Graphs over Time Densification Laws, Shrinking Diameters and Possible Explanations
|
|
|
- Marian Dickerson
- 10 years ago
- Views:
Transcription
1 Graphs over Time Densification Laws, Shrinking Diameters and Possible Explanations Jurij Leskovec, CMU Jon Kleinberg, Cornell Christos Faloutsos, CMU 1
2 Introduction What can we do with graphs? What patterns or laws hold for most real-world graphs? How do the graphs evolve over time? Can we generate synthetic but realistic graphs? Needle exchange networks of drug users 2
3 Evolution of the Graphs How do graphs evolve over time? Conventional Wisdom: Constant average degree: the number of edges grows linearly with the number of nodes Slowly growing diameter: as the network grows the distances between nodes grow Our findings: Densification Power Law: networks are becoming denser over time Shrinking Diameter: diameter is decreasing as the network grows 3
4 Outline Introduction General patterns and generators Graph evolution Observations Densification Power Law Shrinking Diameters Proposed explanation Community Guided Attachment Proposed graph generation model Forest Fire Model Conclusion 4
5 Outline Introduction General patterns and generators Graph evolution Observations Densification Power Law Shrinking Diameters Proposed explanation Community Guided Attachment Proposed graph generation model Forest Fire Model Conclusion 5
6 Graph Patterns Power Law Many lowdegree nodes Few highdegree nodes Internet in December 1998 log(count) vs. log(degree) Y=a*X b 6
7 Graph Patterns Small-world [Watts and Strogatz],++: 6 degrees of separation Small diameter (Community structure, ) # reachable pairs Effective Diameter hops 7
8 Graph models: Random Graphs How can we generate a realistic graph? given the number of nodes N and edges E Random graph [Erdos & Renyi, 60s]: Pick 2 nodes at random and link them Does not obey Power laws No community structure 8
9 Graph models: Preferential attachment Preferential attachment [Albert & Barabasi, 99]: Add a new node, create M out-links Probability of linking a node is proportional to its degree Examples: Citations: new citations of a paper are proportional to the number it already has Rich get richer phenomena Explains power-law degree distributions But, all nodes have equal (constant) out-degree 9
10 Graph models: Copying model Copying model [Kleinberg, Kumar, Raghavan, Rajagopalan and Tomkins, 99]: Add a node and choose the number of edges to add Choose a random vertex and copy its links (neighbors) Generates power-law degree distributions Generates communities 10
11 Other Related Work Huberman and Adamic, 1999: Growth dynamics of the world wide web Kumar, Raghavan, Rajagopalan, Sivakumar and Tomkins, 1999: Stochastic models for the web graph Watts, Dodds, Newman, 2002: Identity and search in social networks Medina, Lakhina, Matta, and Byers, 2001: BRITE: An Approach to Universal Topology Generation 11
12 Why is all this important? Gives insight into the graph formation process: Anomaly detection abnormal behavior, evolution Predictions predicting future from the past Simulations of new algorithms Graph sampling many real world graphs are too large to deal with 12
13 Outline Introduction General patterns and generators Graph evolution Observations Densification Power Law Shrinking Diameters Proposed explanation Community Guided Attachment Proposed graph generation model Forest Fire Model Conclusion 13
14 Temporal Evolution of the Graphs N(t) nodes at time t E(t) edges at time t Suppose that N(t+1) = 2 * N(t) Q: what is your guess for E(t+1) =? 2 * E(t) A: over-doubled! But obeying the Densification Power Law 14
15 Temporal Evolution of the Graphs Densification Power Law networks are becoming denser over time the number of edges grows faster than the number of nodes average degree is increasing or equivalently a densification exponent 15
16 Graph Densification A closer look Densification Power Law Densification exponent: 1 a 2: a=1: linear growth constant out-degree (assumed in the literature so far) a=2: quadratic growth clique Let s see the real graphs! 16
