map for the ke imageb determining correspondingpoints in the keandoffset images. Likemanstereoalgorithms, ourmethodis correlation-based,inthatitattemptstodeterminethecorresponding point in the offset image b comparingsmall piel neighborhoods aroundthepoints. Assuch,correlation-basedstereoalgorithmsgenerall require the neighborhoodof each point in the ke image to resemblethe neighborhoodof its correspondingpoint in the offset image. The problem we face is that when the ke and offset images are taken from relativel far apart, as is the casefor our modeling method, corresponding piel neighborhoods can be foreshortened verdifferentl. InFigs. 14(a)and(c),pielneighborhoodstoward theright of the keimageareforeshortenedhorizontallb nearl afactorof fourin theoffsetimage. The ke observation in model-based stereo is that even though two images of the same scenema appear ver different, the appearsimilarafterbeingprojectedontoanapproimatemodelofthe scene. In particular,projectingtheoffsetimageontothemodeland viewingitfromthepositionofthekeimageproduceswhatwecall thewarpedoffsetimage,whichappearsversimilar tothe keimage. The geometricall detailed scenein Fig. 14 was modeled as twoflatsurfaceswithourmodelingprogram,whichalsodetermined therelativecamerapositions. Asepected,thewarpedoffsetimage (Fig. 14(b)) ehibits the same pattern of foreshorteningas the ke image. In model-based stereo, piel neighborhoods are compared be- tweenthekeandwarpedoffsetimagesratherthanthekeandoff- 8

9 (a) KeImage (b)warpedoffsetimage (c)offset Image (d) ComputedDisparitMap Figure 14: (a) and (c) Two images of the entrance to Peterhouse chapel in Cambridge, UK. The Faç ade program was used to model the faç adeandgroundas aflat surfacesandto recoverthe relativecamerapositions. (b) Thewarpedoffset image, producedb projectingthe offset imageontothe approimatemodelandviewingit fromthepositionof thekecamera. This projectioneliminates mostof thedisparit andforeshorteningwithrespectto the keimage,greatlsimplifingstereocorrespondence.(d) Anunediteddisparitmapproducedbour model-basedstereoalgorithm. setimages. Whenacorrespondenceisfound,itissimpletoconvert itsdisparittothecorrespondingdisparitbetweenthekeandoffset images, from which the point sdepth is easil calculated. Fig. 14(d)showsadisparitmapcomputedfor thekeimagein (a). Thereductionofdifferencesinforeshorteningis justoneofseveral wasthatthe warpedoffset imagesimplifies stereocorrespondence. Someother desirableproperties of thewarpedoffset image are: An point in the scenewhich lies on the approimate model willhavezerodisparitbetweenthekeimageandthewarped offset image. Disparitiesbetweenthekeandwarpedoffsetimagesareeasil convertedto adepthmapfor thekeimage. Depth estimates are far less sensitive to noise in image measurementssinceimages takenfrom relativel farapart canbe compared. Placeswherethemodeloccludesitself relative tothekeimagecanbedetectedandindicatedin thewarpedoffset image. Alinear epipolargeometr (Sec. 4.1) eists betweenthe ke and warped offset images, despite the warping. In fact, the epipolar lines of the warped offset image coincide with the epipolarlines ofthekeimage. 4.1 Model-Based Epipolar Geometr In traditional stereo, the epipolar constraint(see [6]) is often used to constrain the search for corresponding points in the offset image to searching along an epipolar line. This constraint simplifies stereo not onl b reducing the search for eachcorrespondenceto onedimension,butalsobreducingthechanceofselectingafalse matches. Inthissectionweshowthattakingadvantageoftheepipolarconstraintisnomoredifficultinmodel-basedstereocase,despite thefactthat theoffsetimageis non-uniforml warped. Fig. 15shows the epipolargeometr for model-basedstereo. If weconsiderapoint P inthescene,thereisauniqueepipolarplane whichpassesthrough P andthe centersof the keandoffset cameras. Thisepipolarplaneintersects thekeandoffsetimageplanes in epipolar lines e k and e o.if we considerthe projection p k of P ontothekeimageplane,theepipolarconstraintstatesthatthecorrespondingpointin the offset imagemust lie somewherealongthe offset image sepipolarline. Inmodel-basedstereo,neighborhoodsinthekeimagearecomparedtothewarpedoffsetimageratherthantheoffsetimage. Thus, to makeuseof the epipolar constraint, it is necessarto determine wherethepielsontheoffsetimage sepipolarlineprojecttointhe warpedoffsetimage. Thewarpedoffsetimageisformedbprojectingtheoffsetimageontothemodel,andthenreprojectingthemodel ontotheimageplaneofthe kecamera. Thus,the projection p o of P intheoffset imageprojects ontothemodelat Q, andthenreprojects to q k in the warpedoffset image. Since eachof theseprojectionsoccurswithintheepipolarplane,anpossiblecorrespondence ke / warped offset image p p o q k epipolar lines k Ke Camera approimate model e k Q P actual structure epipolar plane e o offset image Offset Camera Figure15: Epipolargeometrfor model-basedstereo. for p k inthekeimagemustlie onthekeimage sepipolarline in thewarpedoffset image. Inthecasewheretheactualstructureand the modelcoincideat P, p o is projectedto P andthen reprojected to p k,ieldingacorrespondencewithzerodisparit. Thefactthattheepipolargeometrremainslinearafterthewarping step also facilitates the use of the ordering constraint [2, 6] throughadnamicprogrammingtechnique. 4.2 Stereo Results and Rerendering While the warping step makes it dramaticall easier to determine stereo correspondences,astereo algorithm is still necessarto actualldeterminethem. Thealgorithm wedevelopedtoproducethe imagesinthis paperis describedin[3]. Onceadepthmaphasbeencomputedfor aparticular image,we can rerender the scene from novel viewpoints using the methods described in [23, 16, 13]. Furthermore, when several images and theircorrespondingdepthmapsareavailable,wecanusetheviewdependent teture-mapping method of Section 3to composite the multiple renderings. The novel views of the chapel faç ade in Fig. 16wereproducedthroughsuchcompositingof fourimages. 5 Conclusion and Future Work Toconclude,wehavepresentedanew,photograph-basedapproach to modeling and rendering architectural scenes. Our modeling approach, which combines both geometr-basedand image-based modeling techniques, is built from two components that we have developed. The first component is an eas-to-use photogrammet- 9

