Serotonin GABA interactions modulate MDMA-induced mesolimbic dopamine release

Size: px
Start display at page:

Download "Serotonin GABA interactions modulate MDMA-induced mesolimbic dopamine release"

Transcription

1 Journal of Neurochemistry, 2004, 91, doi: /j x Serotonin GABA interactions modulate MDMA-induced mesolimbic dopamine release Michael G. Bankson and Bryan K. Yamamoto Laboratory of Neurochemistry, Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, Massachusetts, USA Abstract 3,4,-Methylenedioxymethamphetamine (MDMA; ecstasy ) acts at monoamine nerve terminals to alter the release and re-uptake of dopamine and 5-HT. The present study used microdialysis in awake rats to measure MDMA-induced changes in extracellular GABA in the ventral tegmental area (VTA), simultaneous with measures of extracellular dopamine (DA) in the nucleus accumbens (NAC) shell. (+)-MDMA (0, 2.5, 5 and 10 mg/kg, i.p.) increased GABA efflux in the VTA with a bell-shaped dose response. This increase was blocked by application of TTX through the VTA probe. MDMA (5 mg/kg) increased 5-HT efflux in VTA by 1037% (p <0.05). The local perfusion of the 5-HT 2B/2C antagonist SB into the VTA reduced VTA GABA efflux after MDMA from a maximum of 229% to a maximum of 126% of basal values (p <0.05), while having no effect on basal extracellular GABA concentrations. DA concentrations measured simultaneously in the NAC shell were increased from a maximum of 486% to 1320% (p <0.05). The selective DA releaser d-amphetamine (AMPH) (4 mg/kg) also increased VTA GABA efflux (180%), did not alter 5-HT and increased NAC DA (875%) (p <0.05), but the perfusion of SB into the VTA failed to alter these effects. These results suggest that MDMA-mediated increases in DA within the NAC shell are dampened by increases in VTA GABA subsequent to activation of 5-HT 2B/2C receptors in the VTA. Keywords: dopamine, gamma amino butyric acid, 3, 4-methylenedioxymethamphetamine, nucleus accumbens, serotonin, ventral tegmental area. J. Neurochem. (2004) 91, ,4,-Methylenedioxymethamphetamine (MDMA; e ; x ; ecstasy ) is an amphetamine derivative that is being increasingly abused across the US and worldwide. Some of the unique properties of MDMA that make it subjectively different from the parent compound, d-amphetamine (AMPH), and probably account for its continued popularity, include cognitive enhancement, feelings of warmth toward others, abatement of anxiety and enhanced perceptual ability (Vollenweider et al. 1998). The stimulant and rewarding properties of MDMA, as well as the other amphetamines, are thought to arise in part from the ability of these drugs to activate mesolimbic dopamine (DA) neurons in the ventral tegmental area (VTA) that project to the nucleus accumbens (NAC) (Hoebel 1985; Gold et al. 1989a; Kelley and Delfs 1991). Both MDMA and AMPH act primarily by releasing DA from nerve terminals via reversal of the dopamine transporter (Fischer and Cho 1976; Holmes and Rutledge 1976). The enhancement of DA release in NAC is thought to mediate their locomotor activating and rewarding properties (Gold et al. 1989b). Compared with AMPH, MDMA binds with higher affinity to the serotonin re-uptake transporter to release 5-HT (Johnson et al. 1991; Rudnick and Wall 1992). Thus, the unique properties of MDMA that differentiate it from the effects of other amphetamines in both human (Greer and Tolbert 1986) and animal (Paulus and Geyer 1992) studies may arise from the simultaneous release of 5-HT and DA. Another difference between MDMA and amphetamine that may account for the unique pharmacological profile of MDMA is that MDMA, unlike AMPH, causes both transporter-mediated and impulse-mediated DA release. The impulse-mediated release of DA produced by MDMA Received June 11, 2004; revised manuscript received July 15, 2004; accepted July 16, Address correspondence and reprint requests to Bryan K. Yamamoto PhD, Department of Pharmacology and Experimental Therapeutics, L-613, Boston University School or Medicine, Boston, MA 02118, USA. bkyam@bu.edu Abbreviations used: AMPH, d-amphetamine; DA, dopamine; GABA, gamma amino butyric acid; 5-HT, 5-hydroxytryptamine, serotonin; MDMA, 3,4-methylenedioxymethamphetamine; VTA, ventral tegmental area. 852

2 MDMA and VTA GABA 853 appears to be dependent on 5-HT transmission (Koch and Galloway 1997) and may be explained by the stimulatory effects of 5-HT 1B/1D (Hallbus et al. 1997), 5-HT 2A (Schmidt et al. 1992a), 5-HT3 (De Deurwaerdere et al. 1998), and 5-HT 6 (Minabe et al. 2004) receptors on DA release. The impulse dependency of MDMA-induced DA release is consistent with the findings that MDMA-induced increases in extracellular DA in the striatum are attenuated by the sodium channel blocker TTX (Yamamoto et al. 1995) and that pharmacological inhibition of MDMA-induced 5-HT release attenuates MDMA-induced striatal DA release (Gudelsky and Nash 1996; Koch and Galloway 1997). The premise that MDMA-induced DA release is secondary, in part, to MDMA-induced 5-HT release is also consistent with locomotor studies showing that MDMAinduced activity is blocked by 5-HT 1B (Callaway et al. 1992; McCreary et al. 1999) or 5-HT 2A (Kehne et al. 1996) antagonists. Alternatively, blockade of 5-HT 2B/2C receptors has been shown to greatly enhance MDMA-induced locomotion (Bankson and Cunningham 2002). Thus, there are opposing effects of 5-HT on the behavioral effects of MDMA, a 5-HT 1B/2A stimulatory effect and a 5-HT 2C inhibitory effect. One explanation for these behavioral findings is that activation of 5-HT 2C receptors may act in opposition to the stimulatory effects of 5-HT 1B and 5-HT 2A receptors by limiting MDMA-induced DA release in NAC (Gold et al. 1989). While the stimulatory role of the 5-HT 2A receptor is consistent with these receptors being located on and directly stimulating mesolimbic DA neurons (Doherty and Pickel 2000), the role of 5-HT 1B receptors in facilitating, and the role of 5-HT 2C receptors in dampening MDMAinduced motor activation, may be mediated through changes in mesolimbic GABA. GABA is known to decrease DA cell firing in the VTA (Kiyatkin and Rebec 1998). 5-HT 2C receptors located on non-dopaminergic (presumably GABA) neurons in the VTA increase GABA transmission (Stanford and Lacey 1996). Therefore, 5-HT 2C receptors may decrease DA cell firing through increases in GABA release in the VTA. Consistent with these findings, selective stimulation of 5-HT 2C receptors decreases DA release in the NAC shell and decreases the firing rate of mesolimbic DA neurons (Di Giovanni et al. 2000). Conversely, antagonism of this receptor increases the firing rate of VTA DA neurons and increases DA release in the NAC (Di Matteo et al. 1999). While these studies are suggestive of a modulatory role of 5-HT 2C receptors on VTA neurons and DA release in the NAC shell, the systemic administration of 5-HT agonists and antagonists was used and thus do not address the specific locus of action or whether 5-HT 2C receptors dampen DA transmission directly or indirectly through the enhancement of GABAergic transmission within the VTA. Previous work from this laboratory has shown that the non-selective 5-HT 2A/2C receptor antagonist ritanserin attenuates MDMA-induced increases in DA release in the nigrostriatal pathway (Yamamoto et al. 1995) and suggests that 5-HT 2A receptor activation is necessary for MDMAinduced DA release (Schmidt et al. 1992b); however, this study did not address the specific contribution of 5-HT 2C receptors. Furthermore, this prior work did not examine how MDMA-induced DA release is regulated in the mesolimbic pathway. Di Giovanni et al. (2000) have shown that mesolimbic 5-HT 2C receptors exert greater inhibitory control over DA release than do nigrostriatal 5-HT 2C receptors, but no studies to date have used localised blockade of 5-HT 2C receptors in the VTA to evaluate their involvement in controlling mesolimbic DA release after MDMA administration. Based on the aforementioned behavioral, neurochemical and anatomical studies, the 5-HT 2C receptor in the VTA may oppose and modulate the stimulatory effects of 5-HT 1B and 5-HT 2A receptors to limit the impulse-mediated release of DA in the NAC shell, and thereby contribute to the unique neurochemical and behavioral profile of MDMA relative to the actions of AMPH. The hypothesis of the current study is that MDMA-induced DA release in the NAC shell differs from that of AMPH-induced DA release in that DA release produced by MDMA is dampened by the enhancement of GABA transmission in the VTA via the activation of the 5-HT 2C receptor. To test this hypothesis, extracellular DA within the NAC shell produced by MDMA or AMPH was measured simultaneously with changes in the extracellular concentrations of GABA within the VTA in the presence or absence of the local perfusion of the VTA with a 5-HT 2B/2C antagonist. Materials and methods Subjects Male Sprague-Dawley rats (Harlan Sprague-Dawley, Indianapolis, IN, USA) weighing g at the beginning of experimental procedures were housed in groups of three in a temperature (21 23 C) -controlled environment for at least 2 days prior to experiments. Food and water were available ad libitum. Lighting was maintained under a 12-h light-dark cycle (lights on h). All experimental procedures were performed between and h and were carried out in accordance with the National Institutes of Health Guide for the Care and Use of Laboratory Animals. Drugs SB [N-3-pyridinyl-3,5-dihydro-5-methylbenzo(1,2-b:4,5- b )dipyrrole-1(2h)carboxamide] and TTX (tetrodotoxin) were obtained from Research Biochemicals Inc. (Natick, MA, USA). (+)-MDMA (3,4-methlenedioxymethamphetamine) was obtained from the National Institutes on Drug Abuse (NIDA, Research Triangle Park, NC, USA). Doses refer to the weight of the salt. MDMA was administered intraperitoneally in a volume of 1 ml per kg of body weight. SB (5 lm) and TTX (1 lm) were