17 Densification Physics Citations Citations among physics papers 1992: 1,293 papers, 2,717 citations 2003: 29,555 papers, 352,807 citations For each month M, create a graph of all citations up to month M E(t) 1.69 N(t) 17
18 Densification Patent Citations Citations among patents granted 1975 E(t) 334,000 nodes 676,000 edges million nodes 16.5 million edges Each year is a datapoint N(t) 18
19 Densification Autonomous Systems Graph of Internet 1997 E(t) 3,000 nodes 10,000 edges ,000 nodes 26,000 edges One graph per day N(t) 19
20 Densification Affiliation Network Authors linked to their publications 1992 E(t) 318 nodes 272 edges ,000 nodes 20,000 authors 38,000 papers 133,000 edges N(t) 20
21 Graph Densification Summary The traditional constant out-degree assumption does not hold Instead: the number of edges grows faster than the number of nodes average degree is increasing 21
22 Outline Introduction General patterns and generators Graph evolution Observations Densification Power Law Shrinking Diameters Proposed explanation Community Guided Attachment Proposed graph generation model Forest Fire Model Conclusion 22
23 Evolution of the Diameter Prior work on Power Law graphs hints at Slowly growing diameter: diameter ~ O(log N) diameter ~ O(log log N) What is happening in real data? Diameter shrinks over time As the network grows the distances between nodes slowly decrease 23
24 Diameter ArXiv citation graph Citations among physics papers diameter One graph per year time [years] 24
25 Diameter Autonomous Systems Graph of Internet diameter One graph per day number of nodes 25
26 Diameter Affiliation Network Graph of collaborations in physics authors linked to papers 10 years of data diameter time [years] 26
27 Diameter Patents Patent citation network 25 years of data diameter time [years] 27
28 Validating Diameter Conclusions There are several factors that could influence the Shrinking diameter Effective Diameter: Distance at which 90% of pairs of nodes is reachable Problem of Missing past How do we handle the citations outside the dataset? Disconnected components None of them matters 28
29 Outline Introduction General patterns and generators Graph evolution Observations Densification Power Law Shrinking Diameters Proposed explanation Community Guided Attachment Proposed graph generation model Forest Fire Mode Conclusion 29
30 Densification Possible Explanation Existing graph generation models do not capture the Densification Power Law and Shrinking diameters Can we find a simple model of local behavior, which naturally leads to observed phenomena? Yes! We present 2 models: Community Guided Attachment obeys Densification Forest Fire model obeys Densification, Shrinking diameter (and Power Law degree distribution) 30
31 Community structure Let s assume the community structure One expects many within-group friendships and fewer cross-group ones How hard is it to cross communities? Science University CS Math Drama Music Self-similar university community structure Arts 31
32 Fundamental Assumption If the cross-community linking probability of nodes at tree-distance h is scale-free We propose cross-community linking probability: where: c 1 the Difficulty constant h tree-distance 32
33 Densification Power Law (1) Theorem: The Community Guided Attachment leads to Densification Power Law with exponent a densification exponent b community structure branching factor c difficulty constant 33
34 Difficulty Constant Theorem: Gives any non-integer Densification exponent If c = 1: easy to cross communities Then: a=2, quadratic growth of edges near clique If c = b: hard to cross communities Then: a=1, linear growth of edges constant outdegree 34
35 Room for Improvement Community Guided Attachment explains Densification Power Law Issues: Requires explicit Community structure Does not obey Shrinking Diameters 35
36 Outline Introduction General patterns and generators Graph evolution Observations Densification Power Law Shrinking Diameters Proposed explanation Community Guided Attachment Proposed graph generation model Forest Fire Model Conclusion 36
