Data Mining Cluster Analysis: Basic Concepts and Algorithms. Lecture Notes for Chapter 8. Introduction to Data Mining


 April Gregory
 3 years ago
 Views:
Transcription
1 Data Mining Cluster Analsis: Basic Concepts and Algorithms Lecture Notes for Chapter 8 Introduction to Data Mining b Tan, Steinbach, Kumar Tan,Steinbach, Kumar Introduction to Data Mining /8/ What is Cluster Analsis? Finding groups of objects such that the objects in a group will be similar (or related) to one another and different from (or unrelated to) the objects in other groups Intracluster distances are minimized Intercluster distances are maimized Tan,Steinbach, Kumar Introduction to Data Mining /8/
2 Applications of Cluster Analsis Understanding Group related documents for browsing, group genes and proteins that have similar functionalit, or group stocks with similar price fluctuations Discovered Clusters AppliedMatlDOWN,BaNetworkDown,COMDOWN, CabletronSsDOWN,CISCODOWN,HPDOWN, DSCCommDOWN,INTELDOWN,LSILogicDOWN, MicronTechDOWN,TeasInstDown,TellabsIncDown, NatlSemiconductDOWN,OraclDOWN,SGIDOWN, SunDOWN AppleCompDOWN DOWN,AutodeskDOWN,DECDOWN, ADVMicroDeviceDOWN,AndrewCorpDOWN, ComputerAssocDOWN,CircuitCitDOWN, CompaqDOWN, EMCCorpDOWN, GenInstDOWN, MotorolaDOWN,MicrosoftDOWN,ScientificAtlDOWN FannieMaeDOWN,FedHomeLoanDOWN, MBNACorpDOWN,MorganStanleDOWN BakerHughesUP,DresserIndsUP,HalliburtonHLDUP, LouisianaLandUP,PhillipsPetroUP,UnocalUP, SchlumbergerUP Industr Group TechnologDOWN TechnologDOWN FinancialDOWN OilUP Summarization Reduce the size of large data sets Clustering precipitation in Australia Tan,Steinbach, Kumar Introduction to Data Mining /8/ What is not Cluster Analsis? Supervised classification Have class label information Simple segmentation Dividing students into different registration groups alphabeticall, b last name Results of a quer Groupings are a result of an eternal specification Graph partitioning Some mutual relevance and snerg, but areas are not identical Tan,Steinbach, Kumar Introduction to Data Mining /8/
3 Notion of a Cluster can be Ambiguous How man clusters? Si Clusters Two Clusters Four Clusters Tan,Steinbach, Kumar Introduction to Data Mining /8/ 5 Tpes of Clusterings A clustering is a set of clusters Important distinction between hierarchical and partitional sets of clusters Partitional Clustering A division data objects into nonoverlapping subsets (clusters) such that each data object is in eactl one subset Hierarchical clustering A set of nested clusters organized as a hierarchical tree Tan,Steinbach, Kumar Introduction to Data Mining /8/ 6
4 Partitional Clustering Original Points A Partitional Clustering Tan,Steinbach, Kumar Introduction to Data Mining /8/ 7 Hierarchical Clustering p p p p p p p p Traditional Hierarchical Clustering Traditional Dendrogram p p p p p p p p Nontraditional Hierarchical Clustering Nontraditional Dendrogram Tan,Steinbach, Kumar Introduction to Data Mining /8/ 8
5 Other Distinctions Between Sets of Clusters Eclusive versus noneclusive In noneclusive clusterings, points ma belong to multiple clusters. Can represent multiple l classes or border points Fuzz versus nonfuzz In fuzz clustering, a point belongs to ever cluster with some weight between and Weights must sum to Probabilistic clustering has similar characteristics Partial versus complete In some cases, we onl want to cluster some of the data Heterogeneous versus homogeneous Cluster of widel different sizes, shapes, and densities Tan,Steinbach, Kumar Introduction to Data Mining /8/ 9 Tpes of Clusters Wellseparated clusters Centerbased clusters Contiguous clusters Densitbased clusters Propert or Conceptual Described b an Objective Function Tan,Steinbach, Kumar Introduction to Data Mining /8/
6 Tpes of Clusters: WellSeparated WellSeparated Clusters: A cluster is a set of points such that an point in a cluster is closer (or more similar) to ever other point in the cluster than to an point not in the cluster. wellseparated clusters Tan,Steinbach, Kumar Introduction to Data Mining /8/ Tpes of Clusters: CenterBased Centerbased A cluster is a set of objects such that an object in a cluster is closer (more similar) to the center of a cluster, than to the center of an other cluster The center of a cluster is often a centroid, the average of all the points in the cluster, or a medoid, the most representative point of a cluster centerbased clusters Tan,Steinbach, Kumar Introduction to Data Mining /8/
7 Tpes of Clusters: ContiguitBased Contiguous Cluster (Nearest neighbor or Transitive) A cluster is a set of points such that a point in a cluster is closer (or more similar) to one or more other points in the cluster than to an point not in the cluster. 8 contiguous clusters Tan,Steinbach, Kumar Introduction to Data Mining /8/ Tpes of Clusters: DensitBased Densitbased A cluster is a dense region of points, which is separated b lowdensit regions, from other regions of high densit. Used when the clusters are irregular or intertwined, and when noise and outliers are present. 6 densitbased clusters Tan,Steinbach, Kumar Introduction to Data Mining /8/
8 Tpes of Clusters: Conceptual Clusters Shared Propert or Conceptual Clusters Finds clusters that share some common propert or represent a particular concept.. Overlapping Circles Tan,Steinbach, Kumar Introduction to Data Mining /8/ 5 Clustering Algorithms Kmeans and its variants Hierarchical clustering Densitbased clustering Tan,Steinbach, Kumar Introduction to Data Mining /8/ 9
9 Kmeans Clustering Partitional clustering approach Each cluster is associated with a centroid (center point) Each point is assigned to the cluster with the closest centroid Number of clusters, K, must be specified The basic algorithm is ver simple Tan,Steinbach, Kumar Introduction to Data Mining /8/ Kmeans Clustering Details Initial centroids are often chosen randoml. Clusters produced var from one run to another. The centroid is (tpicall) the mean of the points in the cluster. Closeness is measured b Euclidean distance, cosine similarit, correlation, etc. Kmeans will converge for common similarit measures mentioned above. Most of the convergence happens in the first few iterations. Often the stopping condition is changed to Until relativel few points change clusters Compleit is O( n * K * I * d ) n = number of points, K = number of clusters, I = number of iterations, d = number of attributes Tan,Steinbach, Kumar Introduction to Data Mining /8/