10 Figure16: Novelviewsofthescenegeneratedfromfouroriginalphotographs. Theseareframesfromananimatedmovieinwhichthefaç ade rotatescontinuousl. Thedepthis computedfrommodel-basedstereoandtheframesaremadebcompositingimage-basedrenderingswith view-dependentteture-mapping. ric modeling sstem which facilitates the recover of abasic geometricmodelofthephotographedscene. Thesecondcomponentis amodel-basedstereo algorithm, which recovers preciselhow the realscenediffers fromthebasicmodel. Forrendering,wehavepresentedview-dependentteture-mapping,whichproducesimagesb warpingandcompositingmultiple views of thescene. Throughjudicioususeofimages,models,andhumanassistance,ourapproach is more convenient, more accurate, and more photorealistic than current geometr-based or image-based approaches for modeling andrenderingreal-world architecturalscenes. Thereareseveralimprovementsandetensionsthatcanbemade toourapproach. First,surfacesofrevolutionrepresentanimportant componentofarchitecture(e.g. domes,columns,andminarets)that arenot recoveredin ourphotogrammetricmodelingapproach. (As noted,thedomeinfig. 10was manuallsizedbtheuser.) Fortunatel,therehas beenmuchwork(e.g. [24]) thatpresents methods of recoveringsuchstructures from image contours. Curved model geometrisalsoentirelconsistentwithourapproachtorecovering additionaldetailwith model-basedstereo. Second, our techniques should be etended to recognize and modelthephotometricproperties ofthematerials inthescene. The sstem should be able to make better use of photographs taken in varinglighting conditions,and it shouldbe ableto renderimages of the sceneas it would appearat antime of da, in anweather, andwithanconfigurationofartificiallight. Alread,therecovered modelcanbeusedtopredictshadowinginthescenewithrespectto anarbitrar light source. However,afull treatment of the problem will require estimating the photometricproperties (i.e. the bidirectionalreflectancedistributionfunctions)ofthesurfacesinthescene. Third,itisclearthatfurtherinvestigationshouldbemadeintothe problem of selectingwhich original images to use whenrendering anovelviewofthescene. Thisproblemis especialldifficultwhen theavailableimagesaretakenatarbitrarlocations. Ourcurrentsolution to this problem, the weighting functionpresentedin Section 3, still allows seams to appearin renderings and doesnot consider issuesarisingfromimageresampling. Anotherformofviewselectionis requiredtochoosewhichpairsofimagesshouldbematched torecoverdepthin themodel-basedstereoalgorithm. Lastl, it will clearl be an attractive application to integrate the modelscreatedwith thetechniquespresentedin this paperinto forthcomingreal-time image-basedrenderingsstems. Acknowledgments This research was supported b anational Science Foundation Graduate Research Fellowship and grants from Interval Research Corporation, the California MICRO program, and JSEP contract F C The authors also wish to thank Tim Hawkins, CarloSéquin,DavidForsth,andJianboShifortheirvaluablehelp inrevisingthis paper. References [1] Ali AzarbaejaniandAle Pentland. Recursiveestimationof motion,structure, andfocallength.ieeetrans.patternanal.machineintell.,17(6): ,June [2] H. H. Baker and T.O. Binford. Depth fromedgeand intensit based stereo. In ProceedingsoftheSeventhIJCAI,Vancouver,BC,pages ,1981. [3] PaulE.Debevec,CamilloJ. Talor,andJitendraMalik. Modelingandrendering architecturefrom photographs: Ahbridgeometr-andimage-basedapproach. TechnicalReportUCB//CSD ,U.C.Berkele,CSDivision,Januar1996. [4] D.J.Fleet, A.D.Jepson,andM.R.M.Jenkin. Phase-baseddisparitmeasurement. CVGIP:ImageUnderstanding,53(2): ,1991. [5] Oliver Faugeras and Giorgio Toscani. The calibration problem for stereo. In ProceedingsIEEECVPR86,pages15 20,1986. [6] Olivier Faugeras. Three-DimensionalComputerVision. MITPress, [7] Olivier Faugeras, Stephane Laveau, Luc Robert, Gabriella Csurka, and Cril Zeller. 3-d reconstructionof urban scenes from sequencesof images. TechnicalReport2572,INRIA,June1995. [8] W.E. L.Grimson. FromImagesto Surface. MITPress, [9] D. Jones and J. Malik. Computational framework for determining stereo correspondencefrom aset of linear spatial filters. Image and Vision Computing, 10(10): ,December1992. [10] E. Kruppa. Zur ermittlungeinesobjectesauszwei perspektivenmitinnererorientierung. Sitz.-Ber.Akad.Wiss., Wien, Math.Naturw.Kl., Abt. Ila., 122: ,1913. [11] H.C. Longuet-Higgins. Acomputeralgorithm for reconstructingascene from two projections. Nature,293: ,September1981. [12] D.MarrandT.Poggio.Acomputationaltheorofhumanstereovision.ProceedingsoftheRoalSocietofLondon,204: ,1979. [13] LeonardMcMillan andgarbishop. Plenopticmodeling:An image-basedrenderingsstem. InSIGGRAPH 95,1995. [14] EricN.MortensenandWilliam A.Barrett. Intelligentscissorsforimagecomposition. In SIGGRAPH 95,1995. [15] S. B. Pollard,J. E. W.Mahew,andJ. P.Frisb. Astereo correspondencealgorithmusingadisparitgradientlimit. Perception,14: ,1985. [16] R. Szeliski. Image mosaicing for tele-realit applications. In IEEE Computer GraphicsandApplications,1996. [17] Camillo J. Talor and David J. Kriegman. Structureand motion from line segments in multiple images. IEEE Trans. Pattern Anal. Machine Intell., 17(11), November1995. [18] S.J.Teller,CelesteFowler,ThomasFunkhouser,andPatHanrahan. Partitioning and orderinglarge radiosit computations. In SIGGRAPH 94, pages , [19] Carlo Tomasiand TakeoKanade. Shapeand motionfrom imagestreams under orthograph:afactorizationmethod. InternationalJournalofComputerVision, 9(2): ,November1992. [20] Roger Tsai. Aversatile cameracalibration techniquefor high accurac3d machinevision metrologusingoff-the-shelftv camerasand lenses. IEEEJournal ofroboticsandautomation,3(4): ,August1987. [21] S.Ullman.TheInterpretationofVisualMotion.TheMITPress,Cambridge,MA, [22] LWilliams. Casting curved shadows on curved surfaces. In SIGGRAPH 78, pages ,1978. [23] LanceWilliams andericchen. Viewinterpolationforimagesnthesis. InSIG- GRAPH 93,1993. [24] Mourad Zerroug and Ramakant Nevatia. Segmentation and recover of shgcs fromarealintensitimage. InEuropeanConferenceonComputerVision,pages ,