37 Forest Fire model Wish List Want no explicit Community structure Shrinking diameters and: Rich get richer attachment process, to get heavytailed in-degrees Copying model, to lead to communities Community Guided Attachment, to produce Densification Power Law 37
38 Forest Fire model Intuition (1) How do authors identify references? 1. Find first paper and cite it 2. Follow a few citations, make citations 3. Continue recursively 4. From time to time use bibliographic tools (e.g. CiteSeer) and chase back-links 38
39 Forest Fire model Intuition (2) How do people make friends in a new environment? 1. Find first a person and make friends 2. Follow a of his friends 3. Continue recursively 4. From time to time get introduced to his friends Forest Fire model imitates exactly this process 39
40 Forest Fire the Model A node arrives Randomly chooses an ambassador Starts burning nodes (with probability p) and adds links to burned nodes Fire spreads recursively 40
41 Forest Fire in Action (1) Forest Fire generates graphs that Densify and have Shrinking Diameter E(t) densification diameter 1.21 diameter N(t) 41 N(t)
42 Forest Fire in Action (2) Forest Fire also generates graphs with heavy-tailed degree distribution in-degree out-degree count vs. in-degree 42 count vs. out-degree
43 Forest Fire model Justification Densification Power Law: Similar to Community Guided Attachment The probability of linking decays exponentially with the distance Densification Power Law Power law out-degrees: From time to time we get large fires Power law in-degrees: The fire is more likely to burn hubs 43
44 Forest Fire model Justification Communities: Newcomer copies neighbors links Shrinking diameter 44
45 Conclusion (1) We study evolution of graphs over time We discover: Densification Power Law Shrinking Diameters Propose explanation: Community Guided Attachment leads to Densification Power Law 45
46 Conclusion (2) Proposed Forest Fire Model uses only 2 parameters to generate realistic graphs: Heavy-tailed in- and out-degrees Densification Power Law Shrinking diameter 46
47 Thank you! Questions? 47
48 Dynamic Community Guided Attachment The community tree grows At each iteration a new level of nodes gets added New nodes create links among themselves as well as to the existing nodes in the hierarchy Based on the value of parameter c we get: a) Densification with heavy-tailed in-degrees b) Constant average degree and heavy-tailed in-degrees c) Constant in- and out-degrees But: Community Guided Attachment still does not obey the shrinking diameter property 48
49 Densification Power Law (1) Theorem: Community Guided Attachment random graph model, the expected out-degree of a node is proportional to 49
50 Forest Fire the Model 2 parameters: p forward burning probability r backward burning ratio Nodes arrive one at a time New node v attaches to a random node the ambassador Then v begins burning ambassador s neighbors: Burn X links, where X is binomially distributed Choose in-links with probability r times less than outlinks Fire spreads recursively Node v attaches to all nodes that got burned 50
51 Forest Fire Phase plots Exploring the Forest Fire parameter space Dense graph Increasing diameter Sparse graph Shrinking diameter 51
52 Forest Fire Extensions Orphans: isolated nodes that eventually get connected into the network Example: citation networks Orphans can be created in two ways: start the Forest Fire model with a group of nodes new node can create no links Diameter decreases even faster Multiple ambassadors: Example: following paper citations from different fields Faster decrease of diameter 52
53 Densification and Shrinking Diameter Are the Densification and Shrinking Diameter two different observations of the same phenomena? No! Forest Fire can generate: (1) Sparse graphs with increasing diameter Sparse graphs with decreasing diameter (2) Dense graphs with decreasing diameter
Graph Mining Techniques for Social Media Analysis
Graph Mining Techniques for Social Media Analysis Mary McGlohon Christos Faloutsos 1 1-1 What is graph mining? Extracting useful knowledge (patterns, outliers, etc.) from structured data that can be represented
Graph models for the Web and the Internet. Elias Koutsoupias University of Athens and UCLA. Crete, July 2003