10 Two different Kmeans Clusterings.5.5 Original Points Optimal Clustering Suboptimal Clustering Tan,Steinbach, Kumar Introduction to Data Mining /8/ Importance of Choosing Initial Centroids Iteration Tan,Steinbach, Kumar Introduction to Data Mining /8/
11 Importance of Choosing Initial Centroids Iteration Iteration Iteration Iteration Iteration 5 Iteration Tan,Steinbach, Kumar Introduction to Data Mining /8/ Evaluating Kmeans Clusters Most common measure is Sum of Squared Error (SSE) For each point, the error is the distance to the nearest cluster To get SSE, we square these errors and sum them. SSE = K i= C i dist ( m, ) is a data point in cluster C i and m i is the representative point for cluster C i can show that m i corresponds to the center (mean) of the cluster Given two clusters, we can choose the one with the smallest error One eas wa to reduce SSE is to increase K, the number of clusters A good clustering with smaller K can have a lower SSE than a poor clustering with higher K i Tan,Steinbach, Kumar Introduction to Data Mining /8/ 5
12 Importance of Choosing Initial Centroids Iteration Tan,Steinbach, Kumar Introduction to Data Mining /8/ 6 Importance of Choosing Initial Centroids Iteration Iteration Iteration Iteration Iteration Tan,Steinbach, Kumar Introduction to Data Mining /8/ 7
13 Problems with Selecting Initial Points If there are K real clusters then the chance of selecting one centroid from each cluster is small. Chance is relativel small when K is large If clusters are the same size, n, then For eample, if K =, then probabilit =!/ =.6 Sometimes the initial centroids will readjust themselves in right wa, and sometimes the don t Consider an eample of five pairs of clusters Tan,Steinbach, Kumar Introduction to Data Mining /8/ 8 Clusters Eample 8 Iteration Starting with two initial centroids in one cluster of each pair of clusters Tan,Steinbach, Kumar Introduction to Data Mining /8/ 9
14 Clusters Eample 8 Iteration 8 Iteration Iteration Iteration Starting with two initial centroids in one cluster of each pair of clusters Tan,Steinbach, Kumar Introduction to Data Mining /8/ Clusters Eample 8 Iteration Starting with some pairs of clusters having three initial centroids, while other have onl one. Tan,Steinbach, Kumar Introduction to Data Mining /8/
15 Clusters Eample 8 Iteration 8 Iteration Iteration Iteration Starting with some pairs of clusters having three initial centroids, while other have onl one. Tan,Steinbach, Kumar Introduction to Data Mining /8/ Solutions to Initial Centroids Problem Multiple runs Helps, but probabilit is not on our side Sample and use hierarchical clustering to determine initial centroids Select more than k initial centroids and then select among these initial centroids Select most widel separated Postprocessing Bisecting Kmeans Not as susceptible to initialization issues Tan,Steinbach, Kumar Introduction to Data Mining /8/
16 Handling Empt Clusters Basic Kmeans algorithm can ield empt clusters Several strategies Choose the point that contributes most to SSE Choose a point from the cluster with the highest SSE If there are several empt clusters, the above can be repeated several times. Tan,Steinbach, Kumar Introduction to Data Mining /8/ Updating Centers Incrementall In the basic Kmeans algorithm, centroids are updated after all points are assigned to a centroid An alternative is to update the centroids after each assignment (incremental approach) Each assignment updates zero or two centroids More epensive Introduces an order dependenc Never get an empt cluster Can use weights to change the impact Tan,Steinbach, Kumar Introduction to Data Mining /8/ 5
17 Preprocessing and Postprocessing Preprocessing Normalize the data Eliminate i outliers Postprocessing Eliminate small clusters that ma represent outliers Split loose clusters, i.e., clusters with relativel high SSE Merge clusters that are close and that have relativel low SSE Can use these steps during the clustering process Tan,Steinbach, Kumar Introduction to Data Mining /8/ 6 Bisecting Kmeans Bisecting Kmeans algorithm Variant of Kmeans that can produce a partitional or a hierarchical clustering Tan,Steinbach, Kumar Introduction to Data Mining /8/ 7
18 Bisecting Kmeans Eample Tan,Steinbach, Kumar Introduction to Data Mining /8/ 8 Limitations of Kmeans Kmeans has problems when clusters are of differing Sizes Densities Nonglobular shapes Kmeans has problems when the data contains outliers. Tan,Steinbach, Kumar Introduction to Data Mining /8/ 9
19 Limitations of Kmeans: Differing Sizes Original Points Kmeans ( Clusters) Tan,Steinbach, Kumar Introduction to Data Mining /8/ Limitations of Kmeans: Differing Densit Original Points Kmeans ( Clusters) Tan,Steinbach, Kumar Introduction to Data Mining /8/
20 Limitations of Kmeans: Nonglobular Shapes Original Points Kmeans ( Clusters) Tan,Steinbach, Kumar Introduction to Data Mining /8/ Overcoming Kmeans Limitations Original Points Kmeans Clusters One solution is to use man clusters. Find parts of clusters, but need to put together. Tan,Steinbach, Kumar Introduction to Data Mining /8/
21 Overcoming Kmeans Limitations Original Points Kmeans Clusters Tan,Steinbach, Kumar Introduction to Data Mining /8/ Overcoming Kmeans Limitations Original Points Kmeans Clusters Tan,Steinbach, Kumar Introduction to Data Mining /8/ 5
22 Hierarchical Clustering Produces a set of nested clusters organized as a hierarchical tree Can be visualized as a dendrogramd A tree like diagram that records the sequences of merges or splits Tan,Steinbach, Kumar Introduction to Data Mining /8/ 6 Strengths of Hierarchical Clustering Do not have to assume an particular number of clusters An desired number of clusters can be obtained b cutting the dendogram at the proper level The ma correspond to meaningful taonomies Eample in biological sciences (e.g., animal kingdom, phlogen reconstruction, ) Tan,Steinbach, Kumar Introduction to Data Mining /8/ 7
