Social and Economic Networks: Lecture 1, Networks?

Size: px
Start display at page:

Download "Social and Economic Networks: Lecture 1, Networks?"

Transcription

1 Social and Economic Networks: Lecture 1, Networks? Alper Duman Izmir University Economics, February 26, 2013

2 Conventional economics assume that all agents are either completely connected or totally isolated. All agents are either homogeneous or there exist a representative agent All agents optimize without strategic substitutes or complementarities. Time and topology almost never matters

3 Figure : Input-Output Networks of US Economy,

4 Figure : ISE Firms Network via Interlocking Directors,2012 (Red: Koç group, Blues. Sabancı group)

5 Figure : Ownership Networks of Firms 2010

6 Figure : World Trade Network

7 Figure : Product Space Network

8 Figure : Subway Network

9 Types of Networks Directed Affiliation or Two-Mode Weighted Multigraph Trees

10 Centrality Sabancı, Boyner, Yalçındağ, and Doğan families are all connected Centrality of the actors is very important! Power brokers and bridges; Who and where are they?

11 Figure : Marriage Network among Fortune 100

12 Centrality Which centrality is more important? 1. Degree Centrality 2. Closeness Centrality 3. Betweenness Centrality 4. Random-Walk Centrality 5. Eigenvector Centrality

13 Random Graphs and Networks Seminal model is due Erdös and Renyi (1959) Think about the number of possible networks with just 10 vertices Pick an edge probability 1 > p > 0, and choose any pair of vertices to apply. Do this for every pair. That is a graph G(N, p) with N vertices, and edge is present between any two vertices with a probability p.

14 Figure : Random Network with G(100, 0.01)

15 Figure : Random Network with G(100, 0.02)

16 Figure : Random Network with G(100, 0.03)

17 Characteristics of Random Networks Giant component emerges quickly Average path is very short Clustering is very low Edge formation is independent; very unlikely in social networks, WHY?

18 What is the probability of a fully connected network with N = 3? Three different events, each with a probability of p; so it should be p 3 What about the network with all isolated vertices? In general, any network with n vertices/nodes and m edges/links has a probability p m (1 p) n(n 1) 2 m to form

19 The probability that any given node i has d links is C(n 1; d)p d (1 p) n 1 d Fraction of nodes that have d links in a large network with large n and small p e (n 1)p ((n 1)p) d d! This is an approximation by a Binomial distribution

20 Figure : Frequency Distributions of Random Graphs frequency degree

21 What is the fraction of nodes that have zero degrees, that is the fraction of isolates? For large networks that would be approximated by e (n 1)p, if (n 1)p is sufficiently small If on average we expect only one isolate we have e (n 1)p = 1 n Solve this? How does it relate to the random network we have drawn previously for G(100, 0.02)?

22 Strategic Connection Model Agents form connections strategically There are (1) direct benefits of immediate links and (2) indirect benefits derived from friends of the friends There are costs of forming/keeping direct links Each agent shoud agree on the link; otherwise one is enough to severe the link

23 Figure : Selected 4-Node Networks and Strategic Connection Model

24 Consider agent A in Network 1; the payoff would be δ + δ 2 + δ 3 c where δ is the direct benefit, and c is the cost. What about agent B? Which payoff is higher, A s or B s? Note that if there is no path between two vertices then there can not be any direct or indirect benefit.

25 Come up with your own example of a network Think about the motto of Six degrees of Separation ; why is it a small world? What if our network of connections are random, what would be the diameter in such a world? Why is the Star Network pairwise-stable and efficient network for intermediate levels of cost of link formation?

Recap. Type of graphs Connectivity/Giant component Diameter Clustering coefficient Betweenness Centrality Degree distributions

Recap. Type of graphs Connectivity/Giant component Diameter Clustering coefficient Betweenness Centrality Degree distributions Recap Type of graphs Connectivity/Giant component Diameter Clustering coefficient Betweenness Centrality Degree distributions Degree Distribution N k is the number of nodes with degree k P(k) is the probability

More information

In the following we will only consider undirected networks.

In the following we will only consider undirected networks. Roles in Networks Roles in Networks Motivation for work: Let topology define network roles. Work by Kleinberg on directed graphs, used topology to define two types of roles: authorities and hubs. (Each

More information

Social Media Mining. Graph Essentials

Social Media Mining. Graph Essentials Graph Essentials Graph Basics Measures Graph and Essentials Metrics 2 2 Nodes and Edges A network is a graph nodes, actors, or vertices (plural of vertex) Connections, edges or ties Edge Node Measures

More information

Social and Technological Network Analysis. Lecture 3: Centrality Measures. Dr. Cecilia Mascolo (some material from Lada Adamic s lectures)

Social and Technological Network Analysis. Lecture 3: Centrality Measures. Dr. Cecilia Mascolo (some material from Lada Adamic s lectures) Social and Technological Network Analysis Lecture 3: Centrality Measures Dr. Cecilia Mascolo (some material from Lada Adamic s lectures) In This Lecture We will introduce the concept of centrality and

More information

Complex Networks Analysis: Clustering Methods

Complex Networks Analysis: Clustering Methods Complex Networks Analysis: Clustering Methods Nikolai Nefedov Spring 2013 ISI ETH Zurich nefedov@isi.ee.ethz.ch 1 Outline Purpose to give an overview of modern graph-clustering methods and their applications

More information

Option 1: empirical network analysis. Task: find data, analyze data (and visualize it), then interpret.