Graph models for the Web and the Internet Elias Koutsoupias University of Athens and UCLA Crete, July 2003 Outline of the lecture Small world phenomenon The shape of the Web graph Searching and navigation
How To Find Out How A Graph Densifies
Graphs over Time: Densification Laws, Shrinking Diameters and Possible Explanations Jure Leskovec Carnegie Mellon University [email protected] Jon Kleinberg Cornell University [email protected] Christos
CMU SCS Large Graph Mining Patterns, Tools and Cascade analysis
Large Graph Mining Patterns, Tools and Cascade analysis Christos Faloutsos CMU Roadmap Introduction Motivation Why big data Why (big) graphs? Patterns in graphs Tools: fraud detection on e-bay Conclusions
Big Data Analytics of Multi-Relationship Online Social Network Based on Multi-Subnet Composited Complex Network
, pp.273-284 http://dx.doi.org/10.14257/ijdta.2015.8.5.24 Big Data Analytics of Multi-Relationship Online Social Network Based on Multi-Subnet Composited Complex Network Gengxin Sun 1, Sheng Bin 2 and
Introduction to Networks and Business Intelligence
Introduction to Networks and Business Intelligence Prof. Dr. Daning Hu Department of Informatics University of Zurich Sep 17th, 2015 Outline Network Science A Random History Network Analysis Network Topological
Temporal Dynamics of Scale-Free Networks
Temporal Dynamics of Scale-Free Networks Erez Shmueli, Yaniv Altshuler, and Alex Sandy Pentland MIT Media Lab {shmueli,yanival,sandy}@media.mit.edu Abstract. Many social, biological, and technological
Complex Networks Analysis: Clustering Methods
Complex Networks Analysis: Clustering Methods Nikolai Nefedov Spring 2013 ISI ETH Zurich [email protected] 1 Outline Purpose to give an overview of modern graph-clustering methods and their applications
USING SPECTRAL RADIUS RATIO FOR NODE DEGREE TO ANALYZE THE EVOLUTION OF SCALE- FREE NETWORKS AND SMALL-WORLD NETWORKS
USING SPECTRAL RADIUS RATIO FOR NODE DEGREE TO ANALYZE THE EVOLUTION OF SCALE- FREE NETWORKS AND SMALL-WORLD NETWORKS Natarajan Meghanathan Jackson State University, 1400 Lynch St, Jackson, MS, USA [email protected]
arxiv:cs.dm/0204001 v1 30 Mar 2002
A Steady State Model for Graph Power Laws David Eppstein Joseph Wang arxiv:cs.dm/0000 v 0 Mar 00 Abstract Power law distribution seems to be an important characteristic of web graphs. Several existing
The average distances in random graphs with given expected degrees
Classification: Physical Sciences, Mathematics The average distances in random graphs with given expected degrees by Fan Chung 1 and Linyuan Lu Department of Mathematics University of California at San
The Internet Is Like A Jellyfish
The Internet Is Like A Jellyfish Michalis Faloutsos UC Riverside Joint work with: Leslie Tauro, Georgos Siganos (UCR) Chris Palmer(CMU) Big Picture: Modeling the Internet Topology Traffic Protocols Routing,
Network/Graph Theory. What is a Network? What is network theory? Graph-based representations. Friendship Network. What makes a problem graph-like?
What is a Network? Network/Graph Theory Network = graph Informally a graph is a set of nodes joined by a set of lines or arrows. 1 1 2 3 2 3 4 5 6 4 5 6 Graph-based representations Representing a problem
Chapter 29 Scale-Free Network Topologies with Clustering Similar to Online Social Networks
Chapter 29 Scale-Free Network Topologies with Clustering Similar to Online Social Networks Imre Varga Abstract In this paper I propose a novel method to model real online social networks where the growing
General Network Analysis: Graph-theoretic. COMP572 Fall 2009
General Network Analysis: Graph-theoretic Techniques COMP572 Fall 2009 Networks (aka Graphs) A network is a set of vertices, or nodes, and edges that connect pairs of vertices Example: a network with 5
Network Analysis. BCH 5101: Analysis of -Omics Data 1/34
Network Analysis BCH 5101: Analysis of -Omics Data 1/34 Network Analysis Graphs as a representation of networks Examples of genome-scale graphs Statistical properties of genome-scale graphs The search
Random graphs and complex networks