23 Hierarchical Clustering Two main tpes of hierarchical clustering Agglomerative: Start with the points as individual clusters At each step, merge the closest pair of clusters until onl one cluster (or k clusters) left Divisive: Start with one, allinclusive cluster At each step, split a cluster until each cluster contains a point (or there are k clusters) Traditional hierarchical algorithms use a similarit or distance matri Merge or split one cluster at a time Tan,Steinbach, Kumar Introduction to Data Mining /8/ 8 Agglomerative Clustering Algorithm More popular hierarchical clustering technique Basic algorithm is straightforward. Compute the proimit it matri. Let each data point be a cluster. Repeat. Merge the two closest clusters 5. Update the proimit matri 6. Until onl a single cluster remains Ke operation is the computation of the proimit of two clusters Different approaches to defining the distance between clusters distinguish the different algorithms Tan,Steinbach, Kumar Introduction to Data Mining /8/ 9
24 Starting Situation Start with clusters of individual points and a proimit matri p p p p p5... p p p p p5... Proimit Matri Tan,Steinbach, Kumar Introduction to Data Mining /8/ 5 Intermediate Situation After some merging steps, we have some clusters C C C C C5 C C C C C C C C5 Proimit Matri C C5 Tan,Steinbach, Kumar Introduction to Data Mining /8/ 5
25 Intermediate Situation We want to merge the two closest clusters (C and C5) and update the proimit matri. C C C C C C C5 C C C C C C5 Proimit Matri C C5 Tan,Steinbach, Kumar Introduction to Data Mining /8/ 5 After Merging The question is How do we update the proimit matri? C U C C5 C C C? C C C C U C5???? C? C? Proimit Matri C U C5 Tan,Steinbach, Kumar Introduction to Data Mining /8/ 5
26 How to Define InterCluster Similarit p p p p p5... Similarit? p p p p MIN. MAX. Group Average. Distance Between Centroids Other methods driven b an objective function Ward s Method uses squared error p5 Proimit Matri Tan,Steinbach, Kumar Introduction to Data Mining /8/ 5 How to Define InterCluster Similarit p p p p p5... p p p p MIN. MAX. Group Average. Distance Between Centroids Other methods driven b an objective function Ward s Method uses squared error p5 Proimit Matri Tan,Steinbach, Kumar Introduction to Data Mining /8/ 55
27 How to Define InterCluster Similarit p p p p p5... p p p p MIN. MAX. Group Average. Distance Between Centroids Other methods driven b an objective function Ward s Method uses squared error p5 Proimit Matri Tan,Steinbach, Kumar Introduction to Data Mining /8/ 56 How to Define InterCluster Similarit p p p p p5... p p p p MIN. MAX. Group Average. Distance Between Centroids Other methods driven b an objective function Ward s Method uses squared error p5 Proimit Matri Tan,Steinbach, Kumar Introduction to Data Mining /8/ 57
28 How to Define InterCluster Similarit p p p p p p5... p p p MIN. MAX. Group Average. Distance Between Centroids Other methods driven b an objective function Ward s Method uses squared error p5 Proimit Matri Tan,Steinbach, Kumar Introduction to Data Mining /8/ 58 Cluster Similarit: MIN or Single Link Similarit of two clusters is based on the two most similar (closest) points in the different clusters Determined b one pair of points, i.e., b one link in the proimit graph. I I I I I5 I I I I I Tan,Steinbach, Kumar Introduction to Data Mining /8/ 59
29 Hierarchical Clustering: MIN Nested Clusters Dendrogram Tan,Steinbach, Kumar Introduction to Data Mining /8/ 6 Strength of MIN Original Points Two Clusters Can handle nonelliptical shapes Tan,Steinbach, Kumar Introduction to Data Mining /8/ 6
30 Limitations of MIN Original Points Two Clusters Sensitive to noise and outliers Tan,Steinbach, Kumar Introduction to Data Mining /8/ 6 Cluster Similarit: MAX or Complete Linkage Similarit of two clusters is based on the two least similar (most distant) points in the different clusters Determined b all pairs of points in the two clusters I I I I I5 I I I I I Tan,Steinbach, Kumar Introduction to Data Mining /8/ 6
31 Hierarchical Clustering: MAX Nested Clusters Dendrogram Tan,Steinbach, Kumar Introduction to Data Mining /8/ 6 Strength of MAX Original Points Two Clusters Less susceptible to noise and outliers Tan,Steinbach, Kumar Introduction to Data Mining /8/ 65
32 Limitations of MAX Original Points Two Clusters Tends to break large clusters Biased towards globular clusters Tan,Steinbach, Kumar Introduction to Data Mining /8/ 66 Cluster Similarit: Group Average Proimit of two clusters is the average of pairwise proimit between points in the two clusters. proimit(p i,pj) proimit(cluster,cluster ) i pi Cluster i p j Clusterj = Cluster Cluster Need to use average connectivit for scalabilit since total proimit favors large clusters I I I I I5 I I I I I Tan,Steinbach, Kumar Introduction to Data Mining /8/ 67 j i j
33 Hierarchical Clustering: Group Average Nested Clusters Dendrogram Tan,Steinbach, Kumar Introduction to Data Mining /8/ 68 Hierarchical Clustering: Group Average Compromise between Single and Complete Link Strengths Less susceptible to noise and outliers Limitationsit ti Biased towards globular clusters Tan,Steinbach, Kumar Introduction to Data Mining /8/ 69
34 Cluster Similarit: Ward s Method Similarit of two clusters is based on the increase in squared error when two clusters are merged Similar to group average if distance between points is distance squared Less susceptible to noise and outliers Biased towards globular clusters Hierarchical analogue of Kmeans Can be used to initialize Kmeans Tan,Steinbach, Kumar Introduction to Data Mining /8/ 7 Hierarchical Clustering: Comparison MIN MAX Group Average Ward s Method Tan,Steinbach, Kumar Introduction to Data Mining /8/ 7
35 Hierarchical Clustering: Time and Space requirements O(N ) space since it uses the proimit matri. N is the number of points. O(N ) time in man cases There are N steps and at each step the size, N, proimit matri must be updated and searched Compleit can be reduced to O(N log(n) ) time for some approaches Tan,Steinbach, Kumar Introduction to Data Mining /8/ 7 DBSCAN DBSCAN is a densitbased algorithm. Densit = number of points within a specified radius (Eps) A point is a core point if it has more than a specified number of points (MinPts) within Eps These are points that are at the interior of a cluster A border point has fewer than MinPts within Eps, but is in the neighborhood of a core point A noise point is an point that is not a core point or a border point. Tan,Steinbach, Kumar Introduction to Data Mining /8/ 7
36 DBSCAN: Core, Border, and Noise Points Tan,Steinbach, Kumar Introduction to Data Mining /8/ 75 DBSCAN Algorithm Eliminate noise points Perform clustering on the remaining points Tan,Steinbach, Kumar Introduction to Data Mining /8/ 76