3 854 M. G. Bankson and B. K. Yamamoto administered by reverse dialysis in modified Dulbecco s buffered saline (137 mm NaCl, 2.7 mm KCl, 0.5 mm MgCl 2, 8.1 mm Na 2 HPO 4, 1.5 mm KH 2 PO 4, 1.2 mm CaCl 2 and 5 mm d-glucose, ph 7.4). Surgical procedures After acclimation to the colony room, all rats were anesthetized with a combination of xylazine (12 mg/kg) and ketamine (80 mg/kg) and placed into a Kopf stereotaxic frame. The skull was exposed and a microdialysis probe placed in the ventral tegmental area (VTA) (4.8 mm posterior, ±0.8 mm medial, 9 mm ventral to bregma). For dual probe studies, probes were placed in both the VTA and nucleus accumbens shell (NAC) 1.7 mm anterior, ±1.1 mm medial and 9.1 mm ventral to bregma at an angle of 15 degrees. The probes were constructed as previously described (Pehek et al. 1990) and have an active membrane length of 1.75 mm. The probes and a metal male connector were secured to the skull with three stainless steel screws and cranioplastic cement. Microdialysis procedures The day after probe insertion, the modified Dulbecco s phosphatebuffered saline medium was pumped through the microdialysis probes with a Harvard Model 22 syringe infusion pump (Hollison, MA, USA) at a rate of 2 ll/min. A 1.5-h perfusion period was allowed prior to sample collection. Thirty-minute samples were then collected. Four baseline samples were collected after which SB or TTX was added to the perfusion medium of the probe positioned in the VTA. MDMA or saline was injected 2 h after initiation of the perfusion of TTX (1 lm) or SB (5 lm) into the VTA. In the single probe experiments that measured GABA in VTA, MDMA was injected 30 min after SB infusion into VTA. Samples from the VTA and NAC shell were collected for 3 h. For the experiments that involved a single probe implantation in the VTA, MDMA, AMPH or saline control was injected immediately after four baseline samples and samples taken every 30 min for 3 h. HPLC analysis of monoamines and GABA Microdialysis samples were assayed for dopamine, 5-HT, and GABA by high-performance liquid chromatography with electrochemical detection. Three-point standard curves were evaluated periodically to determine peak identity and linearity of the concentration response. Single point calibration was used on a daily basis to quantify peak height. Separation was achieved with a C18 column ( mm, 3 lm particle size; Phenomenex, Torrance, CA, USA). The mobile phase for detection of DA, 5-HT and metabolites (ph 4.2) consisted of 32 mm citric acid, 54.3 mm sodium acetate, mm EDTA, mm octyl sodium sulfate and 3% methanol. GABA was derivatized with o-phthaldialdehyde and sodium sulfite (Smith and Sharp 1994). Briefly, 2 ll of the stock derivatization reagent containing 22 mg of OPA, 0.5 ml of 100% ethanol, 0.5 ml of 1 M sodium sulfite and 9 ml of sodium borate buffer (0.4 M boric acid, ph 10.4) was added to 20 ll of dialysate or standard, vortexed and allowed to react for 5 min before injecting onto a C18 column ( mm, 3 lm particle size; Phenomenex). GABA was eluted using a mobile phase consisting of 0.1 M Na 2 HPO 4 and 0.1 mm EDTA in 10% methanol at ph ¼ 4.4. Compounds were detected with an LC-4C amperometric detector (Bioanalytical Systems, West Lafayette, IN, USA) or Decade R. detector (Antec-Leyden, the Netherlands) with a 6-mm glassy carbon working electrode maintained at a potential of V (DA, 5-HT) or 0.7 V (GABA) relative to a Ag/AgCl reference electrode. Statistical analyses One-way way repeated-measures analyses of variance (ANOVA) (AUC), or two-way ANOVAs (time-course) were computed to compare rats treated with drugs across all sample collection times. Post-hoc Tukey s HSD tests were used to analyze any significant treatments at specific time points. Average baseline values for all experiments was calculated from the four samples prior to control, TTX or SB pre-treatment. Results MDMA effects on VTA GABA: interaction with SB and TTX Across groups, basal GABA in the VTA was 22.8 ± 2.3 nm; basal DA in the NAC shell was 0.48 ± 0.05 nm; and basal 5-HT in the VTA was 0.14 ± 0.03 nm. MDMA significantly increased extracellular GABA concentrations in the VTA (F 3,24 ¼ 6.31, p < 0.05) compared with vehicle controls (Fig. 1). MDMA (5 mg/kg) had the greatest effect on VTA GABA release and was therefore used in all subsequent experiments. Pre-treatment with SB or TTX into the VTA before systemic administration of MDMA (5 mg/kg) significantly attenuated the increases in GABA produced by MDMA (F 2,17 ¼ 7.41, p < 0.05). No differences were observed in basal VTA GABA efflux during SB or TTX infusion prior to MDMA administration. Fig. 1 Extracellular GABA concentrations in VTA: area under the curve (AUC). MDMA was injected at the indicated dose after a 2-h baseline. n ¼ 6 8 rats/group. SB (SB) (5 lm) was added to dialysis medium 30 min before systemic MDMA. TTX was added to the dialysis medium 2 h before systemic MDMA. Bars represent area under the curve (± SEM) for 3-h post MDMA injection (six samples). *p < 0.05 compared with saline treatment; #p < 0.05 compared with MDMA (5 mg/kg, i.p.) treatment by one way ANOVA. Dose of MDMA in mg/kg i.p. (2.5, 5, or 10); SB-MDMA 5: SB with MDMA at 5 mg/kg i.p.

4 MDMA and VTA GABA 855 Time course of SB on MDMA-induced GABA in VTA MDMA produced an overall increase in extracellular GABA concentrations in the VTA compared with saline controls (F 1,151 ¼ 6.86, p < 0.05) (Fig. 2) MDMA-induced GABA concentrations were significantly different from saline controls at all time points after MDMA administration (p <0.05). Pre-treatment with SB into the VTA significantly attenuated the MDMA-induced increases in GABA over the time course of the experiment (F 13, 151 ¼ 1.87, p < 0.05). SB + MDMA produced increases in VTA GABA which were significantly less than MDMA alone at the 5-, 5.5-, 6- and 7-h time points (Tukey post hoc, p < 0.05). Time course of SB effects on MDMA-induced DA in NAC shell MDMA produced an overall increase in extracellular DA concentrations in the NAC shell compared with saline controls (F 1,134 ¼ , p < 0.05) and over the time course of the dialysis experiment (F 13, 134 ¼ 7.72, p < 0.05) (Fig. 3). MDMA produced an increase in DA which was significantly different compared with saline controls at all time points after MDMA administration, except for 7 h, p < Pre-treatment with SB into the VTA significantly augmented MDMA-induced increases in DA concentrations in NAC shell (F 1,137 ¼ 6.59, p < 0.05), and was significantly different from MDMA alone at the 4.5-, 5- and 5.5-h time points, p < Fig. 3 MDMA effects on DA concentrations in NAC. Dialysis samples were collected from the NAC of rats treated with SB (SB) (5.0 lm) or vehicle that was reverse dialyzed into the VTA for 2 h prior to systemic administration of MDMA (5 mg/kg i.p.) n ¼ 6 8/group. #p < 0.05 compared with vehicle l + MDMA; *p < 0.05 compared with vehicle + saline (SAL) rats; two-way repeated measures ANOVA. Hatched horizontal bar indicates duration of SB into the VTA. Arrow indicates time of systemic MDMA administration. Error bars represent ± SEM. Comparison of MDMA and AMPH-induced 5-HT concentrations in VTA MDMA produced an overall increase in extracellular 5-HT concentrations in the VTA compared with AMPH (F 1,105 ¼ 41.89, p < 0.05) and over the time course of the dialysis experiment (F 13, 105 ¼ 7.57, p < 0.05) (Fig. 4). MDMAinduced 5-HT levels were significantly different from AMPH control for all time points after MDMA administration except at 7 h, p < Fig. 2 MDMA effects on GABA concentrations in VTA. Dialysis samples were collected from the VTA of rats treated with SB (SB) (5.0 lm) or vehicle was reverse dialyzed into the VTA 2 h prior to systemic administration of MDMA (5 mg/kg i.p.). n ¼ 6 8/group. #p < 0.05 compared with vehicle + MDMA; *p < 0.05 compared with vehicle + saline (SAL) rats; two-way repeated measures ANOVA. Hatched horizontal bar indicates the duration of SB into the VTA. Arrow indicates time of systemic MDMA administration. Error bars represent ± SEM. Fig. 4 MDMA and AMPH effects on 5-HT concentrations in the VTA. Dialysis samples were collected from the VTA of rats treated with systemic administration of MDMA (5 mg/kg i.p.) or d-amphetamine (AMPH) (4 mg/kg i.p.). n ¼ 5/group. *p < 0.05 by one-way ANOVA. Arrow indicates time of systemic MDMA or AMPH administration. Error bars represent ± SEM.