Modeling and Rendering Architecture from Photographs: A hybrid geometry- and image-based approach

Modeling and Rendering Architecture from Photographs: A hybrid geometry- and image-based approach Modeling and Rendering Architecture from Photographs: A hbrid geometr- and image-based approach Paul E. Debevec Camillo J. Talor Jitendra Malik Universit of California at Berkele 1 ABSTRACT We present

More information

PHOTOGRAMMETRIC MODELING AND IMAGE-BASED RENDERING FOR RAPID VIRTUAL ENVIRONMENT CREATION

PHOTOGRAMMETRIC MODELING AND IMAGE-BASED RENDERING FOR RAPID VIRTUAL ENVIRONMENT CREATION PHOTOGRAMMETRIC MODELING AND IMAGE-BASED RENDERING FOR RAPID VIRTUAL ENVIRONMENT CREATION Charalambos Poullis*, Andrew Gardner, Paul Debevec University of Southern California Institute for Creative Technologies

More information

Affine Transformations

Affine Transformations A P P E N D I X C Affine Transformations CONTENTS C The need for geometric transformations 335 C2 Affine transformations 336 C3 Matri representation of the linear transformations 338 C4 Homogeneous coordinates

More information

INVESTIGATIONS AND FUNCTIONS 1.1.1 1.1.4. Example 1

INVESTIGATIONS AND FUNCTIONS 1.1.1 1.1.4. Example 1 Chapter 1 INVESTIGATIONS AND FUNCTIONS 1.1.1 1.1.4 This opening section introduces the students to man of the big ideas of Algebra 2, as well as different was of thinking and various problem solving strategies.

More information

Chapter 8. Lines and Planes. By the end of this chapter, you will

Chapter 8. Lines and Planes. By the end of this chapter, you will Chapter 8 Lines and Planes In this chapter, ou will revisit our knowledge of intersecting lines in two dimensions and etend those ideas into three dimensions. You will investigate the nature of planes

More information

A hybrid geometry- and image-based approach. January 19, 1996. Paul E. Debevec Camillo J. Taylor Jitendra Malik

A hybrid geometry- and image-based approach. January 19, 1996. Paul E. Debevec Camillo J. Taylor Jitendra Malik Modeling and Rendering Architecture from Photographs: A hybrid geometry- and image-based approach Technical Report UCB//CSD-96-893 January 19, 1996 Paul E. Debevec Camillo J. Taylor Jitendra Malik debevec@cs.berkeley.edu

More information

Camera calibration and epipolar geometry. Odilon Redon, Cyclops, 1914

Camera calibration and epipolar geometry. Odilon Redon, Cyclops, 1914 Camera calibration and epipolar geometry Odilon Redon, Cyclops, 94 Review: Alignment What is the geometric relationship between pictures taken by cameras that share the same center? How many points do

More information

LINEAR FUNCTIONS OF 2 VARIABLES

LINEAR FUNCTIONS OF 2 VARIABLES CHAPTER 4: LINEAR FUNCTIONS OF 2 VARIABLES 4.1 RATES OF CHANGES IN DIFFERENT DIRECTIONS From Precalculus, we know that is a linear function if the rate of change of the function is constant. I.e., for

More information

SECTION 7-4 Algebraic Vectors

SECTION 7-4 Algebraic Vectors 7-4 lgebraic Vectors 531 SECTIN 7-4 lgebraic Vectors From Geometric Vectors to lgebraic Vectors Vector ddition and Scalar Multiplication Unit Vectors lgebraic Properties Static Equilibrium Geometric vectors

More information

Analyzing Facial Expressions for Virtual Conferencing

Analyzing Facial Expressions for Virtual Conferencing Animating Virtual Humans Analzing Facial Epressions for Virtual Conferencing Video coding applications such as video conferencing, telepresence, and teleteaching have attracted considerable interest in

More information

Section 7.2 Linear Programming: The Graphical Method

Section 7.2 Linear Programming: The Graphical Method Section 7.2 Linear Programming: The Graphical Method Man problems in business, science, and economics involve finding the optimal value of a function (for instance, the maimum value of the profit function

More information

Solving Quadratic Equations by Graphing. Consider an equation of the form. y ax 2 bx c a 0. In an equation of the form

Solving Quadratic Equations by Graphing. Consider an equation of the form. y ax 2 bx c a 0. In an equation of the form SECTION 11.3 Solving Quadratic Equations b Graphing 11.3 OBJECTIVES 1. Find an ais of smmetr 2. Find a verte 3. Graph a parabola 4. Solve quadratic equations b graphing 5. Solve an application involving

More information

Structure-Preserving Image Retargeting With Compression Assessment and Adaptive Registration

Structure-Preserving Image Retargeting With Compression Assessment and Adaptive Registration International Journal of Soft Computing and Engineering (IJSCE) ISSN: 2231-2307, Volume-2, Issue-3, Jul 2012 Structure-Preserving Image Retargeting With Compression Assessment and Adaptive Registration

More information

The Graph of a Linear Equation

The Graph of a Linear Equation 4.1 The Graph of a Linear Equation 4.1 OBJECTIVES 1. Find three ordered pairs for an equation in two variables 2. Graph a line from three points 3. Graph a line b the intercept method 4. Graph a line that

More information

3D Arm Motion Tracking for Home-based Rehabilitation

3D Arm Motion Tracking for Home-based Rehabilitation hapter 13 3D Arm Motion Tracking for Home-based Rehabilitation Y. Tao and H. Hu 13.1 Introduction This paper presents a real-time hbrid solution to articulated 3D arm motion tracking for home-based rehabilitation

More information

6.3 Parametric Equations and Motion

6.3 Parametric Equations and Motion SECTION 6.3 Parametric Equations and Motion 475 What ou ll learn about Parametric Equations Parametric Curves Eliminating the Parameter Lines and Line Segments Simulating Motion with a Grapher... and wh

More information

Colorado School of Mines Computer Vision Professor William Hoff

Colorado School of Mines Computer Vision Professor William Hoff Professor William Hoff Dept of Electrical Engineering &Computer Science http://inside.mines.edu/~whoff/ 1 Introduction to 2 What is? A process that produces from images of the external world a description