Option 1: empirical network analysis. Task: find data, analyze data (and visualize it), then interpret. Programming project Task Option 1: empirical network analysis. Task: find data, analyze data (and visualize it), then interpret. Obtaining data This project focuses upon cocktail ingredients. Data was

More information

Network/Graph Theory. What is a Network? What is network theory? Graph-based representations. Friendship Network. What makes a problem graph-like?

Network/Graph Theory. What is a Network? What is network theory? Graph-based representations. Friendship Network. What makes a problem graph-like? What is a Network? Network/Graph Theory Network = graph Informally a graph is a set of nodes joined by a set of lines or arrows. 1 1 2 3 2 3 4 5 6 4 5 6 Graph-based representations Representing a problem

More information

A discussion of Statistical Mechanics of Complex Networks P. Part I

A discussion of Statistical Mechanics of Complex Networks P. Part I A discussion of Statistical Mechanics of Complex Networks Part I Review of Modern Physics, Vol. 74, 2002 Small Word Networks Clustering Coefficient Scale-Free Networks Erdös-Rényi model cover only parts

More information

Network Analysis and Visualization of Staphylococcus aureus. by Russ Gibson

Network Analysis and Visualization of Staphylococcus aureus. by Russ Gibson Network Analysis and Visualization of Staphylococcus aureus by Russ Gibson Network analysis Based on graph theory Probabilistic models (random graphs) developed by Erdős and Rényi in 1959 Theory and tools

More information

Graph models for the Web and the Internet. Elias Koutsoupias University of Athens and UCLA. Crete, July 2003

Graph models for the Web and the Internet. Elias Koutsoupias University of Athens and UCLA. Crete, July 2003 Graph models for the Web and the Internet Elias Koutsoupias University of Athens and UCLA Crete, July 2003 Outline of the lecture Small world phenomenon The shape of the Web graph Searching and navigation

More information

Minimum Spanning Trees

Minimum Spanning Trees Minimum Spanning Trees Algorithms and 18.304 Presentation Outline 1 Graph Terminology Minimum Spanning Trees 2 3 Outline Graph Terminology Minimum Spanning Trees 1 Graph Terminology Minimum Spanning Trees

More information

Graphs over Time Densification Laws, Shrinking Diameters and Possible Explanations

Graphs over Time Densification Laws, Shrinking Diameters and Possible Explanations Graphs over Time Densification Laws, Shrinking Diameters and Possible Explanations Jurij Leskovec, CMU Jon Kleinberg, Cornell Christos Faloutsos, CMU 1 Introduction What can we do with graphs? What patterns

More information

Collecting Network Data in Surveys

Collecting Network Data in Surveys Collecting Network Data in Surveys Arun Advani and Bansi Malde September 203 We gratefully acknowledge funding from the ESRC-NCRM Node Programme Evaluation for Policy Analysis Grant reference RES-576-25-0042.

More information

Social Media Mining. Network Measures

Social Media Mining. Network Measures Klout Measures and Metrics 22 Why Do We Need Measures? Who are the central figures (influential individuals) in the network? What interaction patterns are common in friends? Who are the like-minded users

More information

Social Network Mining

Social Network Mining Social Network Mining Data Mining November 11, 2013 Frank Takes (ftakes@liacs.nl) LIACS, Universiteit Leiden Overview Social Network Analysis Graph Mining Online Social Networks Friendship Graph Semantics

More information

Econ 430 Lecture 9: Games on Networks

Econ 430 Lecture 9: Games on Networks Alper Duman Izmir University Economics, May 10, 2013 Semi-Anonymous Graphical Games refer to games on networks in which agents observe what their neighbours do The number of agents taking a specific action

More information

Graph definition Degree, in, out degree, oriented graph. Complete, regular, bipartite graph. Graph representation, connectivity, adjacency.

Graph definition Degree, in, out degree, oriented graph. Complete, regular, bipartite graph. Graph representation, connectivity, adjacency. Mária Markošová Graph definition Degree, in, out degree, oriented graph. Complete, regular, bipartite graph. Graph representation, connectivity, adjacency. Isomorphism of graphs. Paths, cycles, trials.