37 DBSCAN: Core, Border and Noise Points Original Points Point tpes: core, border and noise Eps =, MinPts = Tan,Steinbach, Kumar Introduction to Data Mining /8/ 77 When DBSCAN Works Well Oi Original i lpoints Clusters Resistant to Noise Can handle clusters of different shapes and sizes Tan,Steinbach, Kumar Introduction to Data Mining /8/ 78
38 When DBSCAN Does NOT Work Well Original Points (MinPts=, Eps=9.75). Varing densities Highdimensional data (MinPts=, Eps=9.9) Tan,Steinbach, Kumar Introduction to Data Mining /8/ 79 DBSCAN: Determining EPS and MinPts Idea is that for points in a cluster, their k th nearest neighbors are at roughl the same distance Noise points have the k th nearest neighbor at farther distance So, plot sorted distance of ever point to its k th nearest neighbor Tan,Steinbach, Kumar Introduction to Data Mining /8/ 8
39 Measures of Cluster Validit Numerical measures that are applied to judge various aspects of cluster validit, are classified into the following three tpes. Eternal Inde: Used to measure the etent to which cluster labels match eternall supplied class labels. Entrop Internal Inde: Used to measure the goodness of a clustering structure without respect to eternal information. Sum of Squared Error (SSE) Relative Inde: Used to compare two different clusterings or clusters. Often an eternal or internal inde is used for this function, e.g., SSE or entrop Sometimes these are referred to as criteria instead of indices However, sometimes criterion is the general strateg and inde is the numerical measure that implements the criterion. Tan,Steinbach, Kumar Introduction to Data Mining /8/ 8 Internal Measures: Cohesion and Separation Cluster Cohesion: Measures how closel related are objects in a cluster Eample: SSE Cluster Separation: Measure how distinct or wellseparated a cluster is from other clusters Eample: Squared Error Cohesion is measured b the within cluster sum of squares (SSE) WSS = ( m i ) i C Separation is measured b the between cluster sum of squares BSS = C ( m i m i i Where C i is the size of cluster i i Tan,Steinbach, Kumar Introduction to Data Mining /8/ 8 )
40 Internal Measures: Cohesion and Separation A proimit graph based approach can also be used for cohesion and separation. Cluster cohesion is the sum of the weight of all links within a cluster. Cluster separation is the sum of the weights between nodes in the cluster and nodes outside the cluster. cohesion separation Tan,Steinbach, Kumar Introduction to Data Mining /8/ 85 Final Comment on Cluster Validit The validation of clustering structures is the most difficult and frustrating part of cluster analsis. Without a strong effort in this direction, cluster analsis will remain a black art accessible onl to those true believers who have eperience and great courage. Algorithms for Clustering Data, Jain and Dubes Tan,Steinbach, Kumar Introduction to Data Mining /8/ 87
KMeans Cluster Analysis. Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004 1
KMeans Cluster Analsis Chapter 3 PPDM Class Tan,Steinbach, Kumar Introduction to Data Mining 4/18/4 1 What is Cluster Analsis? Finding groups of objects such that the objects in a group will be similar
More informationData Mining Cluster Analysis: Basic Concepts and Algorithms. Lecture Notes for Chapter 8. Introduction to Data Mining
Data Mining Cluster Analsis: Basic Concepts and Algorithms Lecture Notes for Chapter 8 Introduction to Data Mining b Tan, Steinbach, Kumar Tan,Steinbach, Kumar Introduction to Data Mining 4/8/4 What is
More informationData Mining Cluster Analysis: Basic Concepts and Algorithms. Clustering Algorithms. Lecture Notes for Chapter 8. Introduction to Data Mining
Data Mining Cluster Analsis: Basic Concepts and Algorithms Lecture Notes for Chapter 8 Introduction to Data Mining b Tan, Steinbach, Kumar Clustering Algorithms Kmeans and its variants Hierarchical clustering
More informationCluster Analysis: Basic Concepts and Algorithms
Cluster Analsis: Basic Concepts and Algorithms What does it mean clustering? Applications Tpes of clustering Kmeans Intuition Algorithm Choosing initial centroids Bisecting Kmeans Postprocessing Strengths
More informationExample: Document Clustering. Clustering: Definition. Notion of a Cluster can be Ambiguous. Types of Clusterings. Hierarchical Clustering
Overview Prognostic Models and Data Mining in Medicine, part I Cluster Analsis What is Cluster Analsis? KMeans Clustering Hierarchical Clustering Cluster Validit Eample: Microarra data analsis 6 Summar
More informationData Mining Clustering. Sheets are based on the those provided by Tan, Steinbach, and Kumar. Introduction to Data Mining
Data Mining Clustering Toon Calders Sheets are based on the those provided b Tan, Steinbach, and Kumar. Introduction to Data Mining What is Cluster Analsis? Finding groups of objects such that the objects
More informationDATA MINING CLUSTER ANALYSIS: BASIC CONCEPTS
DATA MINING CLUSTER ANALYSIS: BASIC CONCEPTS 1 AND ALGORITHMS Chiara Renso KDDLAB ISTI CNR, Pisa, Italy WHAT IS CLUSTER ANALYSIS? Finding groups of objects such that the objects in a group will be similar
More informationData Mining Clustering (2) Sheets are based on the those provided by Tan, Steinbach, and Kumar. Introduction to Data Mining
Data Mining Clustering (2) Toon Calders Sheets are based on the those provided by Tan, Steinbach, and Kumar. Introduction to Data Mining Outline Partitional Clustering Distancebased Kmeans, Kmedoids,
More informationData Mining Cluster Analysis: Basic Concepts and Algorithms. Lecture Notes for Chapter 8. Introduction to Data Mining
Data Mining Cluster Analysis: Basic Concepts and Algorithms Lecture Notes for Chapter 8 Introduction to Data Mining by Tan, Steinbach, Kumar Tan,Steinbach, Kumar Introduction to Data Mining 4/8/2004 Hierarchical
More informationData Mining Cluster Analysis: Basic Concepts and Algorithms. Lecture Notes for Chapter 8. Introduction to Data Mining
Data Mining Cluster Analysis: Basic Concepts and Algorithms Lecture Notes for Chapter 8 by Tan, Steinbach, Kumar 1 What is Cluster Analysis? Finding groups of objects such that the objects in a group will
More informationClustering. Adrian Groza. Department of Computer Science Technical University of ClujNapoca
Clustering Adrian Groza Department of Computer Science Technical University of ClujNapoca Outline 1 Cluster Analysis What is Datamining? Cluster Analysis 2 Kmeans 3 Hierarchical Clustering What is Datamining?