More information

Announcements. Active stereo with structured light. Project structured light patterns onto the object

Announcements. Active stereo with structured light. Project structured light patterns onto the object Announcements Active stereo with structured light Project 3 extension: Wednesday at noon Final project proposal extension: Friday at noon > consult with Steve, Rick, and/or Ian now! Project 2 artifact

More information

Downloaded from www.heinemann.co.uk/ib. equations. 2.4 The reciprocal function x 1 x

Downloaded from www.heinemann.co.uk/ib. equations. 2.4 The reciprocal function x 1 x Functions and equations Assessment statements. Concept of function f : f (); domain, range, image (value). Composite functions (f g); identit function. Inverse function f.. The graph of a function; its

More information

4BA6 - Topic 4 Dr. Steven Collins. Chap. 5 3D Viewing and Projections

4BA6 - Topic 4 Dr. Steven Collins. Chap. 5 3D Viewing and Projections 4BA6 - Topic 4 Dr. Steven Collins Chap. 5 3D Viewing and Projections References Computer graphics: principles & practice, Fole, vandam, Feiner, Hughes, S-LEN 5.644 M23*;-6 (has a good appendix on linear

More information

Addition and Subtraction of Vectors

Addition and Subtraction of Vectors ddition and Subtraction of Vectors 1 ppendi ddition and Subtraction of Vectors In this appendi the basic elements of vector algebra are eplored. Vectors are treated as geometric entities represented b

More information

SAMPLE. Polynomial functions

SAMPLE. Polynomial functions Objectives C H A P T E R 4 Polnomial functions To be able to use the technique of equating coefficients. To introduce the functions of the form f () = a( + h) n + k and to sketch graphs of this form through

More information

A method of generating free-route walk-through animation using vehicle-borne video image

A method of generating free-route walk-through animation using vehicle-borne video image A method of generating free-route walk-through animation using vehicle-borne video image Jun KUMAGAI* Ryosuke SHIBASAKI* *Graduate School of Frontier Sciences, Shibasaki lab. University of Tokyo 4-6-1

More information

Physics 53. Kinematics 2. Our nature consists in movement; absolute rest is death. Pascal

Physics 53. Kinematics 2. Our nature consists in movement; absolute rest is death. Pascal Phsics 53 Kinematics 2 Our nature consists in movement; absolute rest is death. Pascal Velocit and Acceleration in 3-D We have defined the velocit and acceleration of a particle as the first and second

More information

Example: Document Clustering. Clustering: Definition. Notion of a Cluster can be Ambiguous. Types of Clusterings. Hierarchical Clustering

Example: Document Clustering. Clustering: Definition. Notion of a Cluster can be Ambiguous. Types of Clusterings. Hierarchical Clustering Overview Prognostic Models and Data Mining in Medicine, part I Cluster Analsis What is Cluster Analsis? K-Means Clustering Hierarchical Clustering Cluster Validit Eample: Microarra data analsis 6 Summar

More information

PHOTOGRAMMETRIC TECHNIQUES FOR MEASUREMENTS IN WOODWORKING INDUSTRY

PHOTOGRAMMETRIC TECHNIQUES FOR MEASUREMENTS IN WOODWORKING INDUSTRY PHOTOGRAMMETRIC TECHNIQUES FOR MEASUREMENTS IN WOODWORKING INDUSTRY V. Knyaz a, *, Yu. Visilter, S. Zheltov a State Research Institute for Aviation System (GosNIIAS), 7, Victorenko str., Moscow, Russia

More information

THE PARABOLA 13.2. section

THE PARABOLA 13.2. section 698 (3 0) Chapter 3 Nonlinear Sstems and the Conic Sections 49. Fencing a rectangle. If 34 ft of fencing are used to enclose a rectangular area of 72 ft 2, then what are the dimensions of the area? 50.

More information

Introduction to Computer Graphics

Introduction to Computer Graphics Introduction to Computer Graphics Torsten Möller TASC 8021 778-782-2215 torsten@sfu.ca www.cs.sfu.ca/~torsten Today What is computer graphics? Contents of this course Syllabus Overview of course topics

More information

Using Photorealistic RenderMan for High-Quality Direct Volume Rendering

Using Photorealistic RenderMan for High-Quality Direct Volume Rendering Using Photorealistic RenderMan for High-Quality Direct Volume Rendering Cyrus Jam cjam@sdsc.edu Mike Bailey mjb@sdsc.edu San Diego Supercomputer Center University of California San Diego Abstract With

More information

Teacher Page. 1. Reflect a figure with vertices across the x-axis. Find the coordinates of the new image.

Teacher Page. 1. Reflect a figure with vertices across the x-axis. Find the coordinates of the new image. Teacher Page Geometr / Da # 10 oordinate Geometr (5 min.) 9-.G.3.1 9-.G.3.2 9-.G.3.3 9-.G.3. Use rigid motions (compositions of reflections, translations and rotations) to determine whether two geometric

More information

3D Scanner using Line Laser. 1. Introduction. 2. Theory

3D Scanner using Line Laser. 1. Introduction. 2. Theory . Introduction 3D Scanner using Line Laser Di Lu Electrical, Computer, and Systems Engineering Rensselaer Polytechnic Institute The goal of 3D reconstruction is to recover the 3D properties of a geometric

More information

Line-Torus Intersection for Ray Tracing: Alternative Formulations

Line-Torus Intersection for Ray Tracing: Alternative Formulations Line-Torus Intersection for Ra Tracing: Alternative Formulations VACLAV SKALA Department of Computer Science Engineering Universit of West Bohemia Univerzitni 8, CZ 30614 Plzen CZECH REPUBLIC http://www.vaclavskala.eu

More information

3 Optimizing Functions of Two Variables. Chapter 7 Section 3 Optimizing Functions of Two Variables 533

3 Optimizing Functions of Two Variables. Chapter 7 Section 3 Optimizing Functions of Two Variables 533 Chapter 7 Section 3 Optimizing Functions of Two Variables 533 (b) Read about the principle of diminishing returns in an economics tet. Then write a paragraph discussing the economic factors that might

More information

Modeling and Rendering Architecture from Photographs

Modeling and Rendering Architecture from Photographs Modeling and Rendering Architecture from Photographs Paul Debevec Computer Science Division University of California at Berkeley SIGGRAPH 99 Course #28, 3D Photography Brian Curless and Steve Seitz, organizers