5 856 M. G. Bankson and B. K. Yamamoto Fig. 5 AMPH effects on GABA concentrations in VTA. Dialysis samples were collected from the VTA of rats treated with SB (SB) (5.0 lm) or vehicle that was reverse dialyzed into the VTA 2 h prior to systemic administration of d-amphetamine (AMPH) (4 mg/kg i.p.). n ¼ 6 8/group. #p < 0.05 compared with vehicle + AMPH; *p < 0.05 compared with vehicle + saline (SAL) rats by two-way repeated measures ANOVA. Hatched horizontal bar indicates duration of SB into the VTA. Arrow indicates time of systemic AMPH administration. Error bars represent ± SEM. Fig. 6 AMPH effects on DA concentrations in NAC. Dialysis samples were collected from the NAC of rats treated with SB (SB) (5 lm) or vehicle that was reverse dialyzed into the VTA for 2 h prior to systemic administration of d-amphetamine (AMPH) (4 mg/kg i.p.) n ¼ 6 8/group. #p < 0.05 compared with vehicle + saline (SAL) by two-way repeated measures ANOVA. Hatched horizontal bar indicates duration of SB into the VTA. Arrow indicates time of systemic AMPH administration. Error bars represent ± SEM. Time course of SB on AMPH-induced GABA in VTA AMPH produced an overall increase in extracellular GABA concentrations in the VTA compared with saline controls (F 1,151 ¼ 6.86, p < 0.05) and over the time course of the experiment (F 13, 151 ¼ 3.29, p < 0.05) (Fig. 5). GABA levels were significantly different from saline control at the 4.5-, 5.5- and 7-h time points, p < Pre-treatment with SB alone into the VTA had no effect on basal concentrations of GABA compared with vehicle-infused controls during the time period (2 4 h time points) prior to the injection of AMPH. Pre-treatment with SB into the VTA had no effect over time or compared with AMPH alone. Time course of SB effects on AMPH-induced DA in NAC AMPH produced an increase in extracellular DA concentrations in the NAC compared with saline controls (F 1,146 ¼ 8.84, p < 0.05) and over the time course of the dialysis study (F 13, 146 ¼ 13.54, p < 0.05) (Fig. 6). AMPH produced DA levels that were significantly different from saline controls for all time points after drug injection except for 6.5 and 7 h, p < Pre-treatment with SB into the VTA had no effect over time or compared with AMPH alone. Discussion These studies are the first to demonstrate that MDMA elicits a dose- and impulse-dependent increase in extracellular GABA concentrations in the VTA (Fig. 1). The results also show that unlike d-amphetamine (Figs 5 and 6), the increase in extracellular concentrations of 5-HT in the VTA produced by MDMA (Fig. 4) acts at 5-HT 2C receptors to control both VTA GABA as well as NAC shell DA release (Figs 2 and 3). Although the neuronal origin of GABA has been questioned (Timmerman and Westerink 1997), the current findings suggest that the increase in GABA produced by MDMA and 5-HT 2C activation is dependent upon impulse flow from GABA afferents or depolarization of GABAergic soma. The addition of TTX to the dialysis medium blocked the MDMA-induced increase in VTA GABA but did not alter the basal concentration of GABA. This complete blockade of MDMA-induced GABA efflux suggests that MDMA elicits GABA release through impulse-mediated, neuronal mechanisms, while the basal concentrations of GABA are derived from impulse-independent or non-neuronal sources (Matuszewich and Yamamoto 1999). The effect of MDMA on extracellular GABA concentrations in the VTA produced a bell-shaped dose response curve (Fig. 1). Although increasing doses in the lower range resulted in progressive increases in extracellular GABA, the higher dose (10 mg/kg) was less effective, possibly due to rapid desensitization of 5-HT 2C receptors (Berg et al. 2001) and the predicted greater 5-HT release and stimulatory effect on 5-HT 2C receptors. In contrast to the bell-shaped dose response for MDMA-induced changes in VTA GABA, several studies have shown a positive correlation between striatal and accumbal DA release and dose of MDMA across the range of doses tested (Nash 1990; Kalivas et al. 1998; Kankaanpaa et al. 1998), indicating that the 5 mg/kg dose of

6 MDMA and VTA GABA 857 MDMA used in the present study is submaximal for eliciting the release of DA. Although the present study only measured DA release after 5 mg/kg of MDMA, this dose produced a maximal effect on VTA GABA, suggesting that at lower doses of MDMA, DA release occurs despite elevated VTA GABA. The 10 mg/kg dose of MDMA produced smaller increases in VTA GABA, suggesting that the impact of of 5-HT 2C receptors and GABA release in the VTA may have greater importance at lower doses of MDMA. Previous work from this laboratory has shown an MDMAinduced decrease in GABA concentrations in the substantia nigra (Yamamoto et al. 1995). This result is different from the present study showing increases in GABA in the VTA. Thus, MDMA may be affecting extracellular GABA concentrations by different mechanisms in the substantia nigra as compared with the VTA. This premise is consistent with reports that the 5-HT 2C receptor exerts a greater inhibitory influence over mesolimbic DA than it does over the nigrostriatal DA system (Di Giovanni et al. 2000). Furthermore, ritanserin, a non-selective 5-HT 2A/2C antagonist, was used in the previous study that focused on the nigrostriatal pathway and suggested a stimulatory effect of 5-HT 2A receptors on DA release in contrast to the present study showing an inhibitory effect of 5-HT 2B/2C receptors in the VTA mediated through the increase in GABA. The contrasting effects on mesolimbic versus nigrostriatal dopaminergic systems are particularly interesting given the findings that MDMA is less readily self-administered compared with other psychostimulant drugs of abuse (Schenk et al. 2003; Fantegrossi et al. 2004). SB blocks both 5-HT 2B and 5-HT 2C receptors (Kennett et al. 1996) and blockade of either may account for the attenuation of MDMA-induced GABA efflux in the VTA and attenuation in DA release in the NAC shell. However, modest densities of 5-HT 2B receptors are found in brain compared with the more highly expressed 5-HT 2C receptor (Duxon et al. 1997; Barnes and Sharp 1999). Furthermore, another selective 5-HT 2C receptor antagonist, SB , which has little affinity for 5-HT 2B receptors (Kennett et al. 1997), also increases basal mesolimbic DA efflux (Di Matteo et al. 1999) and further supports the conclusion that 5-HT 2C blockade modulates DA release in the NAC shell. The application of the 5-HT 2B/2C antagonist SB into the VTA did not alter basal concentrations of GABA but attenuated the MDMA-induced increase in extracellular GABA while dramatically and simultaneously increasing MDMA-induced DA efflux in the NAC shell (Figs 2 and 3). The lack of an effect of SB on basal extracellular concentrations of GABA suggests that 5-HT via 5-HT 2B/2C receptors do not have a tonic stimulatory effect on extracellular GABA in the VTA. While these studies do not provide direct evidence of a link between VTA GABA release and MDMA-induced DA release, several reports indicate that GABA exerts an inhibitory influence on VTA DA neurons. Activation of 5-HT 2C receptors in VTA is known to inhibit stress-induced, but not basal DA release and blockade of these receptors in the VTA increases DA release (Pozzi et al. 2002). The GABA B agonist baclofen inhibits DA release in the prefrontal cortex (Westerink et al. 1998) and NAC (Xi and Stein 1998, 1999) when infused into the VTA. These findings in combination with the current results suggest that 5-HT 2C mediated elevations of GABA concentrations in the VTA may act to limit the magnitude of MDMA-induced DA release. At first glance, these results showing an inhibition of VTA-NAC DA transmission via 5-HT 2C receptors may appear to be inconsistent with previous studies showing a 5-HT mediated, impulse dependent enhancement of MDMAinduced DA release (Gudelsky and Nash 1996; Koch and Galloway 1997). However, the inhibitory effect of 5-HT 2C activation on VTA-NAC DA release is countered by an opposing action of 5-HT 1B receptors. In fact, 5-HT 1B activation in the VTA has been shown to inhibit local GABA efflux (Yan and Yan 2001) and elicit DA release in the NAC (Guan and McBride 1989). This suggests that MDMA-induced increases in extracellular 5-HT concentrations can also stimulate 5-HT 1B receptors to decrease VTA GABA concentrations and disinhibit VTA DA neurons projecting to the NAC. This is consistent with locomotor studies indicating that MDMA-induced hyperactivity requires activation of 5-HT 1B receptors (McCreary et al. 1999) and can be augmented or unmasked by 5-HT 2B/2C antagonism (Bankson and Cunningham 2002). Thus, the pharmacological action of MDMA on DA release is a balance of the stimulation and inhibition of 5-HT 1B and 5-HT 2C receptors on GABA efflux, respectively. The lack of a complete reversal of MDMA-induced GABA by SB suggests that D 1 -mediated activation of mesolimbic GABA neurons also contributes to MDMAinduced GABA release (Cameron and Williams 1993, 1995). The resultant expression of MDMA-induced DA release may be dependent upon the relative balance of 5-HT 2C, 5-HT 1B, and D 1 receptor activation. Thus, the impulse-dependency of MDMA-induced DA release in forebrain regions (Yamamoto et al. 1995) is mediated by a 5-HT 1B receptor stimulatory and a 5-HT 2C /D 1 receptor inhibitory effect via a decrease and an increase, respectively, in GABA efflux in midbrain DA nuclei. In contrast to the partial modulation of DA release by impulse flow caused by MDMA, AMPH releases DA via an impulse-independent reversal of the DAT (Fischer and Cho 1976; Hurd and Ungerstedt 1989; Westerink et al. 1989). This transporter-mediated release of DA does not appear to be significantly influenced or counteracted by a presumed simultaneous inhibition of impulse-mediated NAC shell DA release produced by a D 1 -mediated increase in GABA transmission in the VTA. This lack of an influence of impulse flow on AMPH-induced DA release is consistent