More information

Graphs, Networks and Python: The Power of Interconnection. Lachlan Blackhall - lachlan@repositpower.com

Graphs, Networks and Python: The Power of Interconnection. Lachlan Blackhall - lachlan@repositpower.com Graphs, Networks and Python: The Power of Interconnection Lachlan Blackhall - lachlan@repositpower.com A little about me Graphs Graph, G = (V, E) V = Vertices / Nodes E = Edges NetworkX Native graph

More information

V. Adamchik 1. Graph Theory. Victor Adamchik. Fall of 2005

V. Adamchik 1. Graph Theory. Victor Adamchik. Fall of 2005 V. Adamchik 1 Graph Theory Victor Adamchik Fall of 2005 Plan 1. Basic Vocabulary 2. Regular graph 3. Connectivity 4. Representing Graphs Introduction A.Aho and J.Ulman acknowledge that Fundamentally, computer

More information

Systemic risk in derivative markets: a graph-theory analysis. D. Lautier & F. Raynaud

Systemic risk in derivative markets: a graph-theory analysis. D. Lautier & F. Raynaud Systemic risk in derivative markets: a graph-theory analysis D. Lautier & F. Raynaud Objectives Empirical study on systemic risk in derivative markets Integration as a necessary condition for systemic

More information

Part 2: Community Detection

Part 2: Community Detection Chapter 8: Graph Data Part 2: Community Detection Based on Leskovec, Rajaraman, Ullman 2014: Mining of Massive Datasets Big Data Management and Analytics Outline Community Detection - Social networks -

More information

Bioinformatics: Network Analysis

Bioinformatics: Network Analysis Bioinformatics: Network Analysis Graph-theoretic Properties of Biological Networks COMP 572 (BIOS 572 / BIOE 564) - Fall 2013 Luay Nakhleh, Rice University 1 Outline Architectural features Motifs, modules,

More information

CSV886: Social, Economics and Business Networks. Lecture 2: Affiliation and Balance. R Ravi ravi+iitd@andrew.cmu.edu

CSV886: Social, Economics and Business Networks. Lecture 2: Affiliation and Balance. R Ravi ravi+iitd@andrew.cmu.edu CSV886: Social, Economics and Business Networks Lecture 2: Affiliation and Balance R Ravi ravi+iitd@andrew.cmu.edu Granovetter s Puzzle Resolved Strong Triadic Closure holds in most nodes in social networks

More information

Individual security and network design

Individual security and network design Individual security and network design Diego Cerdeiro Marcin Dziubiński Sanjeev Goyal FIT 2015 Motivation Networks often face external threats in form of strategic or random attacks The attacks can be

More information

Introduction to Networks and Business Intelligence

Introduction to Networks and Business Intelligence Introduction to Networks and Business Intelligence Prof. Dr. Daning Hu Department of Informatics University of Zurich Sep 17th, 2015 Outline Network Science A Random History Network Analysis Network Topological

More information

Lecture 2.1 : The Distributed Bellman-Ford Algorithm. Lecture 2.2 : The Destination Sequenced Distance Vector (DSDV) protocol

Lecture 2.1 : The Distributed Bellman-Ford Algorithm. Lecture 2.2 : The Destination Sequenced Distance Vector (DSDV) protocol Lecture 2 : The DSDV Protocol Lecture 2.1 : The Distributed Bellman-Ford Algorithm Lecture 2.2 : The Destination Sequenced Distance Vector (DSDV) protocol The Routing Problem S S D D The routing problem

More information

Random graphs and complex networks

Random graphs and complex networks Random graphs and complex networks Remco van der Hofstad Honours Class, spring 2008 Complex networks Figure 2 Ye a s t p ro te in in te ra c tio n n e tw o rk. A m a p o f p ro tein p ro tein in tera c

More information

www.objectivity.com An Introduction To Presented by Leon Guzenda, Founder, Objectivity

www.objectivity.com An Introduction To Presented by Leon Guzenda, Founder, Objectivity www.objectivity.com An Introduction To Graph Databases Presented by Leon Guzenda, Founder, Objectivity Mark Maagdenberg, Sr. Sales Engineer, Objectivity Paul DeWolf, Dir. Field Engineering, Objectivity

More information

Algebra Tiles Activity 1: Adding Integers

Algebra Tiles Activity 1: Adding Integers Algebra Tiles Activity 1: Adding Integers NY Standards: 7/8.PS.6,7; 7/8.CN.1; 7/8.R.1; 7.N.13 We are going to use positive (yellow) and negative (red) tiles to discover the rules for adding and subtracting

More information

Year 9 mathematics test

Year 9 mathematics test Ma KEY STAGE 3 Year 9 mathematics test Tier 6 8 Paper 1 Calculator not allowed First name Last name Class Date Please read this page, but do not open your booklet until your teacher tells you to start.