More information

EFFICIENT VEHICLE TRACKING AND CLASSIFICATION FOR AN AUTOMATED TRAFFIC SURVEILLANCE SYSTEM

EFFICIENT VEHICLE TRACKING AND CLASSIFICATION FOR AN AUTOMATED TRAFFIC SURVEILLANCE SYSTEM EFFICIENT VEHICLE TRACKING AND CLASSIFICATION FOR AN AUTOMATED TRAFFIC SURVEILLANCE SYSTEM Amol Ambardekar, Mircea Nicolescu, and George Bebis Department of Computer Science and Engineering University

More information

Section V.2: Magnitudes, Directions, and Components of Vectors

Section V.2: Magnitudes, Directions, and Components of Vectors Section V.: Magnitudes, Directions, and Components of Vectors Vectors in the plane If we graph a vector in the coordinate plane instead of just a grid, there are a few things to note. Firstl, directions

More information

Data Mining Cluster Analysis: Basic Concepts and Algorithms. Clustering Algorithms. Lecture Notes for Chapter 8. Introduction to Data Mining

Data Mining Cluster Analysis: Basic Concepts and Algorithms. Clustering Algorithms. Lecture Notes for Chapter 8. Introduction to Data Mining Data Mining Cluster Analsis: Basic Concepts and Algorithms Lecture Notes for Chapter 8 Introduction to Data Mining b Tan, Steinbach, Kumar Clustering Algorithms K-means and its variants Hierarchical clustering

More information

Depth from a single camera

Depth from a single camera Depth from a single camera Fundamental Matrix Essential Matrix Active Sensing Methods School of Computer Science & Statistics Trinity College Dublin Dublin 2 Ireland www.scss.tcd.ie 1 1 Geometry of two

More information

Translating Points. Subtract 2 from the y-coordinates

Translating Points. Subtract 2 from the y-coordinates CONDENSED L E S S O N 9. Translating Points In this lesson ou will translate figures on the coordinate plane define a translation b describing how it affects a general point (, ) A mathematical rule that

More information

Part-Based Recognition

Part-Based Recognition Part-Based Recognition Benedict Brown CS597D, Fall 2003 Princeton University CS 597D, Part-Based Recognition p. 1/32 Introduction Many objects are made up of parts It s presumably easier to identify simple

More information

D.3. Angles and Degree Measure. Review of Trigonometric Functions

D.3. Angles and Degree Measure. Review of Trigonometric Functions APPENDIX D Precalculus Review D7 SECTION D. Review of Trigonometric Functions Angles and Degree Measure Radian Measure The Trigonometric Functions Evaluating Trigonometric Functions Solving Trigonometric

More information

Geometric Camera Parameters

Geometric Camera Parameters Geometric Camera Parameters What assumptions have we made so far? -All equations we have derived for far are written in the camera reference frames. -These equations are valid only when: () all distances

More information

1.6. Piecewise Functions. LEARN ABOUT the Math. Representing the problem using a graphical model

1.6. Piecewise Functions. LEARN ABOUT the Math. Representing the problem using a graphical model . Piecewise Functions YOU WILL NEED graph paper graphing calculator GOAL Understand, interpret, and graph situations that are described b piecewise functions. LEARN ABOUT the Math A cit parking lot uses

More information

Systems of Linear Equations: Solving by Substitution

Systems of Linear Equations: Solving by Substitution 8.3 Sstems of Linear Equations: Solving b Substitution 8.3 OBJECTIVES 1. Solve sstems using the substitution method 2. Solve applications of sstems of equations In Sections 8.1 and 8.2, we looked at graphing

More information

Equilibrium of a Particle & Truss Analysis

Equilibrium of a Particle & Truss Analysis Equilibrium of a article & Truss nalsis Notation: b = number of members in a truss () = shorthand for compression F = name for force vectors, as is X, and F = name of a truss force between joints named

More information

DYNAMIC RANGE IMPROVEMENT THROUGH MULTIPLE EXPOSURES. Mark A. Robertson, Sean Borman, and Robert L. Stevenson

DYNAMIC RANGE IMPROVEMENT THROUGH MULTIPLE EXPOSURES. Mark A. Robertson, Sean Borman, and Robert L. Stevenson c 1999 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or

More information

Computer Graphics. Introduction. Computer graphics. What is computer graphics? Yung-Yu Chuang

Computer Graphics. Introduction. Computer graphics. What is computer graphics? Yung-Yu Chuang Introduction Computer Graphics Instructor: Yung-Yu Chuang ( 莊 永 裕 ) E-mail: c@csie.ntu.edu.tw Office: CSIE 527 Grading: a MatchMove project Computer Science ce & Information o Technolog og Yung-Yu Chuang

More information

Feature Tracking and Optical Flow

Feature Tracking and Optical Flow 02/09/12 Feature Tracking and Optical Flow Computer Vision CS 543 / ECE 549 University of Illinois Derek Hoiem Many slides adapted from Lana Lazebnik, Silvio Saverse, who in turn adapted slides from Steve

More information

Identify a pattern and find the next three numbers in the pattern. 5. 5(2s 2 1) 2 3(s 1 2); s 5 4

Identify a pattern and find the next three numbers in the pattern. 5. 5(2s 2 1) 2 3(s 1 2); s 5 4 Chapter 1 Test Do ou know HOW? Identif a pattern and find the net three numbers in the pattern. 1. 5, 1, 3, 7, c. 6, 3, 16, 8, c Each term is more than the previous Each term is half of the previous term;

More information

6. The given function is only drawn for x > 0. Complete the function for x < 0 with the following conditions:

6. The given function is only drawn for x > 0. Complete the function for x < 0 with the following conditions: Precalculus Worksheet 1. Da 1 1. The relation described b the set of points {(-, 5 ),( 0, 5 ),(,8 ),(, 9) } is NOT a function. Eplain wh. For questions - 4, use the graph at the right.. Eplain wh the graph

More information

2D Geometrical Transformations. Foley & Van Dam, Chapter 5

2D Geometrical Transformations. Foley & Van Dam, Chapter 5 2D Geometrical Transformations Fole & Van Dam, Chapter 5 2D Geometrical Transformations Translation Scaling Rotation Shear Matri notation Compositions Homogeneous coordinates 2D Geometrical Transformations

More information

3 Image-Based Photo Hulls. 2 Image-Based Visual Hulls. 3.1 Approach. 3.2 Photo-Consistency. Figure 1. View-dependent geometry.

