Temporal Dynamics of Scale-Free Networks

Size: px
Start display at page:

Download "Temporal Dynamics of Scale-Free Networks"

Transcription

1 Temporal Dynamics of Scale-Free Networks Erez Shmueli, Yaniv Altshuler, and Alex Sandy Pentland MIT Media Lab Abstract. Many social, biological, and technological networks display substantial non-trivial topological features. One well-known and much studied feature of such networks is the scale-free power-law distribution of nodes degrees. Several works further suggest models for generating complex networks which comply with one or more of these topological features. For example, the known Barabasi-Albert preferential attachment model tells us how to create scale-free networks. Since the main focus of these generative models is in capturing one or more of the static topological features of complex networks, they are very limited in capturing the temporal dynamic properties of the networks evolvement. Therefore, when studying real-world networks, the following question arises: what is the mechanism that governs changes in the network over time? In order to shed some light on this topic, we study two years of data that we received from etoro: the world s largest social financial trading company. We discover three key findings. First, we demonstrate how the network topology may change significantly along time. More specifically, we illustrate how popular nodes may become extremely less popular, and emerging new nodes may become extremely popular, in a very short time. Then, we show that although the network may change significantly over time, the degrees of its nodes obey the powerlaw model at any given time. Finally, we observe that the magnitude of change between consecutive states of the network also presents a power-law effect. 1 Introduction Many social, biological, and technological networks display substantial non-trivial topological features. One well-known and much studied feature of such networks is the scale-free power-law distribution of nodes degrees [4]. That is, the degree of nodes is distributed according to the following formula: P [d] = c d λ. As the study of complex networks has continued to grow in importance and popularity, many other features have attracted attention as well. Such features include among the rest: short path lengths and a high clustering coefficient [12, 2], assortativity or disassortativity among vertices [1], community structure [8] and hierarchical structure [11] for undirected networks and reciprocity [7] and triad significance profile [9] for directed networks. Several works further suggested models for generating complex networks which comply with one or more of these topological features. For example, the known Barabasi-Albert model [4] tells us how to create scale-free networks. It incorporates two important general concepts: growth and preferential attachment. Growth means that the number of nodes in the network increases over time and preferential attachment means that the more connected a node is, the more likely it is

2 to receive new links. More specifically, the network begins with an initial connected network of m nodes. New nodes are added to the network one at a time. Each new node is connected to m m existing nodes with a probability that is proportional to the number of links that the existing nodes already have. More sophisticated models for creating scale-free networks exist. For example, in [6], at each time step, apart of m new edges between the new node and the old nodes, m c new edges are created between the old nodes, where the probability that a new edge is attached to existing nodes of degrees d 1 and d 2 is proportional to d 1 d 2. A very similar effect produces a rewiring of edges [1]. That is, instead of the creation of connections between nodes in the existing network, at each time step, m r randomly chosen vertices loose one of their connections. In m rr cases, a free end is attached to a random vertex. In the rest m rp = m r m rr cases, a free end is attached to a preferentially chosen vertex. The main focus of these generative models is in capturing one or more of the static topological features of complex networks. However, these models are very limited in capturing the temporal dynamic properties of the networks evolvement. Therefore, when studying real-world networks, the following question arises: what is the mechanism that governs changes in the network over time? In order to shed some light on this question, we studied two years of data (from 211/7/1 to 213/6/3) that we received from etoro: the worlds largest social financial trading company. We discover three key findings. First, we demonstrate how the network topology may change significantly along time. More specifically, we illustrate how popular nodes may become extremely less popular, and emerging new nodes may become extremely popular, in a very short time. Then, we show that although the network may change significantly over time, the degrees of its nodes obey the powerlaw model at any given time. Finally, we observe that the magnitude of change between consecutive states of the network also presents a power-law effect. 2 Datasets Our data come from etoro: the world s largest social financial trading company (See etoro is an on line discounted retail broker for foreign exchanges and commodities trading with easy-to-use buying and short selling mechanisms as well as leverages up to 4 times. Similarly to other trading platforms, etoro allows users to trade between currency pairs individually (see Fig??). In addition, etoro provides a social network platform which allows users to watch the financial trading activity of other users (displayed in a number of statistical ways) and copy their trades (see Fig. 1). More specifically, users in etoro can place three types of trades: (1) Single trade: The user places a normal trade by himself, (2) Copy trade: The user copies one single trade of another user and (3) Mirror trade: The user picks a target user to copy, and etoro automatically places all trades of the target user on behalf of the user. Our data contain over 67 million trades that were placed between 211/7/1 and 213/6/3. More than 53 million of these trades are automatically executed mirror trades, less than 25 thousands are copy trades and roughly 13 million are single trades. The total number of unique traders is roughly 275 thousands and the total number of unique mirror operations is roughly 85 thousands (one mirror operation may result in several mirror trades).