7 858 M. G. Bankson and B. K. Yamamoto with the finding that AMPH causes the release of DA in the absence of DA cell firing (Bunney et al. 1973). The present finding that blockade of 5-HT 2C receptors in the VTA does not effect AMPH-induced GABA or DA release (Figs 5 and 6) highlights the significant difference between this drug and MDMA-induced DA release in the NAC shell (Figs 3 and 6). In conclusion, MDMA-induced DA release in the NAC shell is dampened by a 5-HT 2C receptor-mediated increase in GABA within the VTA and is in marked contrast to the primarily impulse-independent and 5-HT-independent effects of AMPH on DA release. These findings may have important implications for the possible influence of prior exposure to MDMA-induced neurotoxicity to 5-HT neurons. The longterm decrease in 5-HT transmission produced by neurotoxic doses of MDMA could lead to a decreased activation of 5-HT 2C receptors, a consequent loss of inhibitory GABAergic tone on mesolimbic DA transmission and, subsequently, an increased vulnerability to the DA-mediated rewarding effects of this and other psychostimulant drugs of abuse. Acknowledgements This work was supported by DA07427, DA16501 and a gift from Hitachi America Inc. References Bankson M. G. and Cunningham K. A. (2002) Pharmacological studies of the acute effects of (+)-3,4-methylenedioxymethamphetamine on locomotor activity: role of 5-HT(1B/1D) and 5-HT(2) receptors. Neuropsychopharmacology 26, Barnes N. M. and Sharp T. (1999) A review of central 5-HT receptors and their function. Neuropharmacology 38, Berg K. A., Stout B. D., Maayani S. and Clarke W. P. (2001) Differences in rapid desensitization of 5-hydroxytryptamine 2A and 5-hydroxytryptamine 2C receptor-mediated phospholipase C activation. J. Pharmacol. Exp. Ther. 299, Bunney B. S., Aghajanian G. K. and Roth R. H. (1973) Comparison of effects of 1-dopa, amphetamine and apomorphine on firing rate of rat dopaminergic neurones. Nat. New Biol. 245, Callaway C. W., Rempel N., Peng R. Y. and Geyer M. A. (1992) Serotonin 5-HT1-like receptors mediate hyperactivity in rats induced by 3,4-methylenedioxymethamphetamine. Neuropsychopharmacology 7, Cameron D. L. and Williams J. T. (1993) Dopamine D1 receptors facilitate transmitter release 116. Nature 366, Cameron D. L. and Williams J. T. (1995) Opposing roles for dopamine and serotonin at presynaptic receptors in the ventral tegmental area. Clin. Exp. Pharmacol. Physiol. 22, De Deurwaerdere P., Stinus L. and Spampinato U. (1998) Opposite change of in vivo dopamine release in the rat nucleus accumbens and striatum that follows electrical stimulation of dorsal raphe nucleus: role of 5-HT3 receptors. J. Neurosci. 18, Di Giovanni G. M. V., Di Mascio M. and Esposito E. (2000) Preferential modulation of mesolimbic vs. nigrostriatal dopaminergic function by serotonin (2C/2B) receptor agonists: a combined in vivo electrophysiological and microdialysis study. Synapse 35, Di Matteo V., Di Giovanni G., Di Mascio M. and Esposito E. (1999) SB , a selective serotonin 2C receptor antagonist, increases dopaminergic transmission in the mesolimbic system. Neuropharmacology 38, Doherty M. D. and Pickel V. M. (2000) Ultrastructural localization of the serotonin 2A receptor in dopaminergic neurons in the ventral tegmental area. Brain Res. 864, Duxon M. S., Kennett G. A., Lightowler S., Blackburn T. P. and Fone K. C. (1997) Activation of 5-HT2B receptors in the medial amygdala causes anxiolysis in the social interaction test in the rat. Neuropharmacology 36, Fantegrossi W. E., Woolverton W. L., Kilbourn M., Sherman P., Yuan J., Hatzidimitriou G., Ricaurte G. A., Woods J. H. and Winger G. (2004) Behavioral and neurochemical consequences of longterm intravenous self-administration of MDMA and its enantiomers by rhesus monkeys 1. Neuropsychopharmacology 29, Fischer J. F. and Cho A. K. (1976) Properties of dopamine efflux from rat striatal tissue caused by amphetamine and p-hydroxyamphetamine. Proc. West Pharmacol. Soc. 19, Gold L. H., Geyer M. A. and Koob G. F. (1989a) Neurochemical mechanisms involved in behavioral effects of amphetamines and related designer drugs. NIDA Res. Monogr. 94, Gold L. H., Hubner C. B. and Koob G. F. (1989b) A role for the mesolimbic dopamine system in the psychostimulant actions of MDMA. Psychopharmacology (Berl.) 99, Greer G. and Tolbert R. (1986) Subjective reports of the effects of MDMA in a clinical setting. J. Psychoactive Drugs 18, Guan X. M. and McBride W. J. (1989) Serotonin microinfusion into the ventral tegmental area increases accumbens dopamine release. Brain Res. Bull. 23, Gudelsky G. A. and Nash J. F. (1996) Carrier-mediated release of serotonin by 3,4-methylenedioxymethamphetamine: implications for serotonin dopamine interactions. J. Neurochem. 66, Hallbus M., Magnusson T. and Magnusson O. (1997) Influence of 5-HT1B/1D receptors on dopamine release in the guinea pig nucleus accumbens: a microdialysis study. Neurosci. Lett. 225, Hoebel B. G. (1985) Brain neurotransmitters in food and drug reward. Am. J. Clin. Nutr. 42, Holmes J. C. and Rutledge C. O. (1976) Effects of the d- and 1-isomers of amphetamine on uptake, release and catabolism of norepinephrine, dopamine and 5-hydroxytryptamine in several regions of rat brain. Biochem. Pharmacol. 25, Hurd Y. L. and Ungerstedt U. (1989) Ca2+ dependence of the amphetamine, nomifensine, and Lu effect on in vivo dopamine transmission. Eur. J. Pharmacol. 166, Johnson M. P., Conarty P. F. and Nichols D. E. (1991) [3H]monoamine releasing and uptake inhibition properties of 3,4-methylenedioxymethamphetamine and p-chloroamphetamine analogues. Eur. J. Pharmacol. 200, Kalivas P. W., Duffy P. and White S. R. (1998) MDMA elicits behavioral and neurochemical sensitization in rats. Neuropsychopharmacology 18, Kankaanpaa A., Meririnne E., Lillsunde P. and Seppala T. (1998) The acute effects of amphetamine derivatives on extracellular serotonin and dopamine levels in rat nucleus accumbens. Pharmacol. Biochem. Behav. 59, Kehne J. H., Ketteler H. J., McCloskey T. C., Sullivan C. K., Dudley M. W. and Schmidt C. J. (1996) Effects of the selective 5-HT2A receptor antagonist MDL 100,907 on MDMA-induced locomotor stimulation in rats. Neuropsychopharmacology 15,

8 MDMA and VTA GABA 859 Kelley A. E. and Delfs J. M. (1991) Dopamine and conditioned reinforcement. I. Differential effects of amphetamine microinjections into striatal subregions. Psychopharmacology 103, Kennett G. A., Wood M. D., Bright F. et al. (1996) In vitro and in vivo profile of SB , a potent 5-HT2C/5-HT2B receptor antagonist with anxiolytic-like properties. Br. J. Pharmacol. 117, Kennett G. A., Wood M. D., Bright F. et al. (1997) SB , a selective and brain penetrant 5-HT2C receptor antagonist. Neuropharmacology 36, Kiyatkin E. A. and Rebec G. B. (1998) Heterogeneity of ventral tegmental area neurons: single-unit recording and iontophoresis in awake, unrestrained rats. Neuroscience 85, Koch S. and Galloway M. P. (1997) MDMA induced dopamine release in vivo: role of endogenous serotonin. J. Neural Transm. 104, Matuszewich L. and Yamamoto B. K. (1999) Modulation of GABA release by dopamine in the substantia nigra. Synapse 32, McCreary A. C., Bankson M. G. and Cunningham K. A. (1999) Pharmacological studies of the acute and chronic effects of (+)-3, 4-methylenedioxymethamphetamine on locomotor activity: role of 5-hydroxytryptamine(1A) and 5-hydroxytryptamine(1B/1D) receptors. J. Pharmacol. Exp. Ther. 290, Minabe Y., Shirayama Y., Hashimoto K., Routledge C., Hagan J. J. and Ashby C. R. Jr (2004) Effect of the acute and chronic administration of the selective 5-HT6 receptor antagonist SB on the activity of midbrain dopamine neurons in rats: an in vivo electrophysiological study. Synapse 52, Nash J. F. (1990) Ketanserin pretreatment attenuates MDMA-induced dopamine release in the striatum as measured by in vivo microdialysis. Life Sci. 47, Paulus M. P. and Geyer M. A. (1992) The effects of MDMA and other methylenedioxy-substituted phenylalkylamines on the structure of rat locomotor activity. Neuropsychopharmacology 7, Pehek E. A., Schechter M. D. and Yamamoto B. K. (1990) Effects of cathinone and amphetamine on the neurochemistry of dopamine in vivo. Neuropharmacology 29, Pozzi L., Acconcia S., Ceglia I., Invernizzi R. W. and Samanin R. (2002) Stimulation of 5-hydroxytryptamine (5-HT(2C) receptors in the ventrotegmental area inhibits stress-induced but not basal dopamine release in the rat prefrontal cortex 30. J. Neurochem. 82, Rudnick G. and Wall S. C. (1992) The molecular mechanism of ecstasy [3,4-methylenedioxymethamphetamine (MDMA)]: serotonin transporters are targets for MDMA-induced serotonin release. Proc. Natl Acad. Sci. USA 89, Schenk S., Gittings D., Johnstone M. and Daniela E. (2003) Development, maintenance and temporal pattern of self-administration maintained by ecstasy (MDMA) in rats. Psychopharmacology (Berl.) 169, Schmidt C. J., Black C. K., Taylor V. L., Fadayel G. M., Humphreys T. M., Nieduzak T. R. and Sorensen S. M. (1992a) The 5-HT2 receptor antagonist, MDL 28,133A, disrupts the serotonergic dopaminergic interaction mediating the neurochemical effects of 3,4-methylenedioxymethamphetamine. Eur. J. Pharmacol. 220, Schmidt C. J., Fadayel G. M., Sullivan C. K. and Taylor V. L. (1992b) 5-HT2 receptors exert a state-dependent regulation of dopaminergic function: studies with MDL 100,907 and the amphetamine analogue, 3,4-methylenedioxymethamphetamine. Eur. J. Pharmacol. 223, Smith S. and Sharp T. (1994) Measurement of GABA in rat brain microdialysates using o-phthaldialdehyde-sulphite derivatization and high-performance liquid chromatography with electrochemical detection. J. Chromatogr. 652, Stanford I. M. and Lacey M. G. (1996) Differential actions of serotonin, mediated by 5-HT1B and 5-HT2C receptors, on GABA-mediated synaptic input to rat substantia nigra pars reticulata neurons in vitro. J. Neurosci. 16, Timmerman W. and Westerink B. H. (1997) Brain microdialysis of GABA and glutamate: what does it signify? Synapse 27, Vollenweider F. X., Gamma A., Liechti M. and Huber T. (1998) Psychological and cardiovascular effects and short-term sequelae of MDMA ( ecstasy ) in MDMA-naive healthy volunteers. Neuropsychopharmacology 19, Westerink B. H., Hofsteede R. M., Tuntler J. and De Vries J. B. (1989) Use of calcium antagonism for the characterization of drug-evoked dopamine release from the brain of conscious rats determined by microdialysis. J. Neurochem. 52, Westerink B. H., Enrico P., Feimann J. and De Vries J. B. (1998) The pharmacology of mesocortical dopamine neurons: a dual-probe microdialysis study in the ventral tegmental area and prefrontal cortex of the rat brain. J. Pharmacol. Exp. Ther. 285, Xi Z. X. and Stein E. A. (1998) Nucleus accumbens dopamine release modulation by mesolimbic GABAA receptors an in vivo electrochemical study. Brain Res. 798, Xi Z. X. and Stein E. A. (1999) Baclofen inhibits heroin self-administration behavior and mesolimbic dopamine release. J. Pharmacol. Exp. Ther. 290, Yamamoto B. K., Nash J. F. and Gudelsky G. A. (1995) Modulation of methylenedioxymethamphetamine-induced striatal dopamine release by the interaction between serotonin and c-aminobutyric acid in the substantia nigra. J. Pharmacol. Exp. Ther. 273, Yan Q. S. and Yan S. E. (2001) Serotonin-1B receptor-mediated inhibition of [(3)H]GABA release from rat ventral tegmental area slices. J. Neurochem. 79,