3 Image-Based Photo Hulls. 2 Image-Based Visual Hulls. 3.1 Approach. 3.2 Photo-Consistency. Figure 1. View-dependent geometry. Image-Based Photo Hulls Greg Slabaugh, Ron Schafer Georgia Institute of Technology Center for Signal and Image Processing Atlanta, GA 30332 {slabaugh, rws}@ece.gatech.edu Mat Hans Hewlett-Packard Laboratories

More information

ACT Math Vocabulary. Altitude The height of a triangle that makes a 90-degree angle with the base of the triangle. Altitude

ACT Math Vocabulary. Altitude The height of a triangle that makes a 90-degree angle with the base of the triangle. Altitude ACT Math Vocabular Acute When referring to an angle acute means less than 90 degrees. When referring to a triangle, acute means that all angles are less than 90 degrees. For eample: Altitude The height

More information

Lines and Planes 1. x(t) = at + b y(t) = ct + d

Lines and Planes 1. x(t) = at + b y(t) = ct + d 1 Lines in the Plane Lines and Planes 1 Ever line of points L in R 2 can be epressed as the solution set for an equation of the form A + B = C. The equation is not unique for if we multipl both sides b

More information

15.1. Exact Differential Equations. Exact First-Order Equations. Exact Differential Equations Integrating Factors

15.1. Exact Differential Equations. Exact First-Order Equations. Exact Differential Equations Integrating Factors SECTION 5. Eact First-Order Equations 09 SECTION 5. Eact First-Order Equations Eact Differential Equations Integrating Factors Eact Differential Equations In Section 5.6, ou studied applications of differential

More information

This week. CENG 732 Computer Animation. The Display Pipeline. Ray Casting Display Pipeline. Animation. Applying Transformations to Points

This week. CENG 732 Computer Animation. The Display Pipeline. Ray Casting Display Pipeline. Animation. Applying Transformations to Points This week CENG 732 Computer Animation Spring 2006-2007 Week 2 Technical Preliminaries and Introduction to Keframing Recap from CEng 477 The Displa Pipeline Basic Transformations / Composite Transformations

More information

MMGD0203 Multimedia Design MMGD0203 MULTIMEDIA DESIGN. Chapter 3 Graphics and Animations

MMGD0203 Multimedia Design MMGD0203 MULTIMEDIA DESIGN. Chapter 3 Graphics and Animations MMGD0203 MULTIMEDIA DESIGN Chapter 3 Graphics and Animations 1 Topics: Definition of Graphics Why use Graphics? Graphics Categories Graphics Qualities File Formats Types of Graphics Graphic File Size Introduction

More information

Bernice E. Rogowitz and Holly E. Rushmeier IBM TJ Watson Research Center, P.O. Box 704, Yorktown Heights, NY USA

Bernice E. Rogowitz and Holly E. Rushmeier IBM TJ Watson Research Center, P.O. Box 704, Yorktown Heights, NY USA Are Image Quality Metrics Adequate to Evaluate the Quality of Geometric Objects? Bernice E. Rogowitz and Holly E. Rushmeier IBM TJ Watson Research Center, P.O. Box 704, Yorktown Heights, NY USA ABSTRACT

More information

GLOBAL COORDINATE METHOD FOR DETERMINING SENSITIVITY IN ASSEMBLY TOLERANCE ANALYSIS

GLOBAL COORDINATE METHOD FOR DETERMINING SENSITIVITY IN ASSEMBLY TOLERANCE ANALYSIS GOBA COORDINATE METOD FOR DETERMINING SENSITIVIT IN ASSEMB TOERANCE ANASIS Jinsong Gao ewlett-packard Corp. InkJet Business Unit San Diego, CA Kenneth W. Chase Spencer P. Magleb Mechanical Engineering

More information

When I was 3.1 POLYNOMIAL FUNCTIONS

When I was 3.1 POLYNOMIAL FUNCTIONS 146 Chapter 3 Polnomial and Rational Functions Section 3.1 begins with basic definitions and graphical concepts and gives an overview of ke properties of polnomial functions. In Sections 3.2 and 3.3 we

More information

C3: Functions. Learning objectives

C3: Functions. Learning objectives CHAPTER C3: Functions Learning objectives After studing this chapter ou should: be familiar with the terms one-one and man-one mappings understand the terms domain and range for a mapping understand the

More information

MetropoGIS: A City Modeling System DI Dr. Konrad KARNER, DI Andreas KLAUS, DI Joachim BAUER, DI Christopher ZACH

MetropoGIS: A City Modeling System DI Dr. Konrad KARNER, DI Andreas KLAUS, DI Joachim BAUER, DI Christopher ZACH MetropoGIS: A City Modeling System DI Dr. Konrad KARNER, DI Andreas KLAUS, DI Joachim BAUER, DI Christopher ZACH VRVis Research Center for Virtual Reality and Visualization, Virtual Habitat, Inffeldgasse

More information

Multivariate data visualization using shadow

Multivariate data visualization using shadow Proceedings of the IIEEJ Ima and Visual Computing Wor Kuching, Malaysia, Novembe Multivariate data visualization using shadow Zhongxiang ZHENG Suguru SAITO Tokyo Institute of Technology ABSTRACT When visualizing

More information

COMPLEX STRESS TUTORIAL 3 COMPLEX STRESS AND STRAIN

COMPLEX STRESS TUTORIAL 3 COMPLEX STRESS AND STRAIN COMPLX STRSS TUTORIAL COMPLX STRSS AND STRAIN This tutorial is not part of the decel unit mechanical Principles but covers elements of the following sllabi. o Parts of the ngineering Council eam subject

More information

Introduction to polarization of light

Introduction to polarization of light Chapter 2 Introduction to polarization of light This Chapter treats the polarization of electromagnetic waves. In Section 2.1 the concept of light polarization is discussed and its Jones formalism is presented.

More information

4 Constrained Optimization: The Method of Lagrange Multipliers. Chapter 7 Section 4 Constrained Optimization: The Method of Lagrange Multipliers 551

4 Constrained Optimization: The Method of Lagrange Multipliers. Chapter 7 Section 4 Constrained Optimization: The Method of Lagrange Multipliers 551 Chapter 7 Section 4 Constrained Optimization: The Method of Lagrange Multipliers 551 LEVEL CURVES 2 7 2 45. f(, ) ln 46. f(, ) 6 2 12 4 16 3 47. f(, ) 2 4 4 2 (11 18) 48. Sometimes ou can classif the critical

More information

So, using the new notation, P X,Y (0,1) =.08 This is the value which the joint probability function for X and Y takes when X=0 and Y=1.