3 etoro The world s largest social financial trading company. Serving 3 million users worldwide. etoro Watch the financial trading activity of other users and copy them. Roughly two years of data. The platform allows users to trade between currency pairs (individually) or 1 All trades are automatically uploaded to the network where they Fig. 1. The etoro platform. Illustrating can the be displayed trading portfolio in a number of aof single statistical user ways. (left) and the trading activity of all users (right). 2 In the remainder of this paper, we use these trades to construct snapshot networks as we proceed to describe. Given a start time s and an end time e, the snapshot network s nodes consist of all users that had at least one trade open at some point in time between s and e. An edge from user u to user v exists, if and only if, user u was mirroring user v at some point in time between s and e. Figure 2 illustrates how the size of the etoro network grows along time terms of both the number of nodes and the number of edges. For each day during the two years period, a snapshot network is constructed, and the number of nodes and edges for that network are counted. 5 1 Number of nodes Number of edges Fig. 2. The size of the etoro network in terms of the number of nodes (left) and the number of edges (right) along time.

4 3 Results First, we examined the in-degrees of nodes in the etoro network, over the entire period of two years. As can be seen in Figure 3, the degree distribution presents a strong power-law pattern. Although, quite expected, this result is non-trivial. One might expect to see a bunch of users that are mirrored by the others, but what we actually witness is a heavy tail of users with only a few followers each. This result is consistent with the observation in [3] where the authors demonstrate by simulation that the degree distribution of social-learning networks converges to a power-law distribution, regardless of the underlying social network topology γ= Fig. 3. In-degree distribution of nodes in the entire etoro network. (The in-degree of a node depicts the number of mirroring traders for the trader represented by that node) Next, we investigated how the popularity of traders in etoro, in terms of the number of mirroring traders, changes along time. Fig. 4 illustrates the popularity of four traders. As can be seen in the figure, popular traders may become extremely less popular, and emerging new traders may become extremely popular, in a very short time. Note how this behavior differs significantly from the state-of-the-art rich get richer behavior. Number of mirroring traders Number of mirroring traders Number of mirroring traders Number of mirroring traders Fig. 4. The in-degree of four nodes in the evolving etoro network. (Depicting the popularity of the four corresponding traders along time) To illustrate this point further we checked how similar different snapshots of the network are. Figure 5 presents the top 5 popular nodes for four different time periods: July-September 211 (snapshot 1), January-March 212 (snapshot 2),