Drugs, The Brain, and Behavior

Drugs, The Brain, and Behavior Drugs, The Brain, and Behavior John Nyby Department of Biological Sciences Lehigh University What is a drug? Difficult to define Know it when you see it Neuroactive vs Non-Neuroactive drugs Two major categories

More information

Causes of Alcohol Abuse and Alcoholism: Biological/Biochemical Perspectives

Causes of Alcohol Abuse and Alcoholism: Biological/Biochemical Perspectives Causes of Alcohol Abuse and Alcoholism: Biological/Biochemical Perspectives Neurobehavioral Aspects of Alcohol Consumption Source: Eighth Special Report to the U.S. Congress on Alcohol and Health Secretary

More information

Slide 1: Introduction Introduce the purpose of your presentation. Indicate that you will explain how the brain basically works and how and where

Slide 1: Introduction Introduce the purpose of your presentation. Indicate that you will explain how the brain basically works and how and where Slide 1: Introduction Introduce the purpose of your presentation. Indicate that you will explain how the brain basically works and how and where drugs such as heroin and cocaine work in the brain. Tell

More information

Beroendemekanismer- ett beroende som andra?

Beroendemekanismer- ett beroende som andra? Beroendemekanismer- ett beroende som andra? Neuroendokrina responser till spel om pengar Anna Söderpalm Gordh Dopamine and the Rewardsystem Studies in animal models have demonstrated that mesocorticolimbic

More information

Brain Damage & Recovery: The Resilience of the Brain, Addiction Impact & Therapeutic Repair. Michael Fishman, MD Director of Young Adult Program

Brain Damage & Recovery: The Resilience of the Brain, Addiction Impact & Therapeutic Repair. Michael Fishman, MD Director of Young Adult Program Brain Damage & Recovery: The Resilience of the Brain, Addiction Impact & Therapeutic Repair Michael Fishman, MD Director of Young Adult Program How Addiction Takes Hold Large & rapid upsurges in dopamine

More information

EFFECTS OF MDMA ON VIGILANCE AND PHARMACOLOGICAL CONSEQUENCES OF MDMA NEUROTOXICITY

EFFECTS OF MDMA ON VIGILANCE AND PHARMACOLOGICAL CONSEQUENCES OF MDMA NEUROTOXICITY SEMMELWEIS UNIVERSITY JÁNOS SZENTÁGOTHAI DOCTORAL SCHOOL OF NEUROSCIENCES Ph.D. thesis EFFECTS OF MDMA ON VIGILANCE AND PHARMACOLOGICAL CONSEQUENCES OF MDMA NEUROTOXICITY - Brigitta Balogh - Consultant:

More information

Monoamine transporters and psychostimulant addiction

Monoamine transporters and psychostimulant addiction biochemical pharmacology 75 (2008) 196 217 available at www.sciencedirect.com journal homepage: www.elsevier.com/locate/biochempharm Monoamine transporters and psychostimulant addiction Leonard L. Howell

More information

NEUROPHARMACOLOGY AND ADDICTION CHRISTOPHER M. JONES, PHARMD, MPH

NEUROPHARMACOLOGY AND ADDICTION CHRISTOPHER M. JONES, PHARMD, MPH NEUROPHARMACOLOGY AND ADDICTION CHRISTOPHER M. JONES, PHARMD, MPH Disclosures This presentation does not represent the views of the US Public Health Service or the US Food and Drug Administration The majority

More information

AMPHETAMINE AND COCAINE MECHANISMS AND HAZARDS

AMPHETAMINE AND COCAINE MECHANISMS AND HAZARDS AMPHETAMINE AND COCAINE MECHANISMS AND HAZARDS BARRY J. EVERITT Department of Experimental Psychology, University of Cambridge Stimulant drugs, such as cocaine and amphetamine, interact directly with dopamine

More information

Novel Pharmacological Treatments for Gambling Addiction Brian L. Odlaug, MPH

Novel Pharmacological Treatments for Gambling Addiction Brian L. Odlaug, MPH Novel Pharmacological Treatments for Gambling Addiction Brian L. Odlaug, MPH Department of Public Health, Faculty of Health & Medical Sciences, University of Copenhagen, Denmark Disclosure Information

More information

ANIMATED NEUROSCIENCE

ANIMATED NEUROSCIENCE ANIMATED NEUROSCIENCE and the Action of Nicotine, Cocaine, and Marijuana in the Brain Te a c h e r s G u i d e Films for the Humanities & Sciences Background Information This program, made entirely of

More information

EFFECTS OF REPEATED MORPHINE TREATMENT ON METABOLISM OF CEREBRAL DOPAMINE AND SEROTONIN IN ALCOHOL-PREFERRING AA AND ALCOHOL-AVOIDING ANA RATS

EFFECTS OF REPEATED MORPHINE TREATMENT ON METABOLISM OF CEREBRAL DOPAMINE AND SEROTONIN IN ALCOHOL-PREFERRING AA AND ALCOHOL-AVOIDING ANA RATS Alcohol & Alcoholism Vol. 36, No. 4, pp. 286 291, 2001 EFFECTS OF REPEATED MORPHINE TREATMENT ON METABOLISM OF CEREBRAL DOPAMINE AND SEROTONIN IN ALCOHOL-PREFERRING AA AND ALCOHOL-AVOIDING ANA RATS JANNE

More information

substance abuse and addiction are complex phenomena

substance abuse and addiction are complex phenomena Executive Summary 1 substance abuse and addiction are complex phenomena that defy simple explanation or description. A tangled interaction of factors contributes to an individual s seeking out, using,

More information

Prevention & Recovery Conference November 28, 29 & 30 Norman, Ok

Prevention & Recovery Conference November 28, 29 & 30 Norman, Ok Prevention & Recovery Conference November 28, 29 & 30 Norman, Ok What is Addiction? The American Society of Addiction Medicine (ASAM) released on August 15, 2011 their latest definition of addiction:

More information

ASSIGNMENTS AND GRADING

ASSIGNMENTS AND GRADING Instructor: Janet Menard Office: Craine- 431 Phone: 533-3099 Email: menard@queensu.ca Class Hours: Tuesdays 11:30 1:00 Friday 1:00 2:30 Office Hours: Mondays 1:00-2:00 Thursdays 3:30-4:30 (please notify

More information

Overview. Unit 5: How do our choices change our brains?

Overview. Unit 5: How do our choices change our brains? Unit 5: How do our choices change our brains? Overview In the previous units, we learned about the neuron, synaptic transmission, and neuronal circuits. In this key culminating unit, we ll bring all of

More information

Long-term effects of a high-dose methamphetamine regimen on subsequent methamphetamine-induced dopamine release in vivo

Long-term effects of a high-dose methamphetamine regimen on subsequent methamphetamine-induced dopamine release in vivo Brain Research 892 (2001) 122 129 www.elsevier.com/ locate/ bres Research report Long-term effects of a high-dose methamphetamine regimen on subsequent methamphetamine-induced dopamine release in vivo

More information

Involvement of the endocannabinoid system in drug addiction

Involvement of the endocannabinoid system in drug addiction ARTICLE IN PRESS Involvement of the endocannabinoid system in drug addiction Rafael Maldonado, Olga Valverde and Fernando Berrendero Laboratori de Neurofarmacologia, Facultat de Ciències de la Salut i

More information

The Future of Treating Alcoholism: Framing the Key Research Questions

The Future of Treating Alcoholism: Framing the Key Research Questions The Future of Treating Alcoholism: Framing the Key Research Questions Kathleen A. Grant, Ph.D. President, Research Society on Alcoholism A Society of basic, clinical and translation researchers committed

More information

Chapter 28. Drug Treatment of Parkinson s Disease

Chapter 28. Drug Treatment of Parkinson s Disease Chapter 28 Drug Treatment of Parkinson s Disease 1. Introduction Parkinsonism Tremors hands and head develop involuntary movements when at rest; pin rolling sign (finger and thumb) Muscle rigidity arthritis

More information

The Neuropharmacology of Drugs of Abuse 3

The Neuropharmacology of Drugs of Abuse 3 The Neuropharmacology of Drugs of Abuse 3 rugs of abuse interact with the neurochemical mechanisms of the brain. Some of these interactions are directly related to the reinforcing properties of a drug,

More information

Neurobiology of Reward and Addiction in the Vulnerable Brain. Alan I. Green, M.D. May 1, 2009

Neurobiology of Reward and Addiction in the Vulnerable Brain. Alan I. Green, M.D. May 1, 2009 Neurobiology of Reward and Addiction in the Vulnerable Brain Alan I. Green, M.D. May 1, 2009 DSM-IV Substance Abuse Maladaptive pattern of substance use leading to significant impairment distress, as indicated

More information

Mechanisms of action of AEDs

Mechanisms of action of AEDs Mechanisms of action of AEDs Wolfgang Löscher Department of Pharmacology, Toxicology and Pharmacy University of Veterinary Medicine Hannover, Germany and Center for Systems Neuroscience Hannover, Germany