More information

General Network Analysis: Graph-theoretic. COMP572 Fall 2009

General Network Analysis: Graph-theoretic. COMP572 Fall 2009 General Network Analysis: Graph-theoretic Techniques COMP572 Fall 2009 Networks (aka Graphs) A network is a set of vertices, or nodes, and edges that connect pairs of vertices Example: a network with 5

More information

ATM Network Performance Evaluation And Optimization Using Complex Network Theory

ATM Network Performance Evaluation And Optimization Using Complex Network Theory ATM Network Performance Evaluation And Optimization Using Complex Network Theory Yalin LI 1, Bruno F. Santos 2 and Richard Curran 3 Air Transport and Operations Faculty of Aerospace Engineering The Technical

More information

Solutions to Exercises 8

Solutions to Exercises 8 Discrete Mathematics Lent 2009 MA210 Solutions to Exercises 8 (1) Suppose that G is a graph in which every vertex has degree at least k, where k 1, and in which every cycle contains at least 4 vertices.

More information

Topological Properties

Topological Properties Advanced Computer Architecture Topological Properties Routing Distance: Number of links on route Node degree: Number of channels per node Network diameter: Longest minimum routing distance between any

More information

CS5314 Randomized Algorithms. Lecture 16: Balls, Bins, Random Graphs (Random Graphs, Hamiltonian Cycles)

CS5314 Randomized Algorithms. Lecture 16: Balls, Bins, Random Graphs (Random Graphs, Hamiltonian Cycles) CS5314 Randomized Algorithms Lecture 16: Balls, Bins, Random Graphs (Random Graphs, Hamiltonian Cycles) 1 Objectives Introduce Random Graph Model used to define a probability space for all graphs with

More information

Distributed Computing over Communication Networks: Topology. (with an excursion to P2P)

Distributed Computing over Communication Networks: Topology. (with an excursion to P2P) Distributed Computing over Communication Networks: Topology (with an excursion to P2P) Some administrative comments... There will be a Skript for this part of the lecture. (Same as slides, except for today...

More information

Year 9 mathematics test

Year 9 mathematics test Ma KEY STAGE 3 Year 9 mathematics test Tier 5 7 Paper 1 Calculator not allowed First name Last name Class Date Please read this page, but do not open your booklet until your teacher tells you to start.

More information

Healthcare Analytics. Aryya Gangopadhyay UMBC

Healthcare Analytics. Aryya Gangopadhyay UMBC Healthcare Analytics Aryya Gangopadhyay UMBC Two of many projects Integrated network approach to personalized medicine Multidimensional and multimodal Dynamic Analyze interactions HealthMask Need for sharing

More information

Binomial trees and risk neutral valuation

Binomial trees and risk neutral valuation Binomial trees and risk neutral valuation Moty Katzman September 19, 2014 Derivatives in a simple world A derivative is an asset whose value depends on the value of another asset. Call/Put European/American

More information

A MEASURE OF GLOBAL EFFICIENCY IN NETWORKS. Aysun Aytac 1, Betul Atay 2. Faculty of Science Ege University 35100, Bornova, Izmir, TURKEY

A MEASURE OF GLOBAL EFFICIENCY IN NETWORKS. Aysun Aytac 1, Betul Atay 2. Faculty of Science Ege University 35100, Bornova, Izmir, TURKEY International Journal of Pure and Applied Mathematics Volume 03 No. 05, 6-70 ISSN: 3-8080 (printed version); ISSN: 34-3395 (on-line version) url: http://www.ijpam.eu doi: http://dx.doi.org/0.73/ijpam.v03i.5

More information

Rational Functions ( )

Rational Functions ( ) Rational Functions A rational function is a function of the form r P Q where P and Q are polynomials. We assume that P() and Q() have no factors in common, and Q() is not the zero polynomial. The domain

More information

Homework 15 Solutions

Homework 15 Solutions PROBLEM ONE (Trees) Homework 15 Solutions 1. Recall the definition of a tree: a tree is a connected, undirected graph which has no cycles. Which of the following definitions are equivalent to this definition

More information

ALGEBRA I A PLUS COURSE OUTLINE

ALGEBRA I A PLUS COURSE OUTLINE ALGEBRA I A PLUS COURSE OUTLINE OVERVIEW: 1. Operations with Real Numbers 2. Equation Solving 3. Word Problems 4. Inequalities 5. Graphs of Functions 6. Linear Functions 7. Scatterplots and Lines of Best

More information

An Agent-Based Adaptation of Friendship Games: Observations on Network Topologies

An Agent-Based Adaptation of Friendship Games: Observations on Network Topologies An Agent-Based Adaptation of Friendship Games: Observations on Network Topologies David S. Dixon University of New Mexico, Albuquerque NM 87131, USA Abstract. A friendship game in game theory is a network