5 July-September 212 (snapshot 3) and January-March 213. That is four threemonth snapshots with three-month gaps in between. As can be seen in the figure, only 11 nodes that were included in the top 5 popular nodes of snapshot 1 remained in the top 5 popular nodes of snapshot 2; only 17 nodes that were included in the top 5 popular nodes of snapshot 2 remained in the top 5 popular nodes of snapshot 3 and only 19 nodes that were included in the top 5 popular nodes of snapshot 3 remained in the top 5 popular nodes of snapshot 4. That is, the network may change significantly along time. Snapshot 1 Snapshot 2 Snapshot 3 Snapshot 4 Fig. 5. The 5 most popular nodes in each one of the four snapshots. Green nodes represent nodes that are included in the 5 most popular nodes of the current snapshot but were not included in the previous one. Red nodes represent nodes that were included in the 5 most popular nodes of the previous snapshot but are not included in the current one. Blue nodes represent nodes that were included in both snapshots. The node s circle area is proportional to its popularity. We then examined the degree distribution for each one of the four snapshots above. As can be seen in Figure 6, although the four snapshots differ significantly, the degree distribution for each one of them obey the power-law model. Snapshot 1 Snapshot 2 Snapshot 3 Snapshot γ= γ= γ= γ= Fig. 6. distribution for each one of the four snapshots that are shown in Figure 5 Next, we studied more carefully the etoro network changes between consecutive days. More specifically, we measured the number of added edges (i.e., edges that did not appear in the previous day and appear in the current day) and the number of removed edges (i.e., edges that appeared in the previous day and do not appear in the current day). Since the size of the etoro network grows over time (see Fig. 2), we normalized the above quantities by dividing them in the number of edges that were present in the previous day. We found that, the normalized magnitude of change between each two consecutive snapshots (according to each one of the two measures) follows a power-law distribution (see Figure 7).

6 gamma=2.88 gamma= Fig. 7. Distribution of the normalized changes in the etoro network: added edges (left) and removed edges (right). In order to understand better this finding, we tried to break down the overall network changes into two smaller components. First, we measured the changes by taking into account only the nodes that were added and removed between the two consecutive days. That is, we considered only users that were not trading in the previous day but are trading in the current day and users that were trading in the previous day but are not trading in the current day. As can be seen in the top two subfigures of Figure 8, the normalized number of added and removed nodes also follows a power-law distribution. That is, in most days, only a small number of nodes are added to or removed from the network, but occasionally, a large number of nodes are added or removed. We repeated the same analysis, when taking into account only the edges that at least one of their nodes was added or removed. As can be seen in the bottom two subfigures of Figure 8, the result was again a power-law distribution. Then, we measured the changes by taking into account only the nodes that existed in both of the two consecutive days. That is, we considered only users that were trading in the previous day and are also trading in the current day. As can be seen in Figure 9, even when only the common nodes are considered, the normalized number of added and removed edges follows a power-law distribution. Our results were validated using the statistical tests for power-law distributions that were suggested in [5]. First, we applied the goodness of fit test. As can be seen in Table 1, the p-values for all cases are greater than.1, as required. Second, we tested alternative types of distribution. As can be seen in the table, the distribution is more likely to be truncated power-law than general power-law in all cases (the GOF value is negative), and the results are significant in three out of eight of the cases (the p-values are lower than.5); the distribution is more likely to be truncated power-law than exponential and the result is significant in five out of eight of the cases cases and the distribution is more likely to be truncated power-law than log-normal in all cases and the result is significant in five out of eight of the cases. 4 Summary and Future Work In this paper, we investigate how scale-free networks evolve over time. Studying a real-world network, we find that: (1) the network topology may change significantly along time, (2) the degree distribution of nodes in the network obeys the

7 gamma=3.64 gamma= gamma=3.13 gamma= Fig. 8. Distribution of the normalized changes in the etoro network, as reflected by the added and removed nodes: added nodes (top left), removed nodes (top right), added edges (bottom left) and removed edges (bottom right) gamma=2.87 gamma= Fig. 9. Distribution of the normalized changes in the etoro network, as reflected by the common nodes: added edges (left) and removed edges (right). Goodness Power-Law vs. Trunc. Power-Law vs. Fig. Subfigure xmin alpha of Fit Trunc. Power-Law Exponential Log-Normal added eges (-).18 (+).12 (+) removed edges (-).12 (+).8 (+). added nodes (-).613 (+).93 (+).732 removed nodes (-).99 (+).16 (+).5 8 added edges (-).544 (+).63 (+).411 removed edges (-).18 (+).159 (+).6 added edges (-).39 (+).27 (+).32 9 removed edges (-).9 (+).14 (+). Table 1. Statistical tests for power-law distributions. The numbers in the three right columns represent the p-value and the sign of the GOF value in brackets.