More information

Dual Effects of D-Amphetamine on Dopamine Neurons Mediated by Dopamine and Nondopamine Receptors

Dual Effects of D-Amphetamine on Dopamine Neurons Mediated by Dopamine and Nondopamine Receptors The Journal of Neuroscience, May 1, 2000, 20(9):3504 3511 Dual Effects of D-Amphetamine on Dopamine Neurons Mediated by Dopamine and Nondopamine Receptors Wei-Xing Shi, Chen-Lun Pun, Xue-Xiang Zhang, Michelle

More information

Effects of Caffeine on Cardiac and Skeletal Muscle Stimulation: A Noninvasive Study Based on a Single Dose of Caffeine

Effects of Caffeine on Cardiac and Skeletal Muscle Stimulation: A Noninvasive Study Based on a Single Dose of Caffeine Effects of Caffeine on Cardiac and Skeletal Muscle Stimulation: A Noninvasive Study Based on a Single Dose of Caffeine Physiology 435: Lab 601 Group 3 Dr. Lokuta Kira Arno, Logan Schlosser, Chris Boyd,

More information

Neurobiology and pharmacology of psychostimulants

Neurobiology and pharmacology of psychostimulants Department of Toxicology,University of Cagliari ; Institute of Neuroscience,CNR Centre for Studies on the Neurobiology of Dependence, MURST Neurobiology and pharmacology of psychostimulants Gaetano Di

More information

PERSPECTIVES. Opiate versus psychostimulant addiction: the differences do matter FOCUS ON ADDICTION

PERSPECTIVES. Opiate versus psychostimulant addiction: the differences do matter FOCUS ON ADDICTION FOCUS ON ADDICTION PERSPECTIVES OPINION Opiate versus psychostimulant addiction: the differences do matter Aldo Badiani, David Belin, David Epstein, Donna Calu and Yavin Shaham Abstract The publication

More information

Age-related differences in cocaine place conditioning and cocaine-induced dopamine

Age-related differences in cocaine place conditioning and cocaine-induced dopamine University of South Florida Scholar Commons Graduate Theses and Dissertations Graduate School 2005 Age-related differences in cocaine place conditioning and cocaine-induced dopamine Kimberly A. Badanich

More information

NEURON AND NEURAL TRAMSMISSION: ANATOMY OF A NEURON. created by Dr. Joanne Hsu

NEURON AND NEURAL TRAMSMISSION: ANATOMY OF A NEURON. created by Dr. Joanne Hsu NEURON AND NEURAL TRAMSMISSION: ANATOMY OF A NEURON NEURON AND NEURAL TRAMSMISSION: MICROSCOPIC VIEW OF NEURONS A photograph taken through a light microscope (500x) of neurons in the spinal cord. NEURON

More information

Epinephrine Facilitates Latent Learning in an Inhibitory Avoidance Task: Involvement of Amygdaloid Influence on the Hippocampus. K. C.

Epinephrine Facilitates Latent Learning in an Inhibitory Avoidance Task: Involvement of Amygdaloid Influence on the Hippocampus. K. C. Epinephrine Facilitates Latent Learning in an Inhibitory Avoidance Task: Involvement of Amygdaloid Influence on the Hippocampus K. C. Liang Department of Psychology, National Taiwan University Abstract

More information

Drug Addiction glutamate dysfunction, treatments, biomarkers. Peter Kalivas Department of Neurosciences Medical University of So Carolina Charleston

Drug Addiction glutamate dysfunction, treatments, biomarkers. Peter Kalivas Department of Neurosciences Medical University of So Carolina Charleston Drug Addiction glutamate dysfunction, treatments, biomarkers Peter Kalivas Department of Neurosciences Medical University of So Carolina Charleston What is Addiction? Inability to control drug-seeking

More information

Serotonin and drug reward: focus on 5-HT 2C receptors

Serotonin and drug reward: focus on 5-HT 2C receptors European Journal of Pharmacology 480 (2003) 151 162 www.elsevier.com/locate/ejphar Serotonin and drug reward: focus on 5-HT 2C receptors Guy A. Higgins a, *, Paul J. Fletcher b a Schering-Plough Research

More information

MOLECULAR AND CELLULAR BIOLOGY OF ADDICTION

MOLECULAR AND CELLULAR BIOLOGY OF ADDICTION 96 MOLECULAR AND CELLULAR BIOLOGY OF ADDICTION KATHY L. KOPNISKY STEVEN E. HYMAN Addiction to alcohol, tobacco, and illegal drugs represents a substantial burden to societies worldwide. In terms of health-related

More information

Treating Mental Disorders. Types of Biological Treatment. Drug Treatments for Psychological Disorders

Treating Mental Disorders. Types of Biological Treatment. Drug Treatments for Psychological Disorders Treating Mental Disorders Biological Treatments for Psychological Disorders Aims: Describe and Assess Biological Treatments Objectives By the end of this session you should be able to: Describe the use

More information

Behavioral Activation Induced by D 2 -Like Receptor Stimulation during Opiate Withdrawal 1

Behavioral Activation Induced by D 2 -Like Receptor Stimulation during Opiate Withdrawal 1 0022-3565/00/2942-0531$03.00/0 THE JOURNAL OF PHARMACOLOGY AND EXPERIMENTAL THERAPEUTICS Vol. 294, No. 2 Copyright 2000 by The American Society for Pharmacology and Experimental Therapeutics Printed in

More information

The amphetamine derivative 3,4-methylenedioxymethamphetamine

The amphetamine derivative 3,4-methylenedioxymethamphetamine CB 1 Cannabinoid Receptor Modulates 3,4-Methylenedioxymethamphetamine Acute Responses and Reinforcement Clara Touriño, Catherine Ledent, Rafael Maldonado, and Olga Valverde Background: 3,4-Methylenedioxymethamphetamine

More information

The significant and escalating problem of PROCEEDINGS THE BIOLOGIC BASIS OF ALCOHOL DEPENDENCE * Bankole A. Johnson, MD, PhD ABSTRACT

The significant and escalating problem of PROCEEDINGS THE BIOLOGIC BASIS OF ALCOHOL DEPENDENCE * Bankole A. Johnson, MD, PhD ABSTRACT THE BIOLOGIC BASIS OF ALCOHOL DEPENDENCE * Bankole A. Johnson, MD, PhD ABSTRACT Over the past decade, there has been growing interest in understanding the neuroscientific basis of alcoholism and in developing

More information

Drugs of abuse (including alcohol)

Drugs of abuse (including alcohol) Addiction: Beyond dopamine reward circuitry Nora D. Volkow a,b,1, Gene-Jack Wang c, Joanna S. Fowler c, Dardo Tomasi b, and Frank Telang b a National Institute on Drug Abuse, National Institutes of Health,

More information

Introduction to Tolerance, Physical Dependence and Withdrawal

Introduction to Tolerance, Physical Dependence and Withdrawal Introduction to Tolerance, Physical Dependence and Withdrawal Carrie G Markgraf, MD, PhD Safety Assessment Merck Research Laboratories 1 Overview Definitions Addiction, psychological dependence, physical

More information

Contents. Acknowledgements List of abbreviations. xix xxi

Contents. Acknowledgements List of abbreviations. xix xxi Table of Preface Acknowledgements List of abbreviations page xv xix xxi Chapter 1. Introduction 1 1.1. Introduction 1 1.1.1. Neuroethics: the promises and perils of neuroscience research 4 1.2. Addiction

More information

WHAT HAPPENS TO OUR BRAIN?

WHAT HAPPENS TO OUR BRAIN? WORK DYNAMIC The final result of this session is the formulation of the questions that, within the activity of the Let s talk about drugs programme of the la Caixa Welfare Project, you will ask Dr. Rafael

More information

Ecstasy, Memory and Sex Differentiation

Ecstasy, Memory and Sex Differentiation Journal of Physiology and Pharmacology Advances Ecstasy, Memory and Sex Differentiation Pezhman L, Sheikhzade F. and Hatami H. J Phys Pharm Adv 2013, 3(11): 266-271 Online version is available on: www.grjournals.com

More information

Learning Objectives Drugs disrupt the natural action of neurotransmitters at the synapse. Logistics

Learning Objectives Drugs disrupt the natural action of neurotransmitters at the synapse. Logistics Module Abstract An optional worksheet to use in conjunction with the interactive online activity of the same title located in The New Science of Addiction: module on our website (url above). Students analyze

More information

Drugs Change the Way Neurons Communicate

Drugs Change the Way Neurons Communicate Drugs Change the Way Neurons Communicate L E S S O N 3 Explain/Elaborate Source: Principles of Neural Science, 3rd edition, Eric R. Kandel, James H. Schwartz, and Thomas M. Jessell. The McGraw-Hill Companies.