Random graphs and complex networks Remco van der Hofstad Honours Class, spring 2008 Complex networks Figure 2 Ye a s t p ro te in in te ra c tio n n e tw o rk. A m a p o f p ro tein p ro tein in tera c
A discussion of Statistical Mechanics of Complex Networks P. Part I
A discussion of Statistical Mechanics of Complex Networks Part I Review of Modern Physics, Vol. 74, 2002 Small Word Networks Clustering Coefficient Scale-Free Networks Erdös-Rényi model cover only parts
Inet-3.0: Internet Topology Generator
Inet-3.: Internet Topology Generator Jared Winick Sugih Jamin {jwinick,jamin}@eecs.umich.edu CSE-TR-456-2 Abstract In this report we present version 3. of Inet, an Autonomous System (AS) level Internet
Social Network Mining
Social Network Mining Data Mining November 11, 2013 Frank Takes ([email protected]) LIACS, Universiteit Leiden Overview Social Network Analysis Graph Mining Online Social Networks Friendship Graph Semantics
The Structure of Growing Social Networks
The Structure of Growing Social Networks Emily M. Jin Michelle Girvan M. E. J. Newman SFI WORKING PAPER: 2001-06-032 SFI Working Papers contain accounts of scientific work of the author(s) and do not necessarily
Network Theory: 80/20 Rule and Small Worlds Theory
Scott J. Simon / p. 1 Network Theory: 80/20 Rule and Small Worlds Theory Introduction Starting with isolated research in the early twentieth century, and following with significant gaps in research progress,
Research Article A Comparison of Online Social Networks and Real-Life Social Networks: A Study of Sina Microblogging
Mathematical Problems in Engineering, Article ID 578713, 6 pages http://dx.doi.org/10.1155/2014/578713 Research Article A Comparison of Online Social Networks and Real-Life Social Networks: A Study of
Graph Mining and Social Network Analysis
Graph Mining and Social Network Analysis Data Mining and Text Mining (UIC 583 @ Politecnico di Milano) References Jiawei Han and Micheline Kamber, "Data Mining: Concepts and Techniques", The Morgan Kaufmann
Social Media Mining. Graph Essentials
Graph Essentials Graph Basics Measures Graph and Essentials Metrics 2 2 Nodes and Edges A network is a graph nodes, actors, or vertices (plural of vertex) Connections, edges or ties Edge Node Measures
Dmitri Krioukov CAIDA/UCSD
Hyperbolic geometry of complex networks Dmitri Krioukov CAIDA/UCSD [email protected] F. Papadopoulos, M. Boguñá, A. Vahdat, and kc claffy Complex networks Technological Internet Transportation Power grid
Effects of node buffer and capacity on network traffic
Chin. Phys. B Vol. 21, No. 9 (212) 9892 Effects of node buffer and capacity on network traffic Ling Xiang( 凌 翔 ) a), Hu Mao-Bin( 胡 茂 彬 ) b), and Ding Jian-Xun( 丁 建 勋 ) a) a) School of Transportation Engineering,
ATM Network Performance Evaluation And Optimization Using Complex Network Theory
ATM Network Performance Evaluation And Optimization Using Complex Network Theory Yalin LI 1, Bruno F. Santos 2 and Richard Curran 3 Air Transport and Operations Faculty of Aerospace Engineering The Technical
1 Six Degrees of Separation
Networks: Spring 2007 The Small-World Phenomenon David Easley and Jon Kleinberg April 23, 2007 1 Six Degrees of Separation The small-world phenomenon the principle that we are all linked by short chains
Algorithms for representing network centrality, groups and density and clustered graph representation
COSIN IST 2001 33555 COevolution and Self-organization In dynamical Networks Algorithms for representing network centrality, groups and density and clustered graph representation Deliverable Number: D06
MINFS544: Business Network Data Analytics and Applications
MINFS544: Business Network Data Analytics and Applications March 30 th, 2015 Daning Hu, Ph.D., Department of Informatics University of Zurich F Schweitzer et al. Science 2009 Stop Contagious Failures in
On Generating Graphs with Prescribed Vertex Degrees for Complex Network Modeling 1. College of Computing Georgia Institute of Technology
On Generating Graphs with Prescribed Vertex Degrees for Complex Network Modeling 1 Milena Mihail Nisheeth K. Vishnoi College of Computing Georgia Institute of Technology Abstract Graph models for real-world
Online Appendix to Social Network Formation and Strategic Interaction in Large Networks