More informationFor supervised classification we have a variety of measures to evaluate how good our model is Accuracy, precision, recall
Cluster Validation Cluster Validit For supervised classification we have a variet of measures to evaluate how good our model is Accurac, precision, recall For cluster analsis, the analogous question is
More informationCluster Analysis Overview. Data Mining Techniques: Cluster Analysis. What is Cluster Analysis? What is Cluster Analysis?
Cluster Analsis Overview Data Mining Techniques: Cluster Analsis Mirek Riedewald Man slides based on presentations b Han/Kamber, Tan/Steinbach/Kumar, and Andrew Moore Introduction Foundations: Measuring
More informationClustering. Data Mining. Abraham Otero. Data Mining. Agenda
Clustering 1/46 Agenda Introduction Distance Knearest neighbors Hierarchical clustering Quick reference 2/46 1 Introduction It seems logical that in a new situation we should act in a similar way as in
More informationCluster Analysis: Basic Concepts and Algorithms
8 Cluster Analysis: Basic Concepts and Algorithms Cluster analysis divides data into groups (clusters) that are meaningful, useful, or both. If meaningful groups are the goal, then the clusters should
More informationClustering UE 141 Spring 2013
Clustering UE 141 Spring 013 Jing Gao SUNY Buffalo 1 Definition of Clustering Finding groups of obects such that the obects in a group will be similar (or related) to one another and different from (or
More informationCLASSIFICATION AND CLUSTERING. Anveshi Charuvaka
CLASSIFICATION AND CLUSTERING Anveshi Charuvaka Learning from Data Classification Regression Clustering Anomaly Detection Contrast Set Mining Classification: Definition Given a collection of records (training
More informationData Mining Cluster Analysis: Advanced Concepts and Algorithms. Lecture Notes for Chapter 9. Introduction to Data Mining
Data Mining Cluster Analysis: Advanced Concepts and Algorithms Lecture Notes for Chapter 9 Introduction to Data Mining by Tan, Steinbach, Kumar Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004
More informationCluster Analysis: Advanced Concepts
Cluster Analysis: Advanced Concepts and dalgorithms Dr. Hui Xiong Rutgers University Introduction to Data Mining 08/06/2006 1 Introduction to Data Mining 08/06/2006 1 Outline Prototypebased Fuzzy cmeans
More informationCluster Analysis. Alison Merikangas Data Analysis Seminar 18 November 2009
Cluster Analysis Alison Merikangas Data Analysis Seminar 18 November 2009 Overview What is cluster analysis? Types of cluster Distance functions Clustering methods Agglomerative Kmeans Densitybased Interpretation
More informationData Mining Cluster Analysis: Advanced Concepts and Algorithms. Lecture Notes for Chapter 9. Introduction to Data Mining
Data Mining Cluster Analysis: Advanced Concepts and Algorithms Lecture Notes for Chapter 9 Introduction to Data Mining by Tan, Steinbach, Kumar Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004
More informationClustering & Association
Clustering  Overview What is cluster analysis? Grouping data objects based only on information found in the data describing these objects and their relationships Maximize the similarity within objects
More informationData Mining. Cluster Analysis: Advanced Concepts and Algorithms
Data Mining Cluster Analysis: Advanced Concepts and Algorithms Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004 1 More Clustering Methods Prototypebased clustering Densitybased clustering Graphbased
More informationUnsupervised learning: Clustering
Unsupervised learning: Clustering Salissou Moutari Centre for Statistical Science and Operational Research CenSSOR 17 th September 2013 Unsupervised learning: Clustering 1/52 Outline 1 Introduction What
More informationFig. 1 A typical Knowledge Discovery process [2]
Volume 4, Issue 7, July 2014 ISSN: 2277 128X International Journal of Advanced Research in Computer Science and Software Engineering Research Paper Available online at: www.ijarcsse.com A Review on Clustering
More informationClustering. Danilo Croce Web Mining & Retrieval a.a. 2015/201 16/03/2016
Clustering Danilo Croce Web Mining & Retrieval a.a. 2015/201 16/03/2016 1 Supervised learning vs. unsupervised learning Supervised learning: discover patterns in the data that relate data attributes with
More informationClustering. Clustering. What is Clustering? What is Clustering? What is Clustering? Types of Data in Cluster Analysis
What is Clustering? Clustering Tpes of Data in Cluster Analsis Clustering A Categorization of Major Clustering Methods Partitioning Methods Hierarchical Methods What is Clustering? Clustering of data is
More informationCluster Analysis. Isabel M. Rodrigues. Lisboa, 2014. Instituto Superior Técnico
Instituto Superior Técnico Lisboa, 2014 Introduction: Cluster analysis What is? Finding groups of objects such that the objects in a group will be similar (or related) to one another and different from
More informationAn Introduction to Cluster Analysis for Data Mining
An Introduction to Cluster Analysis for Data Mining 10/02/2000 11:42 AM 1. INTRODUCTION... 4 1.1. Scope of This Paper... 4 1.2. What Cluster Analysis Is... 4 1.3. What Cluster Analysis Is Not... 5 2. OVERVIEW...