So, using the new notation, P X,Y (0,1) =.08 This is the value which the joint probability function for X and Y takes when X=0 and Y=1. Joint probabilit is the probabilit that the RVs & Y take values &. like the PDF of the two events, and. We will denote a joint probabilit function as P,Y (,) = P(= Y=) Marginal probabilit of is the probabilit

More information

BUILDING TELEPRESENCE SYSTEMS: Translating Science Fiction Ideas into Reality

BUILDING TELEPRESENCE SYSTEMS: Translating Science Fiction Ideas into Reality BUILDING TELEPRESENCE SYSTEMS: Translating Science Fiction Ideas into Reality Henry Fuchs University of North Carolina at Chapel Hill (USA) and NSF Science and Technology Center for Computer Graphics and

More information

SECTION 5-1 Exponential Functions

SECTION 5-1 Exponential Functions 354 5 Eponential and Logarithmic Functions Most of the functions we have considered so far have been polnomial and rational functions, with a few others involving roots or powers of polnomial or rational

More information

Data Mining Cluster Analysis: Basic Concepts and Algorithms. Lecture Notes for Chapter 8. Introduction to Data Mining

Data Mining Cluster Analysis: Basic Concepts and Algorithms. Lecture Notes for Chapter 8. Introduction to Data Mining Data Mining Cluster Analsis: Basic Concepts and Algorithms Lecture Notes for Chapter 8 Introduction to Data Mining b Tan, Steinbach, Kumar Tan,Steinbach, Kumar Introduction to Data Mining /8/ What is Cluster

More information

CSCI 445 Amin Atrash. Ultrasound, Laser and Vision Sensors. Introduction to Robotics L. Itti & M. J. Mataric

CSCI 445 Amin Atrash. Ultrasound, Laser and Vision Sensors. Introduction to Robotics L. Itti & M. J. Mataric Introduction to Robotics CSCI 445 Amin Atrash Ultrasound, Laser and Vision Sensors Today s Lecture Outline Ultrasound (sonar) Laser range-finders (ladar, not lidar) Vision Stereo vision Ultrasound/Sonar

More information

The Collapsing Method of Defuzzification for Discretised Interval Type-2 Fuzzy Sets

The Collapsing Method of Defuzzification for Discretised Interval Type-2 Fuzzy Sets The Collapsing Method of Defuzzification for Discretised Interval Tpe- Fuzz Sets Sarah Greenfield, Francisco Chiclana, Robert John, Simon Coupland Centre for Computational Intelligence De Montfort niversit

More information

The Rectangular Coordinate System

The Rectangular Coordinate System 3.2 The Rectangular Coordinate Sstem 3.2 OBJECTIVES 1. Graph a set of ordered pairs 2. Identif plotted points 3. Scale the aes NOTE In the eighteenth centur, René Descartes, a French philosopher and mathematician,

More information

Digital Image Increase

Digital Image Increase Exploiting redundancy for reliable aerial computer vision 1 Digital Image Increase 2 Images Worldwide 3 Terrestrial Image Acquisition 4 Aerial Photogrammetry 5 New Sensor Platforms Towards Fully Automatic

More information

Zeros of Polynomial Functions. The Fundamental Theorem of Algebra. The Fundamental Theorem of Algebra. zero in the complex number system.

Zeros of Polynomial Functions. The Fundamental Theorem of Algebra. The Fundamental Theorem of Algebra. zero in the complex number system. _.qd /7/ 9:6 AM Page 69 Section. Zeros of Polnomial Functions 69. Zeros of Polnomial Functions What ou should learn Use the Fundamental Theorem of Algebra to determine the number of zeros of polnomial

More information

The Mathematics of Engineering Surveying (3)

The Mathematics of Engineering Surveying (3) The Mathematics of Engineering Surveing (3) Scenario s a new graduate ou have gained emploment as a graduate engineer working for a major contractor that emplos 2000 staff and has an annual turnover of

More information

Robust NURBS Surface Fitting from Unorganized 3D Point Clouds for Infrastructure As-Built Modeling

Robust NURBS Surface Fitting from Unorganized 3D Point Clouds for Infrastructure As-Built Modeling 81 Robust NURBS Surface Fitting from Unorganized 3D Point Clouds for Infrastructure As-Built Modeling Andrey Dimitrov 1 and Mani Golparvar-Fard 2 1 Graduate Student, Depts of Civil Eng and Engineering

More information

P1. Plot the following points on the real. P2. Determine which of the following are solutions

P1. Plot the following points on the real. P2. Determine which of the following are solutions Section 1.5 Rectangular Coordinates and Graphs of Equations 9 PART II: LINEAR EQUATIONS AND INEQUALITIES IN TWO VARIABLES 1.5 Rectangular Coordinates and Graphs of Equations OBJECTIVES 1 Plot Points in

More information

1. a. standard form of a parabola with. 2 b 1 2 horizontal axis of symmetry 2. x 2 y 2 r 2 o. standard form of an ellipse centered

1. a. standard form of a parabola with. 2 b 1 2 horizontal axis of symmetry 2. x 2 y 2 r 2 o. standard form of an ellipse centered Conic Sections. Distance Formula and Circles. More on the Parabola. The Ellipse and Hperbola. Nonlinear Sstems of Equations in Two Variables. Nonlinear Inequalities and Sstems of Inequalities In Chapter,

More information

Chapter 6 Quadratic Functions

Chapter 6 Quadratic Functions Chapter 6 Quadratic Functions Determine the characteristics of quadratic functions Sketch Quadratics Solve problems modelled b Quadratics 6.1Quadratic Functions A quadratic function is of the form where

More information

Monash University Clayton s School of Information Technology CSE3313 Computer Graphics Sample Exam Questions 2007

Monash University Clayton s School of Information Technology CSE3313 Computer Graphics Sample Exam Questions 2007 Monash University Clayton s School of Information Technology CSE3313 Computer Graphics Questions 2007 INSTRUCTIONS: Answer all questions. Spend approximately 1 minute per mark. Question 1 30 Marks Total

More information

Chapter 3. Curve Sketching. By the end of this chapter, you will

Chapter 3. Curve Sketching. By the end of this chapter, you will Chapter 3 Curve Sketching How much metal would be required to make a -ml soup can? What is the least amount of cardboard needed to build a bo that holds 3 cm 3 of cereal? The answers to questions like