More information

(a) (b) (c) Figure 1 : Graphs, multigraphs and digraphs. If the vertices of the leftmost figure are labelled {1, 2, 3, 4} in clockwise order from

(a) (b) (c) Figure 1 : Graphs, multigraphs and digraphs. If the vertices of the leftmost figure are labelled {1, 2, 3, 4} in clockwise order from 4 Graph Theory Throughout these notes, a graph G is a pair (V, E) where V is a set and E is a set of unordered pairs of elements of V. The elements of V are called vertices and the elements of E are called

More information

Mining Social-Network Graphs

Mining Social-Network Graphs 342 Chapter 10 Mining Social-Network Graphs There is much information to be gained by analyzing the large-scale data that is derived from social networks. The best-known example of a social network is

More information

Circuits 1 M H Miller

Circuits 1 M H Miller Introduction to Graph Theory Introduction These notes are primarily a digression to provide general background remarks. The subject is an efficient procedure for the determination of voltages and currents

More information

Principle of (Weak) Mathematical Induction. P(1) ( n 1)(P(n) P(n + 1)) ( n 1)(P(n))

Principle of (Weak) Mathematical Induction. P(1) ( n 1)(P(n) P(n + 1)) ( n 1)(P(n)) Outline We will cover (over the next few weeks) Mathematical Induction (or Weak Induction) Strong (Mathematical) Induction Constructive Induction Structural Induction Principle of (Weak) Mathematical Induction

More information

Chapter 2: Systems of Linear Equations and Matrices:

Chapter 2: Systems of Linear Equations and Matrices: At the end of the lesson, you should be able to: Chapter 2: Systems of Linear Equations and Matrices: 2.1: Solutions of Linear Systems by the Echelon Method Define linear systems, unique solution, inconsistent,

More information

Graph Algorithms using Map-Reduce

Graph Algorithms using Map-Reduce Graph Algorithms using Map-Reduce Graphs are ubiquitous in modern society. Some examples: The hyperlink structure of the web 1/7 Graph Algorithms using Map-Reduce Graphs are ubiquitous in modern society.

More information

Outline. NP-completeness. When is a problem easy? When is a problem hard? Today. Euler Circuits

Outline. NP-completeness. When is a problem easy? When is a problem hard? Today. Euler Circuits Outline NP-completeness Examples of Easy vs. Hard problems Euler circuit vs. Hamiltonian circuit Shortest Path vs. Longest Path 2-pairs sum vs. general Subset Sum Reducing one problem to another Clique

More information

Graph Theory and Complex Networks: An Introduction. Chapter 06: Network analysis

Graph Theory and Complex Networks: An Introduction. Chapter 06: Network analysis Graph Theory and Complex Networks: An Introduction Maarten van Steen VU Amsterdam, Dept. Computer Science Room R4.0, steen@cs.vu.nl Chapter 06: Network analysis Version: April 8, 04 / 3 Contents Chapter

More information

Combinatorics: The Fine Art of Counting

Combinatorics: The Fine Art of Counting Combinatorics: The Fine Art of Counting Week 9 Lecture Notes Graph Theory For completeness I have included the definitions from last week s lecture which we will be using in today s lecture along with

More information

Some questions... Graphs

Some questions... Graphs Uni Innsbruck Informatik - 1 Uni Innsbruck Informatik - 2 Some questions... Peer-to to-peer Systems Analysis of unstructured P2P systems How scalable is Gnutella? How robust is Gnutella? Why does FreeNet

More information

Follow links for Class Use and other Permissions. For more information send email to: permissions@press.princeton.edu

Follow links for Class Use and other Permissions. For more information send email to: permissions@press.princeton.edu COPYRIGHT NOTICE: Matthew O. Jackson: Social and Economic Networks is published by Princeton University Press and copyrighted, 2008, by Princeton University Press. All rights reserved. No part of this

More information

Application of Graph Theory to

Application of Graph Theory to Application of Graph Theory to Requirements Traceability A methodology for visualization of large requirements sets Sam Brown L-3 Communications This presentation consists of L-3 STRATIS general capabilities

More information

Graph Theory. Directed and undirected graphs make useful mental models for many situations. These objects are loosely defined as follows:

Graph Theory. Directed and undirected graphs make useful mental models for many situations. These objects are loosely defined as follows: Graph Theory Directed and undirected graphs make useful mental models for many situations. These objects are loosely defined as follows: Definition An undirected graph is a (finite) set of nodes, some

More information

About the Tutorial. Audience. Prerequisites. Disclaimer & Copyright

About the Tutorial. Audience. Prerequisites. Disclaimer & Copyright About the Tutorial This tutorial offers a brief introduction to the fundamentals of graph theory. Written in a reader-friendly style, it covers the types of graphs, their properties, trees, graph traversability,

More information

Why graph clustering is useful?