Online Appendix to Social Network Formation and Strategic Interaction in Large Networks Euncheol Shin Recent Version: http://people.hss.caltech.edu/~eshin/pdf/dsnf-oa.pdf October 3, 25 Abstract In this
MINING COMMUNITIES OF BLOGGERS: A CASE STUDY
MINING COMMUNITIES OF BLOGGERS: A CASE STUDY ON CYBER-HATE Jennifer Xu Bentley College Waltham, MA, USA [email protected] Michael Chau University of Hong Kong Pokfulam, Hong Kong [email protected] Abstract
The Topology of Large-Scale Engineering Problem-Solving Networks
The Topology of Large-Scale Engineering Problem-Solving Networks by Dan Braha 1, 2 and Yaneer Bar-Yam 2, 3 1 Faculty of Engineering Sciences Ben-Gurion University, P.O.Box 653 Beer-Sheva 84105, Israel
Cost effective Outbreak Detection in Networks
Cost effective Outbreak Detection in Networks Jure Leskovec Joint work with Andreas Krause, Carlos Guestrin, Christos Faloutsos, Jeanne VanBriesen, and Natalie Glance Diffusion in Social Networks One of
Distance Degree Sequences for Network Analysis
Universität Konstanz Computer & Information Science Algorithmics Group 15 Mar 2005 based on Palmer, Gibbons, and Faloutsos: ANF A Fast and Scalable Tool for Data Mining in Massive Graphs, SIGKDD 02. Motivation
The Large-Scale Structure of Semantic Networks: Statistical Analyses and a Model of Semantic Growth
Cognitive Science 29 (2005) 41 78 Copyright 2005 Cognitive Science Society, Inc. All rights reserved. The Large-Scale Structure of Semantic Networks: Statistical Analyses and a Model of Semantic Growth
ModelingandSimulationofthe OpenSourceSoftware Community
ModelingandSimulationofthe OpenSourceSoftware Community Yongqin Gao, GregMadey Departmentof ComputerScience and Engineering University ofnotre Dame ygao,[email protected] Vince Freeh Department of ComputerScience
Euler Paths and Euler Circuits
Euler Paths and Euler Circuits An Euler path is a path that uses every edge of a graph exactly once. An Euler circuit is a circuit that uses every edge of a graph exactly once. An Euler path starts and
Complex Network Visualization based on Voronoi Diagram and Smoothed-particle Hydrodynamics
Complex Network Visualization based on Voronoi Diagram and Smoothed-particle Hydrodynamics Zhao Wenbin 1, Zhao Zhengxu 2 1 School of Instrument Science and Engineering, Southeast University, Nanjing, Jiangsu
A box-covering algorithm for fractal scaling in scale-free networks
CHAOS 17, 026116 2007 A box-covering algorithm for fractal scaling in scale-free networks J. S. Kim CTP & FPRD, School of Physics and Astronomy, Seoul National University, NS50, Seoul 151-747, Korea K.-I.
A scalable multilevel algorithm for graph clustering and community structure detection
A scalable multilevel algorithm for graph clustering and community structure detection Hristo N. Djidjev 1 Los Alamos National Laboratory, Los Alamos, NM 87545 Abstract. One of the most useful measures
Analysis of Internet Topologies
Analysis of Internet Topologies Ljiljana Trajković [email protected] Communication Networks Laboratory http://www.ensc.sfu.ca/cnl School of Engineering Science Simon Fraser University, Vancouver, British
Towards Modelling The Internet Topology The Interactive Growth Model
Towards Modelling The Internet Topology The Interactive Growth Model Shi Zhou (member of IEEE & IEE) Department of Electronic Engineering Queen Mary, University of London Mile End Road, London, E1 4NS
Graph Theory and Networks in Biology
Graph Theory and Networks in Biology Oliver Mason and Mark Verwoerd March 14, 2006 Abstract In this paper, we present a survey of the use of graph theoretical techniques in Biology. In particular, we discuss
Emergence of Complexity in Financial Networks
Emergence of Complexity in Financial Networks Guido Caldarelli 1, Stefano Battiston 2, Diego Garlaschelli 3 and Michele Catanzaro 1 1 INFM UdR Roma1 Dipartimento di Fisica Università La Sapienza P.le Moro
V. Adamchik 1. Graph Theory. Victor Adamchik. Fall of 2005
V. Adamchik 1 Graph Theory Victor Adamchik Fall of 2005 Plan 1. Basic Vocabulary 2. Regular graph 3. Connectivity 4. Representing Graphs Introduction A.Aho and J.Ulman acknowledge that Fundamentally, computer