More informationChapter 7. Cluster Analysis
Chapter 7. Cluster Analysis. What is Cluster Analysis?. A Categorization of Major Clustering Methods. Partitioning Methods. Hierarchical Methods 5. DensityBased Methods 6. GridBased Methods 7. ModelBased
More informationROBERTO BATTITI, MAURO BRUNATO. The LION Way: Machine Learning plus Intelligent Optimization. LIONlab, University of Trento, Italy, Apr 2015
ROBERTO BATTITI, MAURO BRUNATO. The LION Way: Machine Learning plus Intelligent Optimization. LIONlab, University of Trento, Italy, Apr 2015 http://intelligentoptimization.org/lionbook Roberto Battiti
More informationNeural Networks Lesson 5  Cluster Analysis
Neural Networks Lesson 5  Cluster Analysis Prof. Michele Scarpiniti INFOCOM Dpt.  Sapienza University of Rome http://ispac.ing.uniroma1.it/scarpiniti/index.htm michele.scarpiniti@uniroma1.it Rome, 29
More informationAn Enhanced Clustering Algorithm to Analyze Spatial Data
International Journal of Engineering and Technical Research (IJETR) ISSN: 23210869, Volume2, Issue7, July 2014 An Enhanced Clustering Algorithm to Analyze Spatial Data Dr. Mahesh Kumar, Mr. Sachin Yadav
More information10810 /02710 Computational Genomics. Clustering expression data
10810 /02710 Computational Genomics Clustering expression data What is Clustering? Organizing data into clusters such that there is high intracluster similarity low intercluster similarity Informally,
More informationA comparison of various clustering methods and algorithms in data mining
Volume :2, Issue :5, 3236 May 2015 www.allsubjectjournal.com eissn: 23494182 pissn: 23495979 Impact Factor: 3.762 R.Tamilselvi B.Sivasakthi R.Kavitha Assistant Professor A comparison of various clustering
More informationDistance based clustering
// Distance based clustering Chapter ² ² Clustering Clustering is the art of finding groups in data (Kaufman and Rousseeuw, 99). What is a cluster? Group of objects separated from other clusters Means
More informationInformation Retrieval and Web Search Engines
Information Retrieval and Web Search Engines Lecture 7: Document Clustering December 10 th, 2013 WolfTilo Balke and Kinda El Maarry Institut für Informationssysteme Technische Universität Braunschweig
More informationSoSe 2014: MTANI: Big Data Analytics
SoSe 2014: MTANI: Big Data Analytics Lecture 4 21/05/2014 Sead Izberovic Dr. Nikolaos Korfiatis Agenda Recap from the previous session Clustering Introduction Distance mesures Hierarchical Clustering
More informationText Clustering. Clustering
Text Clustering 1 Clustering Partition unlabeled examples into disoint subsets of clusters, such that: Examples within a cluster are very similar Examples in different clusters are very different Discover
More informationA Survey of Clustering Techniques
A Survey of Clustering Techniques Pradeep Rai Asst. Prof., CSE Department, Kanpur Institute of Technology, Kanpur0800 (India) Shubha Singh Asst. Prof., MCA Department, Kanpur Institute of Technology,
More informationData Clustering. Dec 2nd, 2013 Kyrylo Bessonov
Data Clustering Dec 2nd, 2013 Kyrylo Bessonov Talk outline Introduction to clustering Types of clustering Supervised Unsupervised Similarity measures Main clustering algorithms kmeans Hierarchical Main
More informationData Mining Project Report. Document Clustering. Meryem UzunPer
Data Mining Project Report Document Clustering Meryem UzunPer 504112506 Table of Content Table of Content... 2 1. Project Definition... 3 2. Literature Survey... 3 3. Methods... 4 3.1. Kmeans algorithm...
More informationClustering. 15381 Artificial Intelligence Henry Lin. Organizing data into clusters such that there is
Clustering 15381 Artificial Intelligence Henry Lin Modified from excellent slides of Eamonn Keogh, Ziv BarJoseph, and Andrew Moore What is Clustering? Organizing data into clusters such that there is
More informationConcept of Cluster Analysis
RESEARCH PAPER ON CLUSTER TECHNIQUES OF DATA VARIATIONS Er. Arpit Gupta 1,Er.Ankit Gupta 2,Er. Amit Mishra 3 arpit_jp@yahoo.co.in, ank_mgcgv@yahoo.co.in,amitmishra.mtech@gmail.com Faculty Of Engineering
More informationClient Based Power Iteration Clustering Algorithm to Reduce Dimensionality in Big Data
Client Based Power Iteration Clustering Algorithm to Reduce Dimensionalit in Big Data Jaalatchum. D 1, Thambidurai. P 1, Department of CSE, PKIET, Karaikal, India Abstract  Clustering is a group of objects
More informationSummary Data Mining & Process Mining (1BM46) Content. Made by S.P.T. Ariesen
Summary Data Mining & Process Mining (1BM46) Made by S.P.T. Ariesen Content Data Mining part... 2 Lecture 1... 2 Lecture 2:... 4 Lecture 3... 7 Lecture 4... 9 Process mining part... 13 Lecture 5... 13
More informationComparison and Analysis of Various Clustering Methods in Data mining On Education data set Using the weak tool
Comparison and Analysis of Various Clustering Metho in Data mining On Education data set Using the weak tool Abstract: Data mining is used to find the hidden information pattern and relationship between
More informationTerritorial Analysis for Ratemaking. Philip Begher, Dario Biasini, Filip Branitchev, David Graham, Erik McCracken, Rachel Rogers and Alex Takacs
Territorial Analysis for Ratemaking by Philip Begher, Dario Biasini, Filip Branitchev, David Graham, Erik McCracken, Rachel Rogers and Alex Takacs Department of Statistics and Applied Probability University
More informationPERFORMANCE ANALYSIS OF CLUSTERING ALGORITHMS IN DATA MINING IN WEKA
PERFORMANCE ANALYSIS OF CLUSTERING ALGORITHMS IN DATA MINING IN WEKA Prakash Singh 1, Aarohi Surya 2 1 Department of Finance, IIM Lucknow, Lucknow, India 2 Department of Computer Science, LNMIIT, Jaipur,
More informationHierarchical Cluster Analysis Some Basics and Algorithms
Hierarchical Cluster Analysis Some Basics and Algorithms Nethra Sambamoorthi CRMportals Inc., 11 Bartram Road, Englishtown, NJ 07726 (NOTE: Please use always the latest copy of the document. Click on this
More informationARTIFICIAL INTELLIGENCE (CSCU9YE) LECTURE 6: MACHINE LEARNING 2: UNSUPERVISED LEARNING (CLUSTERING)
ARTIFICIAL INTELLIGENCE (CSCU9YE) LECTURE 6: MACHINE LEARNING 2: UNSUPERVISED LEARNING (CLUSTERING) Gabriela Ochoa http://www.cs.stir.ac.uk/~goc/ OUTLINE Preliminaries Classification and Clustering Applications
More informationCluster Analysis: Basic Concepts and Methods
10 Cluster Analysis: Basic Concepts and Methods Imagine that you are the Director of Customer Relationships at AllElectronics, and you have five managers working for you. You would like to organize all
More informationMachine Learning and Data Mining. Clustering. (adapted from) Prof. Alexander Ihler
Machine Learning and Data Mining Clustering (adapted from) Prof. Alexander Ihler Unsupervised learning Supervised learning Predict target value ( y ) given features ( x ) Unsupervised learning Understand
More informationClustering & Visualization
Chapter 5 Clustering & Visualization Clustering in highdimensional databases is an important problem and there are a number of different clustering paradigms which are applicable to highdimensional data.