Why graph clustering is useful? Graph Clustering Why graph clustering is useful? Distance matrices are graphs as useful as any other clustering Identification of communities in social networks Webpage clustering for better data management

More information

Data Structures and Algorithms Written Examination

Data Structures and Algorithms Written Examination Data Structures and Algorithms Written Examination 22 February 2013 FIRST NAME STUDENT NUMBER LAST NAME SIGNATURE Instructions for students: Write First Name, Last Name, Student Number and Signature where

More information

Lecture 8 : Coordinate Geometry. The coordinate plane The points on a line can be referenced if we choose an origin and a unit of 20

Lecture 8 : Coordinate Geometry. The coordinate plane The points on a line can be referenced if we choose an origin and a unit of 20 Lecture 8 : Coordinate Geometry The coordinate plane The points on a line can be referenced if we choose an origin and a unit of 0 distance on the axis and give each point an identity on the corresponding

More information

Chapter 15: Distributed Structures. Topology

Chapter 15: Distributed Structures. Topology 1 1 Chapter 15: Distributed Structures Topology Network Types Operating System Concepts 15.1 Topology Sites in the system can be physically connected in a variety of ways; they are compared with respect

More information

Graph Mining Techniques for Social Media Analysis

Graph Mining Techniques for Social Media Analysis Graph Mining Techniques for Social Media Analysis Mary McGlohon Christos Faloutsos 1 1-1 What is graph mining? Extracting useful knowledge (patterns, outliers, etc.) from structured data that can be represented

More information

Practical statistical network analysis (with R and igraph)

Practical statistical network analysis (with R and igraph) Practical statistical network analysis (with R and igraph) Gábor Csárdi csardi@rmki.kfki.hu Department of Biophysics, KFKI Research Institute for Nuclear and Particle Physics of the Hungarian Academy of

More information

Performance of networks containing both MaxNet and SumNet links

Performance of networks containing both MaxNet and SumNet links Performance of networks containing both MaxNet and SumNet links Lachlan L. H. Andrew and Bartek P. Wydrowski Abstract Both MaxNet and SumNet are distributed congestion control architectures suitable for

More information

Lecture 9. Sergei Fedotov. 20912 - Introduction to Financial Mathematics. Sergei Fedotov (University of Manchester) 20912 2010 1 / 8

Lecture 9. Sergei Fedotov. 20912 - Introduction to Financial Mathematics. Sergei Fedotov (University of Manchester) 20912 2010 1 / 8 Lecture 9 Sergei Fedotov 20912 - Introduction to Financial Mathematics Sergei Fedotov (University of Manchester) 20912 2010 1 / 8 Lecture 9 1 Risk-Neutral Valuation 2 Risk-Neutral World 3 Two-Steps Binomial

More information

CMPSCI611: Approximating MAX-CUT Lecture 20

CMPSCI611: Approximating MAX-CUT Lecture 20 CMPSCI611: Approximating MAX-CUT Lecture 20 For the next two lectures we ll be seeing examples of approximation algorithms for interesting NP-hard problems. Today we consider MAX-CUT, which we proved to

More information

The mathematics of networks

The mathematics of networks The mathematics of networks M. E. J. Newman Center for the Study of Complex Systems, University of Michigan, Ann Arbor, MI 48109 1040 In much of economic theory it is assumed that economic agents interact,

More information

Network Metrics, Planar Graphs, and Software Tools. Based on materials by Lala Adamic, UMichigan

Network Metrics, Planar Graphs, and Software Tools. Based on materials by Lala Adamic, UMichigan Network Metrics, Planar Graphs, and Software Tools Based on materials by Lala Adamic, UMichigan Network Metrics: Bowtie Model of the Web n The Web is a directed graph: n webpages link to other webpages

More information

Topic 5 Review [81 marks]

Topic 5 Review [81 marks] Topic 5 Review [81 marks] A four-sided die has three blue faces and one red face. The die is rolled. Let B be the event a blue face lands down, and R be the event a red face lands down. 1a. Write down

More information

Course: Model, Learning, and Inference: Lecture 5

Course: Model, Learning, and Inference: Lecture 5 Course: Model, Learning, and Inference: Lecture 5 Alan Yuille Department of Statistics, UCLA Los Angeles, CA 90095 yuille@stat.ucla.edu Abstract Probability distributions on structured representation.

More information

NodeXL for Network analysis Demo/hands-on at NICAR 2012, St Louis, Feb 24. Peter Aldhous, San Francisco Bureau Chief. peter@peteraldhous.

