Social and Economic Networks: Lecture 1, Networks?


 Leslie Thornton
 1 years ago
 Views:
Transcription
1 Social and Economic Networks: Lecture 1, Networks? Alper Duman Izmir University Economics, February 26, 2013
2 Conventional economics assume that all agents are either completely connected or totally isolated. All agents are either homogeneous or there exist a representative agent All agents optimize without strategic substitutes or complementarities. Time and topology almost never matters
3 Figure : InputOutput Networks of US Economy,
4 Figure : ISE Firms Network via Interlocking Directors,2012 (Red: Koç group, Blues. Sabancı group)
5 Figure : Ownership Networks of Firms 2010
6 Figure : World Trade Network
7 Figure : Product Space Network
8 Figure : Subway Network
9 Types of Networks Directed Affiliation or TwoMode Weighted Multigraph Trees
10 Centrality Sabancı, Boyner, Yalçındağ, and Doğan families are all connected Centrality of the actors is very important! Power brokers and bridges; Who and where are they?
11 Figure : Marriage Network among Fortune 100
12 Centrality Which centrality is more important? 1. Degree Centrality 2. Closeness Centrality 3. Betweenness Centrality 4. RandomWalk Centrality 5. Eigenvector Centrality
13 Random Graphs and Networks Seminal model is due Erdös and Renyi (1959) Think about the number of possible networks with just 10 vertices Pick an edge probability 1 > p > 0, and choose any pair of vertices to apply. Do this for every pair. That is a graph G(N, p) with N vertices, and edge is present between any two vertices with a probability p.
14 Figure : Random Network with G(100, 0.01)
15 Figure : Random Network with G(100, 0.02)
16 Figure : Random Network with G(100, 0.03)
17 Characteristics of Random Networks Giant component emerges quickly Average path is very short Clustering is very low Edge formation is independent; very unlikely in social networks, WHY?
18 What is the probability of a fully connected network with N = 3? Three different events, each with a probability of p; so it should be p 3 What about the network with all isolated vertices? In general, any network with n vertices/nodes and m edges/links has a probability p m (1 p) n(n 1) 2 m to form
19 The probability that any given node i has d links is C(n 1; d)p d (1 p) n 1 d Fraction of nodes that have d links in a large network with large n and small p e (n 1)p ((n 1)p) d d! This is an approximation by a Binomial distribution
20 Figure : Frequency Distributions of Random Graphs frequency degree
21 What is the fraction of nodes that have zero degrees, that is the fraction of isolates? For large networks that would be approximated by e (n 1)p, if (n 1)p is sufficiently small If on average we expect only one isolate we have e (n 1)p = 1 n Solve this? How does it relate to the random network we have drawn previously for G(100, 0.02)?
22 Strategic Connection Model Agents form connections strategically There are (1) direct benefits of immediate links and (2) indirect benefits derived from friends of the friends There are costs of forming/keeping direct links Each agent shoud agree on the link; otherwise one is enough to severe the link
23 Figure : Selected 4Node Networks and Strategic Connection Model
24 Consider agent A in Network 1; the payoff would be δ + δ 2 + δ 3 c where δ is the direct benefit, and c is the cost. What about agent B? Which payoff is higher, A s or B s? Note that if there is no path between two vertices then there can not be any direct or indirect benefit.
25 Come up with your own example of a network Think about the motto of Six degrees of Separation ; why is it a small world? What if our network of connections are random, what would be the diameter in such a world? Why is the Star Network pairwisestable and efficient network for intermediate levels of cost of link formation?
The mathematics of networks
The mathematics of networks M. E. J. Newman Center for the Study of Complex Systems, University of Michigan, Ann Arbor, MI 48109 1040 In much of economic theory it is assumed that economic agents interact,
More informationMODEL SELECTION FOR SOCIAL NETWORKS USING GRAPHLETS
MODEL SELECTION FOR SOCIAL NETWORKS USING GRAPHLETS JEANNETTE JANSSEN, MATT HURSHMAN, AND NAUZER KALYANIWALLA Abstract. Several network models have been proposed to explain the link structure observed
More informationMINITAB ASSISTANT WHITE PAPER
MINITAB ASSISTANT WHITE PAPER This paper explains the research conducted by Minitab statisticians to develop the methods and data checks used in the Assistant in Minitab 17 Statistical Software. OneWay
More information1 Economic Application of Derivatives
1 Economic Application of Derivatives derivapplic.te and.pdf April 5, 2007 In earlier notes, we have already considered marginal cost as the derivative of the cost function. That is mc() = c 0 () How
More informationRouter Group Monitoring: Making Traffic Trajectory Error Detection More Efficient
Router Group Monitoring: Making Traffic Trajectory Error Detection More Efficient Bo Zhang Guohui Wang Angela Yun Zhu T. S. Eugene Ng Department of Computer Science Rice University Abstract Detecting errors
More informationPerformance of networks containing both MaxNet and SumNet links
Performance of networks containing both MaxNet and SumNet links Lachlan L. H. Andrew and Bartek P. Wydrowski Abstract Both MaxNet and SumNet are distributed congestion control architectures suitable for
More informationInformation Exchanges Among Firms and their Impact on Competition*
Information Exchanges Among Firms and their Impact on Competition* KaiUwe Kühn Xavier Vives Institut d'anàlisi Econòmica (CSIC) Barcelona June 1994 Revised December 1994 *We are grateful to Paco Caballero,
More informationNavigating the Employer Mandate
Navigating the Employer Mandate The Employer Mandate is the Health Care Reform provision that requires all employers with 50 or more full time equivalent employees to offer a certain level of health insurance
More informationNotes  Gruber, Public Finance Section 12.1 Social Insurance What is insurance? Individuals pay money to an insurer (private firm or gov).