8 power-law model at any given state and (3) the magnitude of change between consecutive states of the network also presents a power-law effect. Better understanding the temporal dynamics of scale-free networks would allow us to develop improved and more realistic algorithms for generating networks. Moreover, it would help us in better predicting future states of the network and estimating their probabilities. For example, it may help in bounding the probability that a given node remains popular over a certain period of time. In future work we intend to check how the distribution of changes between consecutive states of the networks influences the overall networks performance. We hypothesize that in cases where the distribution of changes is closer to a powerlaw distribution, the overall network performance would be higher. Furthermore, we would like to investigate the mechanism that is responsible for the power-law shape of the distribution. Finally, we would like to suggest a generative model for networks based on the above findings. References 1. Albert, R., and Barabási, A.-L. Topology of evolving networks: local events and universality. Physical review letters 85, 24 (2), Amaral, L. A. N., Scala, A., Barthélémy, M., and Stanley, H. E. Classes of small-world networks. Proceedings of the National Academy of Sciences 97, 21 (2), Anghel, M., Toroczkai, Z., Bassler, K. E., and Korniss, G. Competitiondriven network dynamics: Emergence of a scale-free leadership structure and collective efficiency. Physical review letters 92, 5 (24), Barabási, A.-L., and Albert, R. Emergence of scaling in random networks. science 286, 5439 (1999), Clauset, A., Shalizi, C. R., and Newman, M. E. Power-law distributions in empirical data. SIAM review 51, 4 (29), Dorogovtsev, S. N., and Mendes, J. F. F. Scaling behaviour of developing and decaying networks. EPL (Europhysics Letters) 52, 1 (2), Garlaschelli, D., and Loffredo, M. I. Patterns of link reciprocity in directed networks. Physical Review Letters 93, 26 (24), Girvan, M., and Newman, M. E. Community structure in social and biological networks. Proceedings of the National Academy of Sciences 99, 12 (22), Milo, R., Itzkovitz, S., Kashtan, N., Levitt, R., Shen-Orr, S., Ayzenshtat, I., Sheffer, M., and Alon, U. Superfamilies of evolved and designed networks. Science 33, 5663 (24), Newman, M. E. Assortative mixing in networks. Physical review letters 89, 2 (22), Ravasz, E., and Barabási, A.-L. Hierarchical organization in complex networks. Physical Review E 67, 2 (23), Watts, D. J., and Strogatz, S. H. Collective dynamics of smallworldnetworks. nature 393, 6684 (1998),

USING SPECTRAL RADIUS RATIO FOR NODE DEGREE TO ANALYZE THE EVOLUTION OF SCALE- FREE NETWORKS AND SMALL-WORLD NETWORKS

USING SPECTRAL RADIUS RATIO FOR NODE DEGREE TO ANALYZE THE EVOLUTION OF SCALE- FREE NETWORKS AND SMALL-WORLD NETWORKS USING SPECTRAL RADIUS RATIO FOR NODE DEGREE TO ANALYZE THE EVOLUTION OF SCALE- FREE NETWORKS AND SMALL-WORLD NETWORKS Natarajan Meghanathan Jackson State University, 1400 Lynch St, Jackson, MS, USA natarajan.meghanathan@jsums.edu

More information

Graphs over Time Densification Laws, Shrinking Diameters and Possible Explanations

Graphs over Time Densification Laws, Shrinking Diameters and Possible Explanations Graphs over Time Densification Laws, Shrinking Diameters and Possible Explanations Jurij Leskovec, CMU Jon Kleinberg, Cornell Christos Faloutsos, CMU 1 Introduction What can we do with graphs? What patterns

More information

Big Data Analytics of Multi-Relationship Online Social Network Based on Multi-Subnet Composited Complex Network

Big Data Analytics of Multi-Relationship Online Social Network Based on Multi-Subnet Composited Complex Network , pp.273-284 http://dx.doi.org/10.14257/ijdta.2015.8.5.24 Big Data Analytics of Multi-Relationship Online Social Network Based on Multi-Subnet Composited Complex Network Gengxin Sun 1, Sheng Bin 2 and