More informationThere are a number of different methods that can be used to carry out a cluster analysis; these methods can be classified as follows:
Statistics: Rosie Cornish. 2007. 3.1 Cluster Analysis 1 Introduction This handout is designed to provide only a brief introduction to cluster analysis and how it is done. Books giving further details are
More informationA Novel Density based improved kmeans Clustering Algorithm Dbkmeans
A Novel Density based improved kmeans Clustering Algorithm Dbkmeans K. Mumtaz 1 and Dr. K. Duraiswamy 2, 1 Vivekanandha Institute of Information and Management Studies, Tiruchengode, India 2 KS Rangasamy
More informationA Comparative Study of clustering algorithms Using weka tools
A Comparative Study of clustering algorithms Using weka tools Bharat Chaudhari 1, Manan Parikh 2 1,2 MECSE, KITRC KALOL ABSTRACT Data clustering is a process of putting similar data into groups. A clustering
More informationChapter ML:XI (continued)
Chapter ML:XI (continued) XI. Cluster Analysis Data Mining Overview Cluster Analysis Basics Hierarchical Cluster Analysis Iterative Cluster Analysis DensityBased Cluster Analysis Cluster Evaluation Constrained
More informationCluster Analysis using R
Cluster analysis or clustering is the task of assigning a set of objects into groups (called clusters) so that the objects in the same cluster are more similar (in some sense or another) to each other
More informationUNSUPERVISED MACHINE LEARNING TECHNIQUES IN GENOMICS
UNSUPERVISED MACHINE LEARNING TECHNIQUES IN GENOMICS Dwijesh C. Mishra I.A.S.R.I., Library Avenue, New Delhi110 012 dcmishra@iasri.res.in What is Learning? "Learning denotes changes in a system that enable
More informationUSING THE AGGLOMERATIVE METHOD OF HIERARCHICAL CLUSTERING AS A DATA MINING TOOL IN CAPITAL MARKET 1. Vera Marinova Boncheva
382 [7] Reznik, A, Kussul, N., Sokolov, A.: Identification of user activity using neural networks. Cybernetics and computer techniques, vol. 123 (1999) 70 79. (in Russian) [8] Kussul, N., et al. : MultiAgent
More information. Learn the number of classes and the structure of each class using similarity between unlabeled training patterns
Outline Part 1: of data clustering NonSupervised Learning and Clustering : Problem formulation cluster analysis : Taxonomies of Clustering Techniques : Data types and Proximity Measures : Difficulties
More informationRobotics 2 Clustering & EM. Giorgio Grisetti, Cyrill Stachniss, Kai Arras, Maren Bennewitz, Wolfram Burgard
Robotics 2 Clustering & EM Giorgio Grisetti, Cyrill Stachniss, Kai Arras, Maren Bennewitz, Wolfram Burgard 1 Clustering (1) Common technique for statistical data analysis to detect structure (machine learning,
More informationUnsupervised Learning and Data Mining. Unsupervised Learning and Data Mining. Clustering. Supervised Learning. Supervised Learning
Unsupervised Learning and Data Mining Unsupervised Learning and Data Mining Clustering Decision trees Artificial neural nets Knearest neighbor Support vectors Linear regression Logistic regression...
More information2 Basic Concepts and Techniques of Cluster Analysis
The Challenges of Clustering High Dimensional Data * Michael Steinbach, Levent Ertöz, and Vipin Kumar Abstract Cluster analysis divides data into groups (clusters) for the purposes of summarization or
More informationCLUSTER ANALYSIS FOR SEGMENTATION
CLUSTER ANALYSIS FOR SEGMENTATION Introduction We all understand that consumers are not all alike. This provides a challenge for the development and marketing of profitable products and services. Not every
More informationL15: statistical clustering
Similarity measures Criterion functions Cluster validity Flat clustering algorithms kmeans ISODATA L15: statistical clustering Hierarchical clustering algorithms Divisive Agglomerative CSCE 666 Pattern
More informationMachine Learning using MapReduce
Machine Learning using MapReduce What is Machine Learning Machine learning is a subfield of artificial intelligence concerned with techniques that allow computers to improve their outputs based on previous
More informationLecture 20: Clustering
Lecture 20: Clustering Wrapup of neural nets (from last lecture Introduction to unsupervised learning Kmeans clustering COMP424, Lecture 20  April 3, 2013 1 Unsupervised learning In supervised learning,
More informationCluster analysis Cosmin Lazar. COMO Lab VUB
Cluster analysis Cosmin Lazar COMO Lab VUB Introduction Cluster analysis foundations rely on one of the most fundamental, simple and very often unnoticed ways (or methods) of understanding and learning,
More informationDistances, Clustering, and Classification. Heatmaps
Distances, Clustering, and Classification Heatmaps 1 Distance Clustering organizes things that are close into groups What does it mean for two genes to be close? What does it mean for two samples to be
More informationDecision Support System Methodology Using a Visual Approach for Cluster Analysis Problems
Decision Support System Methodology Using a Visual Approach for Cluster Analysis Problems Ran M. Bittmann School of Business Administration Ph.D. Thesis Submitted to the Senate of BarIlan University RamatGan,
More informationClustering Hierarchical clustering and kmean clustering
Clustering Hierarchical clustering and kmean clustering Genome 373 Genomic Informatics Elhanan Borenstein The clustering problem: A quick review partition genes into distinct sets with high homogeneity
More informationUnsupervised Data Mining (Clustering)
Unsupervised Data Mining (Clustering) Javier Béjar KEMLG December 01 Javier Béjar (KEMLG) Unsupervised Data Mining (Clustering) December 01 1 / 51 Introduction Clustering in KDD One of the main tasks in
More informationMedical Information Management & Mining. You Chen Jan,15, 2013 You.chen@vanderbilt.edu
Medical Information Management & Mining You Chen Jan,15, 2013 You.chen@vanderbilt.edu 1 Trees Building Materials Trees cannot be used to build a house directly. How can we transform trees to building materials?