Notes  Gruber, Public Finance Section 12.1 Social Insurance What is insurance? Individuals pay money to an insurer (private firm or gov). These payments are called premiums. Insurer promises to make a
More informationThe Stability and Efficiency of Economic and Social Networks
The Stability and Efficiency of Economic and Social Networks Matthew O. Jackson March 2001 Revision: June 18, 2001 Forthcoming in Advances in Economic Design, edited by Murat Sertel Abstract This paper
More informationSearching in a Small World
THESIS FOR THE DEGREE OF LICENTIATE OF PHILOSOPHY Searching in a Small World Oskar Sandberg Division of Mathematical Statistics Department of Mathematical Sciences Chalmers University of Technology and
More informationNestedness in networks: A theoretical model and some applications
Theoretical Economics 9 (2014), 695 752 15557561/20140695 Nestedness in networks: A theoretical model and some applications Michael D. König Department of Economics, University of Zurich Claudio J. Tessone
More informationStructural and functional analytics for community detection in largescale complex networks
Chopade and Zhan Journal of Big Data DOI 10.1186/s405370150019y RESEARCH Open Access Structural and functional analytics for community detection in largescale complex networks Pravin Chopade 1* and
More informationFixedEffect Versus RandomEffects Models
CHAPTER 13 FixedEffect Versus RandomEffects Models Introduction Definition of a summary effect Estimating the summary effect Extreme effect size in a large study or a small study Confidence interval
More informationChapter 2 The Core of a Cooperative Game
Chapter 2 The Core of a Cooperative Game The main fundamental question in cooperative game theory is the question how to allocate the total generated wealth by the collective of all players the player
More information9. Sampling Distributions
9. Sampling Distributions Prerequisites none A. Introduction B. Sampling Distribution of the Mean C. Sampling Distribution of Difference Between Means D. Sampling Distribution of Pearson's r E. Sampling
More informationTHE COHESIVENESS OF BLOCKS IN SOCIAL NETWORKS: NODE CONNECTIVITY AND CONDITIONAL DENSITY
THE COHESIVENESS OF BLOCKS IN SOCIAL NETWORKS: NODE CONNECTIVITY AND CONDITIONAL DENSITY Douglas R. White* Frank Harary This study shows several ways that formal graph theoretic statements map patterns
More informationScientific collaboration networks. II. Shortest paths, weighted networks, and centrality
PHYSICAL REVIEW E, VOLUME 64, 016132 Scientific collaboration networks. II. Shortest paths, weighted networks, and centrality M. E. J. Newman Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, New Mexico
More informationSwayed by Friends or by the Crowd?
Swayed by Friends or by the Crowd? Zeinab Abbassi Dept. of Computer Science Columbia University zeinab@cs.columbia.edu Christina Aperjis Social Computing Group HP Labs christina.aperjis@hp.com Bernardo
More informationBasic Notions for the Analysis of Large Twomode Networks
Basic Notions for the Analysis of Large Twomode Networks Matthieu Latapy, Clémence Magnien and Nathalie Del Vecchio 2 Abstract Many large realworld networks actually have a 2mode nature: their nodes
More informationCoordination in Network Security Games
Coordination in Network Security Games Marc Lelarge INRIA  ENS Paris, France Email: marc.lelarge@ens.fr Abstract Malicious softwares or malwares for short have become a major security threat. While originating
More informationA 61MillionPerson Experiment in Social Influence and Political Mobilization
Supplementary Information for A 61MillionPerson Experiment in Social Influence and Political Mobilization Robert M. Bond 1, Christopher J. Fariss 1, Jason J. Jones 2, Adam D. I. Kramer 3, Cameron Marlow
More informationDiffusion Follows Structure A Network Model of the Software Market
Diffusion Follows Structure A Network Model of the Software Market Falk v. Westarp, Oliver Wendt Institute of Information Systems J. W. GoetheUniversity Mertonstr. 17, 60054 Frankfurt am Main Germany
More informationAn efficient reconciliation algorithm for social networks
An efficient reconciliation algorithm for social networks Nitish Korula Google Inc. 76 Ninth Ave, 4th Floor New York, NY nitish@google.com Silvio Lattanzi Google Inc. 76 Ninth Ave, 4th Floor New York,
More informationMath 2001 Homework #10 Solutions
Math 00 Homework #0 Solutions. Section.: ab. For each map below, determine the number of southerly paths from point to point. Solution: We just have to use the same process as we did in building Pascal
More informationFoundations of Data Science 1
Foundations of Data Science John Hopcroft Ravindran Kannan Version /4/204 These notes are a first draft of a book being written by Hopcroft and Kannan and in many places are incomplete. However, the notes
More informationThe Effect of Network Topology on the Spread of Epidemics
1 The Effect of Network Topology on the Spread of Epidemics A. Ganesh, L. Massoulié, D. Towsley Microsoft Research Dept. of Computer Science 7 J.J. Thomson Avenue University of Massachusetts CB3 0FB Cambridge,
More informationWISE Sampling Distribution of the Mean Tutorial
Name Date Class WISE Sampling Distribution of the Mean Tutorial Exercise 1: How accurate is a sample mean? Overview A friend of yours developed a scale to measure Life Satisfaction. For the population
More informationThe SmallWorld Phenomenon: An Algorithmic Perspective
The SmallWorld Phenomenon: An Algorithmic Perspective Jon Kleinberg Abstract Long a matter of folklore, the smallworld phenomenon the principle that we are all linked by short chains of acquaintances
More informationFoundations of Data Science 1
Foundations of Data Science John Hopcroft Ravindran Kannan Version 2/8/204 These notes are a first draft of a book being written by Hopcroft and Kannan and in many places are incomplete. However, the notes
More information