More information

A Short Introduction to Computer Graphics

A Short Introduction to Computer Graphics A Short Introduction to Computer Graphics Frédo Durand MIT Laboratory for Computer Science 1 Introduction Chapter I: Basics Although computer graphics is a vast field that encompasses almost any graphical

More information

LESSON EIII.E EXPONENTS AND LOGARITHMS

LESSON EIII.E EXPONENTS AND LOGARITHMS LESSON EIII.E EXPONENTS AND LOGARITHMS LESSON EIII.E EXPONENTS AND LOGARITHMS OVERVIEW Here s what ou ll learn in this lesson: Eponential Functions a. Graphing eponential functions b. Applications of eponential

More information

Path Tracking for a Miniature Robot

Path Tracking for a Miniature Robot Path Tracking for a Miniature Robot By Martin Lundgren Excerpt from Master s thesis 003 Supervisor: Thomas Hellström Department of Computing Science Umeå University Sweden 1 Path Tracking Path tracking

More information

SECTION 2.2. Distance and Midpoint Formulas; Circles

SECTION 2.2. Distance and Midpoint Formulas; Circles SECTION. Objectives. Find the distance between two points.. Find the midpoint of a line segment.. Write the standard form of a circle s equation.. Give the center and radius of a circle whose equation

More information

ENGN 2502 3D Photography / Winter 2012 / SYLLABUS http://mesh.brown.edu/3dp/

ENGN 2502 3D Photography / Winter 2012 / SYLLABUS http://mesh.brown.edu/3dp/ ENGN 2502 3D Photography / Winter 2012 / SYLLABUS http://mesh.brown.edu/3dp/ Description of the proposed course Over the last decade digital photography has entered the mainstream with inexpensive, miniaturized

More information

Pulsed Fourier Transform NMR The rotating frame of reference. The NMR Experiment. The Rotating Frame of Reference.

Pulsed Fourier Transform NMR The rotating frame of reference. The NMR Experiment. The Rotating Frame of Reference. Pulsed Fourier Transform NR The rotating frame of reference The NR Eperiment. The Rotating Frame of Reference. When we perform a NR eperiment we disturb the equilibrium state of the sstem and then monitor

More information

5. Linear regression and correlation

5. Linear regression and correlation Statistics for Engineers 5-1 5. Linear regression and correlation If we measure a response variable at various values of a controlled variable, linear regression is the process of fitting a straight line

More information

GRAPHS OF RATIONAL FUNCTIONS

GRAPHS OF RATIONAL FUNCTIONS 0 (0-) Chapter 0 Polnomial and Rational Functions. f() ( 0) ( 0). f() ( 0) ( 0). f() ( 0) ( 0). f() ( 0) ( 0) 0. GRAPHS OF RATIONAL FUNCTIONS In this section Domain Horizontal and Vertical Asmptotes Oblique

More information

Efficient View-Dependent Image-Based Rendering with Projective Texture-Mapping

Efficient View-Dependent Image-Based Rendering with Projective Texture-Mapping Efficient View-Dependent Image-Based Rendering with Projective Texture-Mapping Paul Debevec, Yizhou Yu, and George Borshukov Univeristy of California at Berkeley debevec@cs.berkeley.edu Abstract. This

More information

Find the Relationship: An Exercise in Graphing Analysis

Find the Relationship: An Exercise in Graphing Analysis Find the Relationship: An Eercise in Graphing Analsis Computer 5 In several laborator investigations ou do this ear, a primar purpose will be to find the mathematical relationship between two variables.

More information

Connecting Transformational Geometry and Transformations of Functions

Connecting Transformational Geometry and Transformations of Functions Connecting Transformational Geometr and Transformations of Functions Introductor Statements and Assumptions Isometries are rigid transformations that preserve distance and angles and therefore shapes.

More information

A System for Capturing High Resolution Images

A System for Capturing High Resolution Images A System for Capturing High Resolution Images G.Voyatzis, G.Angelopoulos, A.Bors and I.Pitas Department of Informatics University of Thessaloniki BOX 451, 54006 Thessaloniki GREECE e-mail: pitas@zeus.csd.auth.gr

More information

Shape Measurement of a Sewer Pipe. Using a Mobile Robot with Computer Vision

Shape Measurement of a Sewer Pipe. Using a Mobile Robot with Computer Vision International Journal of Advanced Robotic Systems ARTICLE Shape Measurement of a Sewer Pipe Using a Mobile Robot with Computer Vision Regular Paper Kikuhito Kawasue 1,* and Takayuki Komatsu 1 1 Department

More information

Course Overview. CSCI 480 Computer Graphics Lecture 1. Administrative Issues Modeling Animation Rendering OpenGL Programming [Angel Ch.

Course Overview. CSCI 480 Computer Graphics Lecture 1. Administrative Issues Modeling Animation Rendering OpenGL Programming [Angel Ch. CSCI 480 Computer Graphics Lecture 1 Course Overview January 14, 2013 Jernej Barbic University of Southern California http://www-bcf.usc.edu/~jbarbic/cs480-s13/ Administrative Issues Modeling Animation

More information

Consolidated Visualization of Enormous 3D Scan Point Clouds with Scanopy

Consolidated Visualization of Enormous 3D Scan Point Clouds with Scanopy Consolidated Visualization of Enormous 3D Scan Point Clouds with Scanopy Claus SCHEIBLAUER 1 / Michael PREGESBAUER 2 1 Institute of Computer Graphics and Algorithms, Vienna University of Technology, Austria

More information

Cork Education and Training Board. Programme Module for. 3 Dimensional Computer Graphics. Leading to. Level 5 FETAC

Cork Education and Training Board. Programme Module for. 3 Dimensional Computer Graphics. Leading to. Level 5 FETAC Cork Education and Training Board Programme Module for 3 Dimensional Computer Graphics Leading to Level 5 FETAC 3 Dimensional Computer Graphics 5N5029 3 Dimensional Computer Graphics 5N5029 1 Version 3

More information

Realtime 3D Computer Graphics Virtual Reality

Realtime 3D Computer Graphics Virtual Reality Realtime 3D Computer Graphics Virtual Realit Viewing and projection Classical and General Viewing Transformation Pipeline CPU Pol. DL Pixel Per Vertex Texture Raster Frag FB object ee clip normalized device

More information

Core Maths C2. Revision Notes

Core Maths C2. Revision Notes Core Maths C Revision Notes November 0 Core Maths C Algebra... Polnomials: +,,,.... Factorising... Long division... Remainder theorem... Factor theorem... 4 Choosing a suitable factor... 5 Cubic equations...

More information