NodeXL for Network analysis Demo/hands-on at NICAR 2012, St Louis, Feb 24. Peter Aldhous, San Francisco Bureau Chief. peter@peteraldhous. NodeXL for Network analysis Demo/hands-on at NICAR 2012, St Louis, Feb 24 Peter Aldhous, San Francisco Bureau Chief peter@peteraldhous.com NodeXL is a template for Microsoft Excel 2007 and 2010, which

More information

Applying Social Network Analysis to the Information in CVS Repositories

Applying Social Network Analysis to the Information in CVS Repositories Applying Social Network Analysis to the Information in CVS Repositories Luis Lopez-Fernandez, Gregorio Robles, Jesus M. Gonzalez-Barahona GSyC, Universidad Rey Juan Carlos {llopez,grex,jgb}@gsyc.escet.urjc.es

More information

Graph Theory and Networks in Biology

Graph Theory and Networks in Biology Graph Theory and Networks in Biology Oliver Mason and Mark Verwoerd March 14, 2006 Abstract In this paper, we present a survey of the use of graph theoretical techniques in Biology. In particular, we discuss

More information

A Comparison of Frontier and Emerging Capital Market Networks Margaret Moten Daniel Evans

A Comparison of Frontier and Emerging Capital Market Networks Margaret Moten Daniel Evans A Comparison of Frontier and Emerging Capital Market Networks Margaret Moten Daniel Evans Network Science Center daniel.evans@usma.edu www.netscience.usma.edu Why Capital Market Networks? Developed capital

More information

Social Network Analysis: Introduzione all'analisi di reti sociali

Social Network Analysis: Introduzione all'analisi di reti sociali Social Network Analysis: Introduzione all'analisi di reti sociali Michele Coscia Dipartimento di Informatica Università di Pisa www.di.unipi.it/~coscia Piano Lezioni Introduzione Misure + Modelli di Social

More information

Mathematical Modelling Lecture 8 Networks

Mathematical Modelling Lecture 8 Networks Lecture 8 Networks phil.hasnip@york.ac.uk Overview of Course Model construction dimensional analysis Experimental input fitting Finding a best answer optimisation Tools for constructing and manipulating

More information

Planarity Planarity

Planarity Planarity Planarity 8.1 71 Planarity Up until now, graphs have been completely abstract. In Topological Graph Theory, it matters how the graphs are drawn. Do the edges cross? Are there knots in the graph structure?

More information

Graphs and Network Flows IE411 Lecture 1

Graphs and Network Flows IE411 Lecture 1 Graphs and Network Flows IE411 Lecture 1 Dr. Ted Ralphs IE411 Lecture 1 1 References for Today s Lecture Required reading Sections 17.1, 19.1 References AMO Chapter 1 and Section 2.1 and 2.2 IE411 Lecture

More information

On the Value of a Social Network

On the Value of a Social Network On the Value of a Social Network Sandeep Chalasani Abstract Different laws have been proposed for the value of a social network. According to Metcalfe s law, the value of a network is proportional to n

More information

Online Social Networks and Network Economics. Aris Anagnostopoulos, Online Social Networks and Network Economics

Online Social Networks and Network Economics. Aris Anagnostopoulos, Online Social Networks and Network Economics Online Social Networks and Network Economics Who? Dr. Luca Becchetti Prof. Elias Koutsoupias Prof. Stefano Leonardi What will We Cover? Possible topics: Structure of social networks Models for social networks

More information

An Introduction to APGL

An Introduction to APGL An Introduction to APGL Charanpal Dhanjal February 2012 Abstract Another Python Graph Library (APGL) is a graph library written using pure Python, NumPy and SciPy. Users new to the library can gain an

More information

NETWORK SCIENCE RANDOM NETWORKS

NETWORK SCIENCE RANDOM NETWORKS 3 ALBERT-LÁSZLÓ BARABÁSI NETWORK SCIENCE ACKNOWLEDGEMENTS MÁRTON PÓSFAI GABRIELE MUSELLA MAURO MARTINO ROBERTA SINATRA SARAH MORRISON AMAL HUSSEINI PHILIPP HOEVEL INDEX Introduction 1 The Random Networ

More information

Sample Problems in Discrete Mathematics

Sample Problems in Discrete Mathematics Sample Problems in Discrete Mathematics This handout lists some sample problems that you should be able to solve as a pre-requisite to Computer Algorithms Try to solve all of them You should also read

More information

Planar Tree Transformation: Results and Counterexample

Planar Tree Transformation: Results and Counterexample Planar Tree Transformation: Results and Counterexample Selim G Akl, Kamrul Islam, and Henk Meijer School of Computing, Queen s University Kingston, Ontario, Canada K7L 3N6 Abstract We consider the problem

More information

Sampling Biases in IP Topology Measurements

Sampling Biases in IP Topology Measurements Sampling Biases in IP Topology Measurements Anukool Lakhina with John Byers, Mark Crovella and Peng Xie Department of Boston University Discovering the Internet topology Goal: Discover the Internet Router

More information

Graph Mining and Social Network Analysis

Graph Mining and Social Network Analysis Graph Mining and Social Network Analysis Data Mining and Text Mining (UIC 583 @ Politecnico di Milano) References Jiawei Han and Micheline Kamber, "Data Mining: Concepts and Techniques", The Morgan Kaufmann

More information

Distance Degree Sequences for Network Analysis

Distance Degree Sequences for Network Analysis Universität Konstanz Computer & Information Science Algorithmics Group 15 Mar 2005 based on Palmer, Gibbons, and Faloutsos: ANF A Fast and Scalable Tool for Data Mining in Massive Graphs, SIGKDD 02. Motivation

More information

Why? A central concept in Computer Science. Algorithms are ubiquitous.