More information

The Neurobiology of Addiction. An Overview

The Neurobiology of Addiction. An Overview The Neurobiology of Addiction An Overview AMANDA J. ROBERTS, PH.D., AND GEORGE F. KOOB, PH.D. Addiction can be defined in part as a compulsion to use alcohol or other drugs and the occurrence of withdrawal

More information

Tolerance and Dependence

Tolerance and Dependence Tolerance and Dependence Drug Tolerance is a decrease in the effect of a drug as a consequence of repeated exposure. Change over repeated exposures. Different effects may show different tolerance. Tolerance

More information

Dipartimento di Neuroscienze, Università degli Studi di Torino e Istituto Nazionale di Neuroscienze (INN)

Dipartimento di Neuroscienze, Università degli Studi di Torino e Istituto Nazionale di Neuroscienze (INN) Dipartimento di Neuroscienze, Università degli Studi di Torino e Istituto Nazionale di Neuroscienze (INN) www.personalweb.unito.it / fabrizio.benedetti www.ist-nazionale-neuroscienze.unito.it Placebo Improvement

More information

CHAPTER- 6. Okadaic acid induced neurotoxicity leads to central cholinergic dysfunction in rats. 1. Introduction. 2. Methods

CHAPTER- 6. Okadaic acid induced neurotoxicity leads to central cholinergic dysfunction in rats. 1. Introduction. 2. Methods CHAPTER- 6 Okadaic acid induced neurotoxicity leads to central cholinergic dysfunction in rats 1. Introduction Neurodegenerative disorders, such as AD are often characterized by the degeneration of the

More information

12 Steps to Changing Neuropathways. Julie Denton

12 Steps to Changing Neuropathways. Julie Denton 12 Steps to Changing Neuropathways Julie Denton Review the neurobiology of the brain Understand the basics of neurological damage to the brain from addiction Understand how medications and psychotherapy

More information

Influence of positive allosteric modulation of the mglu2-receptor on the behavioral responses in animal models of depression

Influence of positive allosteric modulation of the mglu2-receptor on the behavioral responses in animal models of depression Influence of positive allosteric modulation of the mglu2-receptor on the behavioral responses in animal models of depression Neuroscience Discovery Janssen Research and Development, a Division of Janssen

More information

Decision-making is a key activity of everyday life. Consequently,

Decision-making is a key activity of everyday life. Consequently, Insular neural system controls decision-making in healthy and methamphetamine-treated rats Hiroyuki Mizoguchi a,1, Kentaro Katahira b,1, Ayumu Inutsuka c,1, Kazuya Fukumoto a,b, Akihiro Nakamura a, Tian

More information

WHY DO SOME patients respond to one type of alcoholism

WHY DO SOME patients respond to one type of alcoholism 0145-6008/03/2712-1853$03.00/0 ALCOHOLISM: CLINICAL AND EXPERIMENTAL RESEARCH Vol. 27, No. 12 December 2003 Serotonergic Agents and Alcoholism Treatment: A Simulation Scott F. Stoltenberg Background: Those

More information

Neurobiology of Depression in Relation to ECT. PJ Cowen Department of Psychiatry, University of Oxford

Neurobiology of Depression in Relation to ECT. PJ Cowen Department of Psychiatry, University of Oxford Neurobiology of Depression in Relation to ECT PJ Cowen Department of Psychiatry, University of Oxford Causes of Depression Genetic Childhood experience Life Events (particularly losses) Life Difficulties

More information

1. The potential sites of action for sympathomimetics and the difference between a direct and indirect acting agonist.

1. The potential sites of action for sympathomimetics and the difference between a direct and indirect acting agonist. 1 OBI 836 The Autonomic Nervous System-Sympathomimetics M.T. Piascik August 29, 2012 Learning Objectives Lecture II The student should be able to explain or describe 1. The potential sites of action for

More information

Why Meditation is successful in Substance abuse treatment. Mediation paired with substance abuse treatment has been around since 1982 when the

Why Meditation is successful in Substance abuse treatment. Mediation paired with substance abuse treatment has been around since 1982 when the Stone Amber Stone Mathew Arndt HLTH-1240 26 June 2014 Why Meditation is successful in Substance abuse treatment. Mediation paired with substance abuse treatment has been around since 1982 when the Betty

More information

SIMULTANEOUS DETERMINATION OF NALTREXONE AND 6- -NALTREXOL IN SERUM BY HPLC

SIMULTANEOUS DETERMINATION OF NALTREXONE AND 6- -NALTREXOL IN SERUM BY HPLC SIMULTANEOUS DETERMINATION OF NALTREXONE AND 6- -NALTREXOL IN SERUM BY HPLC Katja SÄRKKÄ, Kari ARINIEMI, Pirjo LILLSUNDE Laboratory of Substance Abuse, National Public Health Institute Manerheimintie,

More information

Naltrexone Treatment - No evidence Based Ph pharmacological Dependence

Naltrexone Treatment - No evidence Based Ph pharmacological Dependence Naltrexone treatment for amphetamine dependence Group Pompidou 21-5-1 Johan Franck, MD PhD Karolinska Institutet Stockholm Amphetamine abuse in Sweden (pop. 9m) 193s Prescription Benzedrine 197s Illicit

More information

PHC 313 The 7 th. Lecture. Adrenergic Agents

PHC 313 The 7 th. Lecture. Adrenergic Agents PHC 313 The 7 th. Lecture Adrenergic Agents Introduction Introduction Adrenergic agents are a broad class of agents employed in the treatment of many disorders. They are those chemical agents that exert

More information

Enhancement of psychostimulant effect and development of behavioural sensitisation to methamphetamine in mice by combined treatment with piracetam

Enhancement of psychostimulant effect and development of behavioural sensitisation to methamphetamine in mice by combined treatment with piracetam Activitas Nervosa Superior Rediviva Volume 53 No. 1 2011 ORIGINAL ARTICLE Enhancement of psychostimulant effect and development of behavioural sensitisation to methamphetamine in mice by combined treatment

More information

similar to other psychoactive drugs, drugs of abuse alter the

similar to other psychoactive drugs, drugs of abuse alter the Basic Concepts 2 similar to other psychoactive drugs, drugs of abuse alter the brain s normal balance and level of biochemical activity. This can include mimicking the action of naturally occurring neurotransmitters

More information

Chapter 7: The Nervous System

Chapter 7: The Nervous System Chapter 7: The Nervous System Objectives Discuss the general organization of the nervous system Describe the structure & function of a nerve Draw and label the pathways involved in a withdraw reflex Define

More information

Neuroscience An extra bit. Dr Sasha Gartside Institute of Neuroscience Newcastle University

Neuroscience An extra bit. Dr Sasha Gartside Institute of Neuroscience Newcastle University Neuroscience An extra bit Dr Sasha Gartside Institute of Neuroscience Newcastle University Drugs, receptors, and transporters Most psychoactive drugs interfere with neurotransmission The main targets are

More information

The latest in addiction medicine: What every nurse needs to know

The latest in addiction medicine: What every nurse needs to know CNA Webinar Series: Progress in Practice The latest in addiction medicine: What every nurse needs to know Monica Gregory Nurse Practitioner, Crosstown Clinic December 4, 2014 Canadian Nurses Association,

More information

Learning with Your Brain. Teaching With the Brain in Mind

Learning with Your Brain. Teaching With the Brain in Mind Learning with Your Brain Should what (and how) we teach be associated with what we know about the brain and the nervous system? Jonathan Karp, Ph.D. Dept of Biology 5/20/2004 Teaching With the Brain in

More information

Barbara St. Marie, PhD Candidate Nurse Practitioner Supervisor Pain and Palliative Care Fairview Ridges Hospital Minneapolis, MN

Barbara St. Marie, PhD Candidate Nurse Practitioner Supervisor Pain and Palliative Care Fairview Ridges Hospital Minneapolis, MN Barbara St. Marie, PhD Candidate Nurse Practitioner Supervisor Pain and Palliative Care Fairview Ridges Hospital Minneapolis, MN Pain Physiology Objectives: Explain how pain is transmitted through the

More information

Rueben A. Gonzales 1 and Friedbert Weiss 2

Rueben A. Gonzales 1 and Friedbert Weiss 2 The Journal of Neuroscience, December 15, 1998, 18(24):10663 10671 Suppression of Ethanol-Reinforced Behavior by Naltrexone Is Associated with Attenuation of the Ethanol-Induced Increase in Dialysate Dopamine

More information

The Addicted Brain. And what you can do

The Addicted Brain. And what you can do The Addicted Brain And what you can do How does addiction happen? Addiction can happen as soon as someone uses a substance The brain releases a neurotransmitter called Dopamine into the system that makes

More information

Source: National Institute on Alcohol Abuse and Alcoholism. Bethesda, Md: NIAAA; 2004. NIH Publication No. 04-3769.

Source: National Institute on Alcohol Abuse and Alcoholism. Bethesda, Md: NIAAA; 2004. NIH Publication No. 04-3769. Diagnosis and Treatment of Alcohol Dependence Lon R. Hays, MD, MBA Professor and Chairman Department of Psychiatry University of Kentucky Medical Center Defining the Standard Drink A standard drink = 14

More information

CHAPTER 5 SIGNALLING IN NEURONS

CHAPTER 5 SIGNALLING IN NEURONS 5.1. SYNAPTIC TRANSMISSION CHAPTER 5 SIGNALLING IN NEURONS One of the main functions of neurons is to communicate with other neurons. An individual neuron may receive information from many different sources.

More information

Different neural systems mediate morphine reward and its spontaneous withdrawal aversion

Different neural systems mediate morphine reward and its spontaneous withdrawal aversion European Journal of Neuroscience European Journal of Neuroscience, Vol. 29, pp. 2029 2034, 2009 doi:10.1111/j.1460-9568.2009.06749.x BEHAVIORAL NEUROSCIENCE Different neural systems mediate morphine reward

More information

NEUROBIOLOGY OF CANNABIS ADDICTION Part I

NEUROBIOLOGY OF CANNABIS ADDICTION Part I NEURBILGY F CANNABIS ADDICTIN Part I 1. Definition and mechanism of action of cannabinoids 2. Addictive potential of cannabinoids and mechanisms involved 3. Cognitive effects of cannabinoids and mechanisms

More information

Source: National Institute on Alcohol Abuse and Alcoholism. Bethesda, Md: NIAAA; 2004. NIH Publication No. 04-3769.