More information

The Topology of Large-Scale Engineering Problem-Solving Networks

The Topology of Large-Scale Engineering Problem-Solving Networks The Topology of Large-Scale Engineering Problem-Solving Networks by Dan Braha 1, 2 and Yaneer Bar-Yam 2, 3 1 Faculty of Engineering Sciences Ben-Gurion University, P.O.Box 653 Beer-Sheva 84105, Israel

More information

The Structure of Growing Social Networks

The Structure of Growing Social Networks The Structure of Growing Social Networks Emily M. Jin Michelle Girvan M. E. J. Newman SFI WORKING PAPER: 2001-06-032 SFI Working Papers contain accounts of scientific work of the author(s) and do not necessarily

More information

GENERATING AN ASSORTATIVE NETWORK WITH A GIVEN DEGREE DISTRIBUTION

GENERATING AN ASSORTATIVE NETWORK WITH A GIVEN DEGREE DISTRIBUTION International Journal of Bifurcation and Chaos, Vol. 18, o. 11 (2008) 3495 3502 c World Scientific Publishing Company GEERATIG A ASSORTATIVE ETWORK WITH A GIVE DEGREE DISTRIBUTIO JI ZHOU, XIAOKE XU, JIE

More information

Graph models for the Web and the Internet. Elias Koutsoupias University of Athens and UCLA. Crete, July 2003

Graph models for the Web and the Internet. Elias Koutsoupias University of Athens and UCLA. Crete, July 2003 Graph models for the Web and the Internet Elias Koutsoupias University of Athens and UCLA Crete, July 2003 Outline of the lecture Small world phenomenon The shape of the Web graph Searching and navigation

More information

Time-Dependent Complex Networks:

Time-Dependent Complex Networks: Time-Dependent Complex Networks: Dynamic Centrality, Dynamic Motifs, and Cycles of Social Interaction* Dan Braha 1, 2 and Yaneer Bar-Yam 2 1 University of Massachusetts Dartmouth, MA 02747, USA http://necsi.edu/affiliates/braha/dan_braha-description.htm

More information

Network Analysis. BCH 5101: Analysis of -Omics Data 1/34

Network Analysis. BCH 5101: Analysis of -Omics Data 1/34 Network Analysis BCH 5101: Analysis of -Omics Data 1/34 Network Analysis Graphs as a representation of networks Examples of genome-scale graphs Statistical properties of genome-scale graphs The search

More information

Complex Networks Analysis: Clustering Methods

Complex Networks Analysis: Clustering Methods Complex Networks Analysis: Clustering Methods Nikolai Nefedov Spring 2013 ISI ETH Zurich nefedov@isi.ee.ethz.ch 1 Outline Purpose to give an overview of modern graph-clustering methods and their applications

More information

ModelingandSimulationofthe OpenSourceSoftware Community

ModelingandSimulationofthe OpenSourceSoftware Community ModelingandSimulationofthe OpenSourceSoftware Community Yongqin Gao, GregMadey Departmentof ComputerScience and Engineering University ofnotre Dame ygao,gmadey@nd.edu Vince Freeh Department of ComputerScience

More information

http://www.elsevier.com/copyright

http://www.elsevier.com/copyright This article was published in an Elsevier journal. The attached copy is furnished to the author for non-commercial research and education use, including for instruction at the author s institution, sharing

More information

Chapter 29 Scale-Free Network Topologies with Clustering Similar to Online Social Networks

Chapter 29 Scale-Free Network Topologies with Clustering Similar to Online Social Networks Chapter 29 Scale-Free Network Topologies with Clustering Similar to Online Social Networks Imre Varga Abstract In this paper I propose a novel method to model real online social networks where the growing

More information

General Network Analysis: Graph-theoretic. COMP572 Fall 2009

General Network Analysis: Graph-theoretic. COMP572 Fall 2009 General Network Analysis: Graph-theoretic Techniques COMP572 Fall 2009 Networks (aka Graphs) A network is a set of vertices, or nodes, and edges that connect pairs of vertices Example: a network with 5