Why? A central concept in Computer Science. Algorithms are ubiquitous. Analysis of Algorithms: A Brief Introduction Why? A central concept in Computer Science. Algorithms are ubiquitous. Using the Internet (sending email, transferring files, use of search engines, online

More information

My work provides a distinction between the national inputoutput model and three spatial models: regional, interregional y multiregional

My work provides a distinction between the national inputoutput model and three spatial models: regional, interregional y multiregional Mexico, D. F. 25 y 26 de Julio, 2013 My work provides a distinction between the national inputoutput model and three spatial models: regional, interregional y multiregional Walter Isard (1951). Outline

More information

DATA ANALYSIS IN PUBLIC SOCIAL NETWORKS

DATA ANALYSIS IN PUBLIC SOCIAL NETWORKS International Scientific Conference & International Workshop Present Day Trends of Innovations 2012 28 th 29 th May 2012 Łomża, Poland DATA ANALYSIS IN PUBLIC SOCIAL NETWORKS Lubos Takac 1 Michal Zabovsky

More information

Cluster detection algorithm in neural networks

Cluster detection algorithm in neural networks Cluster detection algorithm in neural networks David Meunier and Hélène Paugam-Moisy Institute for Cognitive Science, UMR CNRS 5015 67, boulevard Pinel F-69675 BRON - France E-mail: {dmeunier,hpaugam}@isc.cnrs.fr

More information

CALCULATING THE AREA OF A FLOWER BED AND CALCULATING NUMBER OF PLANTS NEEDED

CALCULATING THE AREA OF A FLOWER BED AND CALCULATING NUMBER OF PLANTS NEEDED This resource has been produced as a result of a grant awarded by LSIS. The grant was made available through the Skills for Life Support Programme in 2010. The resource has been developed by (managers

More information

Network Analysis of a Large Scale Open Source Project

Network Analysis of a Large Scale Open Source Project 2014 40th Euromicro Conference on Software Engineering and Advanced Applications Network Analysis of a Large Scale Open Source Project Alma Oručević-Alagić, Martin Höst Department of Computer Science,

More information

WORKSHOP Analisi delle Reti Sociali per conoscere uno strumento uno strumento per conoscere

WORKSHOP Analisi delle Reti Sociali per conoscere uno strumento uno strumento per conoscere Università di Salerno WORKSHOP Analisi delle Reti Sociali per conoscere uno strumento uno strumento per conoscere The scientific collaboration network of the University of Salerno Michele La Rocca, Giuseppe

More information

1. Introduction Gene regulation Genomics and genome analyses Hidden markov model (HMM)

1. Introduction Gene regulation Genomics and genome analyses Hidden markov model (HMM) 1. Introduction Gene regulation Genomics and genome analyses Hidden markov model (HMM) 2. Gene regulation tools and methods Regulatory sequences and motif discovery TF binding sites, microrna target prediction

More information

Lecture Notes on Spanning Trees

Lecture Notes on Spanning Trees Lecture Notes on Spanning Trees 15-122: Principles of Imperative Computation Frank Pfenning Lecture 26 April 26, 2011 1 Introduction In this lecture we introduce graphs. Graphs provide a uniform model

More information

Six Degrees of Separation in Online Society

Six Degrees of Separation in Online Society Six Degrees of Separation in Online Society Lei Zhang * Tsinghua-Southampton Joint Lab on Web Science Graduate School in Shenzhen, Tsinghua University Shenzhen, Guangdong Province, P.R.China zhanglei@sz.tsinghua.edu.cn

More information

Coach Monks s MathCounts Playbook! Secret facts that every Mathlete should know in order to win!

Coach Monks s MathCounts Playbook! Secret facts that every Mathlete should know in order to win! Coach Monks s MathCounts Playbook! Secret facts that every Mathlete should know in order to win! Learn the items marked with a first. Then once you have mastered them try to learn the other topics.. Squares

More information

Character Image Patterns as Big Data

Character Image Patterns as Big Data 22 International Conference on Frontiers in Handwriting Recognition Character Image Patterns as Big Data Seiichi Uchida, Ryosuke Ishida, Akira Yoshida, Wenjie Cai, Yaokai Feng Kyushu University, Fukuoka,

More information