Efficient Crawling of Community Structures in Online Social Networks
Efficient Crawling of Community Structures in Online Social Networks Network Architectures and Services PVM 2011-071 Efficient Crawling of Community Structures in Online Social Networks For the degree
Practical Graph Mining with R. 5. Link Analysis
Practical Graph Mining with R 5. Link Analysis Outline Link Analysis Concepts Metrics for Analyzing Networks PageRank HITS Link Prediction 2 Link Analysis Concepts Link A relationship between two entities
Mining Social Network Graphs
Mining Social Network Graphs Debapriyo Majumdar Data Mining Fall 2014 Indian Statistical Institute Kolkata November 13, 17, 2014 Social Network No introduc+on required Really? We s7ll need to understand
Sampling Biases in IP Topology Measurements
Sampling Biases in IP Topology Measurements Anukool Lakhina with John Byers, Mark Crovella and Peng Xie Department of Boston University Discovering the Internet topology Goal: Discover the Internet Router
Social Networks and Social Media
Social Networks and Social Media Social Media: Many-to-Many Social Networking Content Sharing Social Media Blogs Microblogging Wiki Forum 2 Characteristics of Social Media Consumers become Producers Rich
Graph Theory and Complex Networks: An Introduction. Chapter 08: Computer networks
Graph Theory and Complex Networks: An Introduction Maarten van Steen VU Amsterdam, Dept. Computer Science Room R4.20, [email protected] Chapter 08: Computer networks Version: March 3, 2011 2 / 53 Contents
Link Prediction in Social Networks
CS378 Data Mining Final Project Report Dustin Ho : dsh544 Eric Shrewsberry : eas2389 Link Prediction in Social Networks 1. Introduction Social networks are becoming increasingly more prevalent in the daily
Evaluation of a New Method for Measuring the Internet Degree Distribution: Simulation Results
Evaluation of a New Method for Measuring the Internet Distribution: Simulation Results Christophe Crespelle and Fabien Tarissan LIP6 CNRS and Université Pierre et Marie Curie Paris 6 4 avenue du président
Foundations of Multidimensional Network Analysis
2 International Conference on Advances in Social Networks Analysis and Mining Foundations of Multidimensional Network Analysis Michele Berlingerio Michele Coscia 2 Fosca Giannotti Anna Monreale 2 Dino
The mathematics of networks
The mathematics of networks M. E. J. Newman Center for the Study of Complex Systems, University of Michigan, Ann Arbor, MI 48109 1040 In much of economic theory it is assumed that economic agents interact,
1. Write the number of the left-hand item next to the item on the right that corresponds to it.
1. Write the number of the left-hand item next to the item on the right that corresponds to it. 1. Stanford prison experiment 2. Friendster 3. neuron 4. router 5. tipping 6. small worlds 7. job-hunting
Statistical mechanics of complex networks
Statistical mechanics of complex networks Réka Albert* and Albert-László Barabási Department of Physics, University of Notre Dame, Notre Dame, Indiana 46556 (Published 30 January 2002) REVIEWS OF MODERN
Communication Dynamics of Blog Networks
Communication Dynamics of Blog Networks Mark Goldberg CS Department, RPI 0 8th Street Troy, NY [email protected] Konstantin Mertsalov CS Department, RPI 0 8th Street Troy, NY [email protected] Stephen
Jure Leskovec (@jure) Stanford University
Jure Leskovec (@jure) Stanford University KDD Summer School, Beijing, August 2012 8/10/2012 Jure Leskovec (@jure), KDD Summer School 2012 2 Graph: Kronecker graphs Graph Node attributes: MAG model Graph
Social and Economic Networks: Lecture 1, Networks?
Social and Economic Networks: Lecture 1, Networks? Alper Duman Izmir University Economics, February 26, 2013 Conventional economics assume that all agents are either completely connected or totally isolated.
Information Network or Social Network? The Structure of the Twitter Follow Graph
Information Network or Social Network? The Structure of the Twitter Follow Graph Seth A. Myers, Aneesh Sharma, Pankaj Gupta, and Jimmy Lin Twitter, Inc. @seth_a_myers @aneeshs @pankaj @lintool ABSTRACT