Source: National Institute on Alcohol Abuse and Alcoholism. Bethesda, Md: NIAAA; 2004. NIH Publication No. 04-3769. Diagnosis and Treatment of Alcohol Dependence Lon R. Hays, MD, MBA Professor and Chairman an Department of Psychiatry University of Kentucky Medical Center Defining the Standard Drink A standard drink

More information

Motor dysfunction 2: Spinal cord injury and subcortical motor disorders ANATOMY REVIEW: Basal Ganglia

Motor dysfunction 2: Spinal cord injury and subcortical motor disorders ANATOMY REVIEW: Basal Ganglia Motor dysfunction 2: Spinal cord injury and subcortical motor disorders ANATOMY REVIEW: Basal Ganglia A group of subcortical nuclei caudate, putamen, globus pallidus Caudate & Putamen = Neostriatum caudate

More information

PART I: Neurons and the Nerve Impulse

PART I: Neurons and the Nerve Impulse PART I: Neurons and the Nerve Impulse Identify each of the labeled structures of the neuron below. A. B. C. D. E. F. G. Identify each of the labeled structures of the neuron below. A. dendrites B. nucleus

More information

UNIVERSITY OF BOLTON EDUCATION & PSYCHOLOGY PSYCHOLOGY SEMESTER 1 EXAMINATIONS 2014/2015 COGNITIVE & BIOLOGICAL PERSPECTIVES MODULE NO: PSC4003

UNIVERSITY OF BOLTON EDUCATION & PSYCHOLOGY PSYCHOLOGY SEMESTER 1 EXAMINATIONS 2014/2015 COGNITIVE & BIOLOGICAL PERSPECTIVES MODULE NO: PSC4003 [EDP 005] UNIVERSITY OF BOLTON EDUCATION & PSYCHOLOGY PSYCHOLOGY SEMESTER 1 EXAMINATIONS 2014/2015 COGNITIVE & BIOLOGICAL PERSPECTIVES MODULE NO: PSC4003 Date: Wednesday 21 st January, 2015 Time: 2.00pm

More information

BIOPHYSICS OF NERVE CELLS & NETWORKS

BIOPHYSICS OF NERVE CELLS & NETWORKS UNIVERSITY OF LONDON MSci EXAMINATION May 2007 for Internal Students of Imperial College of Science, Technology and Medicine This paper is also taken for the relevant Examination for the Associateship

More information

CHAPTER 2 MATERIALS AND METHODS

CHAPTER 2 MATERIALS AND METHODS CHAPTER 2 MATERIALS AND METHODS Preparation of an aqueous extract of Ulva reticulata Forsskal A green marine alga: U. reticulata was collected from Paklok bay, Phuket province, Thailand, in March 2006

More information

Dopamine D 1 receptor antagonism in the prelimbic cortex blocks the reinstatement of heroin-seeking in an animal model of relapse

Dopamine D 1 receptor antagonism in the prelimbic cortex blocks the reinstatement of heroin-seeking in an animal model of relapse International Journal of Neuropsychopharmacology (2009), 12, 431 436. Copyright f 2009 CINP doi:10.1017/s1461145709000054 Dopamine D 1 receptor antagonism in the prelimbic cortex blocks the reinstatement

More information

Lab #6: Neurophysiology Simulation

Lab #6: Neurophysiology Simulation Lab #6: Neurophysiology Simulation Background Neurons (Fig 6.1) are cells in the nervous system that are used conduct signals at high speed from one part of the body to another. This enables rapid, precise

More information

Simultaneous determination of aspartame, benzoic acid, caffeine, and saccharin in sugar-free beverages using HPLC

Simultaneous determination of aspartame, benzoic acid, caffeine, and saccharin in sugar-free beverages using HPLC Simultaneous determination of aspartame, benzoic acid, caffeine, and saccharin in sugar-free beverages using HPLC Mackenzie Ree and Erik Stoa Department of Chemistry, Concordia College, 901 8 th St S,

More information

Alcohol Abuse and Dependence in Native Americans

Alcohol Abuse and Dependence in Native Americans Alcohol Abuse and Dependence in Native Americans Its link to suicide and medication treatment options Addiction Psychiatrist Objectives Will discuss alcohol s role in suicide with the limited data we have.

More information

Addiction Medicine 2014

Addiction Medicine 2014 Addiction Medicine 2014 Update on Current/New/Anticipated Medications for Alcohol Use Disorders J.C. Garbutt, MD Department of Psychiatry and Bowles Center for Alcohol Studies School of Medicine, University

More information

The Relationship Between the Reward and Stress Systems and How They are Perturbed in Addiction

The Relationship Between the Reward and Stress Systems and How They are Perturbed in Addiction The Relationship Between the Reward and Stress Systems and How They are Perturbed in Addiction George F. Koob, Ph.D. Professor and Chair Committee on the Neurobiology of Addictive Disorders The Scripps

More information

Glutamate Transmission in the Nucleus Accumbens Mediates Relapse in Cocaine Addiction

Glutamate Transmission in the Nucleus Accumbens Mediates Relapse in Cocaine Addiction The Journal of Neuroscience, 2000, Vol. 20 RC89 1of5 Glutamate Transmission in the Nucleus Accumbens Mediates Relapse in Cocaine Addiction Jennifer L. Cornish and Peter W. Kalivas Department of Physiology

More information

THE BRAIN & DRUGS. Nebraska Training on Substance Abuse Prevention

THE BRAIN & DRUGS. Nebraska Training on Substance Abuse Prevention THE BRAIN & DRUGS Nebraska Training on Substance Abuse Prevention Educational Service Unit 10 Building 76 Plaza Blvd., Kearney, NE 68848-0850 Tuesday, April 26th 2011 MODULE 2 1 Overview How does the brain

More information

MASS SPECTROMETRIC IDENTIFICATION OF SOME SULPHUR CONTAINING PHENALKYLAMINE DESIGNER DRUGS *

MASS SPECTROMETRIC IDENTIFICATION OF SOME SULPHUR CONTAINING PHENALKYLAMINE DESIGNER DRUGS * MASS SPECTROMETRIC IDENTIFICATION OF SOME SULPHUR CONTAINING PHENALKYLAMINE DESIGNER DRUGS * Ingrid J. BOSMAN 1, Douwe DE BOER 2, Edwin B. SIDERIUS 1, Lesseps J. A. L. DOS REYS 2, Robert A. A. MAES 1 1

More information

Resting membrane potential ~ -70mV - Membrane is polarized

Resting membrane potential ~ -70mV - Membrane is polarized Resting membrane potential ~ -70mV - Membrane is polarized (ie) Electrical charge on the outside of the membrane is positive while the electrical charge on the inside of the membrane is negative Changes

More information

Neurobiology of Relapse to Heroin and Cocaine Seeking: A Review

Neurobiology of Relapse to Heroin and Cocaine Seeking: A Review 0031-6997/02/5401-1 42$7.00 PHARMACOLOGICAL REVIEWS Vol. 54, No. 1 U.S. Government work not protected by U.S. copyright 20102/966215 Pharmacol Rev 54:1 42, 2002 Printed in U.S.A Neurobiology of Relapse

More information

Sedative-Hypnotics & the Treatment of Hypersomnia. Glossary

Sedative-Hypnotics & the Treatment of Hypersomnia. Glossary Sedative-Hypnotics & the Treatment of Hypersomnia April 17, 2014 Mark Beenhakker, Pharmacology markbeen@virginia.edu Glossary Anxiolytic: decreases anxiety Sedative: (1) decreases activity, (2) moderates

More information

BIOLOGICAL BASIS OF NICOTINE ADDICTION

BIOLOGICAL BASIS OF NICOTINE ADDICTION Indian Journal of Pharmacology 2003; 35: 281-289 EDUCATIONAL FORUM BIOLOGICAL BASIS OF NICOTINE ADDICTION R. JAIN, K. MUKHERJEE National Drug Dependence Treatment Centre, All India Institute of Medical

More information

CHAPTER 5 DISCUSSION

CHAPTER 5 DISCUSSION CHAPTER 5 DISCUSSION The present study demonstrated that isolated atria and tracheas from guinea-pigs received chronic pretreatment with cocaine for 14 days, developed supersensitivity to both epinephrine

More information

How To Understand The Effects Of Drugs On The Brain

How To Understand The Effects Of Drugs On The Brain DRUGS AND THE BRAIN Most of the psychological and behavioural effects of psychoactive drugs is due the interaction they have with the nerve cells in the CNS (which includes the brain and peripheral nervous

More information

Molecular Mechanisms of Drug Addiction

Molecular Mechanisms of Drug Addiction The Journal of Neuroscience, July 1992, 12(7): 2439-2450 Feature Article Molecular Mechanisms of Drug Addiction Eric J. Nestler Laboratory of Molecular Psychiatry, Departments of Psychiatry and Pharmacology,

More information

A Pharmacologic Strategy for the Treatment of Nicotine Addiction

A Pharmacologic Strategy for the Treatment of Nicotine Addiction SYNAPSE 31:76 86 (1999) A Pharmacologic Strategy for the Treatment of Nicotine Addiction STEPHEN L. DEWEY, 1,2 JONATHAN D. BRODIE, 2 MADINA GERASIMOV, 1 BRYAN HORAN, 3 ELIOT L. GARDNER, 4 AND CHARLES R.

More information

The Limbic System Theory of Addiction

The Limbic System Theory of Addiction The Limbic System Theory of Addiction The brain controls every aspect of a human being. From breathing to blinking, it runs the show. Most of how it operates, however, is on an automatic and unconscious

More information

Masters research projects. 1. Adapting Granger causality for use on EEG data.

Masters research projects. 1. Adapting Granger causality for use on EEG data. Masters research projects 1. Adapting Granger causality for use on EEG data. Background. Granger causality is a concept introduced in the field of economy to determine which variables influence, or cause,

More information

Yamaguchi University, Japan

Yamaguchi University, Japan Yamaguchi University, Japan The United Graduate School of Veterinary Science The Stress Related Neuroendocrine and Metabolic Effects of Alpha-2 Adrenergic Agents and Their Combinations with Injectable

More information

REVIEW SHEET EXERCISE 3 Neurophysiology of Nerve Impulses Name Lab Time/Date. The Resting Membrane Potential

REVIEW SHEET EXERCISE 3 Neurophysiology of Nerve Impulses Name Lab Time/Date. The Resting Membrane Potential REVIEW SHEET EXERCISE 3 Neurophysiology of Nerve Impulses Name Lab Time/Date ACTIVITY 1 The Resting Membrane Potential 1. Explain why increasing extracellular K + reduces the net diffusion of K + out of

More information

Brain and Anabolic steroids

Brain and Anabolic steroids Anti Doping Denmark, Research seminar November 26 2013, Copenhagen Brain and Anabolic steroids Mathias Hallberg, Associate professor Department of Pharmaceutical Biosciences Division of Biological Research

More information

Addiction Neurobiology

Addiction Neurobiology Addiction Neurobiology Stephen Jurd University of Sydney Australia Richard W is sick Apology The site of pathology IF Addiction has a neurobiological basis THEN we should be able to: Define addiction AND

More information