More informationData Mining and Knowledge Discovery in Databases (KDD) State of the Art. Prof. Dr. T. Nouri Computer Science Department FHNW Switzerland
Data Mining and Knowledge Discovery in Databases (KDD) State of the Art Prof. Dr. T. Nouri Computer Science Department FHNW Switzerland 1 Conference overview 1. Overview of KDD and data mining 2. Data
More informationData Mining Process Using Clustering: A Survey
Data Mining Process Using Clustering: A Survey Mohamad Saraee Department of Electrical and Computer Engineering Isfahan University of Techno1ogy, Isfahan, 8415683111 saraee@cc.iut.ac.ir Najmeh Ahmadian
More informationClustering Techniques: A Brief Survey of Different Clustering Algorithms
Clustering Techniques: A Brief Survey of Different Clustering Algorithms Deepti Sisodia Technocrates Institute of Technology, Bhopal, India Lokesh Singh Technocrates Institute of Technology, Bhopal, India
More informationIntroduction to Clustering
Introduction to Clustering Yumi Kondo Student Seminar LSK301 Sep 25, 2010 Yumi Kondo (University of British Columbia) Introduction to Clustering Sep 25, 2010 1 / 36 Microarray Example N=65 P=1756 Yumi
More informationClassification Techniques (1)
10 10 Overview Classification Techniques (1) Today Classification Problem Classification based on Regression Distancebased Classification (KNN) Net Lecture Decision Trees Classification using Rules Quality
More informationData Mining KClustering Problem
Data Mining KClustering Problem Elham Karoussi Supervisor Associate Professor Noureddine Bouhmala This Master s Thesis is carried out as a part of the education at the University of Agder and is therefore
More informationData Mining Classification: Alternative Techniques. InstanceBased Classifiers. Lecture Notes for Chapter 5. Introduction to Data Mining
Data Mining Classification: Alternative Techniques InstanceBased Classifiers Lecture Notes for Chapter 5 Introduction to Data Mining by Tan, Steinbach, Kumar Set of Stored Cases Atr1... AtrN Class A B
More informationPersonalized Hierarchical Clustering
Personalized Hierarchical Clustering Korinna Bade, Andreas Nürnberger Faculty of Computer Science, OttovonGuerickeUniversity Magdeburg, D39106 Magdeburg, Germany {kbade,nuernb}@iws.cs.unimagdeburg.de
More informationValidity Measure of Cluster Based On the IntraCluster and InterCluster Distance
International Journal of Electronics and Computer Science Engineering 2486 Available Online at www.ijecse.org ISSN 22771956 Validity Measure of Cluster Based On the IntraCluster and InterCluster Distance
More informationBIRCH: An Efficient Data Clustering Method For Very Large Databases
BIRCH: An Efficient Data Clustering Method For Very Large Databases Tian Zhang, Raghu Ramakrishnan, Miron Livny CPSC 504 Presenter: Discussion Leader: Sophia (Xueyao) Liang HelenJr, Birches. Online Image.
More informationOn Clustering Validation Techniques
Journal of Intelligent Information Systems, 17:2/3, 107 145, 2001 c 2001 Kluwer Academic Publishers. Manufactured in The Netherlands. On Clustering Validation Techniques MARIA HALKIDI mhalk@aueb.gr YANNIS
More informationClustering: Techniques & Applications. Nguyen Sinh Hoa, Nguyen Hung Son. 15 lutego 2006 Clustering 1
Clustering: Techniques & Applications Nguyen Sinh Hoa, Nguyen Hung Son 15 lutego 2006 Clustering 1 Agenda Introduction Clustering Methods Applications: Outlier Analysis Gene clustering Summary and Conclusions
More informationAn Analysis on Density Based Clustering of Multi Dimensional Spatial Data
An Analysis on Density Based Clustering of Multi Dimensional Spatial Data K. Mumtaz 1 Assistant Professor, Department of MCA Vivekanandha Institute of Information and Management Studies, Tiruchengode,
More informationData Mining: Exploring Data. Lecture Notes for Chapter 3. Introduction to Data Mining
Data Mining: Exploring Data Lecture Notes for Chapter 3 Introduction to Data Mining by Tan, Steinbach, Kumar Tan,Steinbach, Kumar Introduction to Data Mining 8/05/2005 1 What is data exploration? A preliminary
More informationComparative Analysis of EM Clustering Algorithm and Density Based Clustering Algorithm Using WEKA tool.
International Journal of Engineering Research and Development eissn: 2278067X, pissn: 2278800X, www.ijerd.com Volume 9, Issue 8 (January 2014), PP. 1924 Comparative Analysis of EM Clustering Algorithm
More informationA Study of Web Log Analysis Using Clustering Techniques
A Study of Web Log Analysis Using Clustering Techniques Hemanshu Rana 1, Mayank Patel 2 Assistant Professor, Dept of CSE, M.G Institute of Technical Education, Gujarat India 1 Assistant Professor, Dept
More informationTime series clustering and the analysis of film style
Time series clustering and the analysis of film style Nick Redfern Introduction Time series clustering provides a simple solution to the problem of searching a database containing time series data such
More informationSocial Media Mining. Data Mining Essentials
Introduction Data production rate has been increased dramatically (Big Data) and we are able store much more data than before E.g., purchase data, social media data, mobile phone data Businesses and customers
More informationClustering methods for Big data analysis
Clustering methods for Big data analysis Keshav Sanse, Meena Sharma Abstract Today s age is the age of data. Nowadays the data is being produced at a tremendous rate. In order to make use of this largescale
More informationGoing Big in Data Dimensionality:
LUDWIG MAXIMILIANS UNIVERSITY MUNICH DEPARTMENT INSTITUTE FOR INFORMATICS DATABASE Going Big in Data Dimensionality: Challenges and Solutions for Mining High Dimensional Data Peer Kröger Lehrstuhl für
More informationClustering. Chapter 7. 7.1 Introduction to Clustering Techniques. 7.1.1 Points, Spaces, and Distances
240 Chapter 7 Clustering Clustering is the process of examining a collection of points, and grouping the points into clusters according to some distance measure. The goal is that points in the same cluster
More informationA Method for Decentralized Clustering in Large MultiAgent Systems
A Method for Decentralized Clustering in Large MultiAgent Systems Elth Ogston, Benno Overeinder, Maarten van Steen, and Frances Brazier Department of Computer Science, Vrije Universiteit Amsterdam {elth,bjo,steen,frances}@cs.vu.nl
More informationSPECIAL PERTURBATIONS UNCORRELATED TRACK PROCESSING
AAS 07228 SPECIAL PERTURBATIONS UNCORRELATED TRACK PROCESSING INTRODUCTION James G. Miller * Two historical uncorrelated track (UCT) processing approaches have been employed using general perturbations
More informationOUTLIER ANALYSIS. Data Mining 1
OUTLIER ANALYSIS Data Mining 1 What Are Outliers? Outlier: A data object that deviates significantly from the normal objects as if it were generated by a different mechanism Ex.: Unusual credit card purchase,
More informationStatistical Databases and Registers with some datamining
Unsupervised learning  Statistical Databases and Registers with some datamining a course in Survey Methodology and O cial Statistics Pages in the book: 501528 Department of Statistics Stockholm University
More information