More information

Introduction to Networks and Business Intelligence

Introduction to Networks and Business Intelligence Introduction to Networks and Business Intelligence Prof. Dr. Daning Hu Department of Informatics University of Zurich Sep 17th, 2015 Outline Network Science A Random History Network Analysis Network Topological

More information

Some questions... Graphs

Some questions... Graphs Uni Innsbruck Informatik - 1 Uni Innsbruck Informatik - 2 Some questions... Peer-to to-peer Systems Analysis of unstructured P2P systems How scalable is Gnutella? How robust is Gnutella? Why does FreeNet

More information

The architecture of complex weighted networks

The architecture of complex weighted networks The architecture of complex weighted networks A. Barrat*, M. Barthélemy, R. Pastor-Satorras, and A. Vespignani* *Laboratoire de Physique Théorique (Unité Mixte de Recherche du Centre National de la Recherche

More information

Generating Hierarchically Modular Networks via Link Switching

Generating Hierarchically Modular Networks via Link Switching Generating Hierarchically Modular Networks via Link Switching Susan Khor ABSTRACT This paper introduces a method to generate hierarchically modular networks with prescribed node degree list by link switching.

More information

Graph Theory and Networks in Biology

Graph Theory and Networks in Biology Graph Theory and Networks in Biology Oliver Mason and Mark Verwoerd March 14, 2006 Abstract In this paper, we present a survey of the use of graph theoretical techniques in Biology. In particular, we discuss

More information

Small-World Characteristics of Internet Topologies and Implications on Multicast Scaling

Small-World Characteristics of Internet Topologies and Implications on Multicast Scaling Small-World Characteristics of Internet Topologies and Implications on Multicast Scaling Shudong Jin Department of Electrical Engineering and Computer Science, Case Western Reserve University Cleveland,

More information

Emergence of Complexity in Financial Networks

Emergence of Complexity in Financial Networks Emergence of Complexity in Financial Networks Guido Caldarelli 1, Stefano Battiston 2, Diego Garlaschelli 3 and Michele Catanzaro 1 1 INFM UdR Roma1 Dipartimento di Fisica Università La Sapienza P.le Moro

More information

Scale-free user-network approach to telephone network traffic analysis

Scale-free user-network approach to telephone network traffic analysis Scale-free user-network approach to telephone network traffic analysis Yongxiang Xia,* Chi K. Tse, WaiM.Tam, Francis C. M. Lau, and Michael Small Department of Electronic and Information Engineering, Hong

More information

The mathematics of networks

The mathematics of networks The mathematics of networks M. E. J. Newman Center for the Study of Complex Systems, University of Michigan, Ann Arbor, MI 48109 1040 In much of economic theory it is assumed that economic agents interact,

More information

Statistical theory of Internet exploration

Statistical theory of Internet exploration Statistical theory of Internet exploration Luca Dall Asta, 1 Ignacio Alvarez-Hamelin, 1,2 Alain Barrat, 1 Alexei Vázquez, 3 and Alessandro Vespignani 1,4 1 Laboratoire de Physique Théorique, Bâtiment 210,

More information

Effects of node buffer and capacity on network traffic

Effects of node buffer and capacity on network traffic Chin. Phys. B Vol. 21, No. 9 (212) 9892 Effects of node buffer and capacity on network traffic Ling Xiang( 凌 翔 ) a), Hu Mao-Bin( 胡 茂 彬 ) b), and Ding Jian-Xun( 丁 建 勋 ) a) a) School of Transportation Engineering,

More information

Online Appendix to Social Network Formation and Strategic Interaction in Large Networks

Online Appendix to Social Network Formation and Strategic Interaction in Large Networks Online Appendix to Social Network Formation and Strategic Interaction in Large Networks Euncheol Shin Recent Version: http://people.hss.caltech.edu/~eshin/pdf/dsnf-oa.pdf October 3, 25 Abstract In this

More information

The ebay Graph: How Do Online Auction Users Interact?

The ebay Graph: How Do Online Auction Users Interact? The ebay Graph: How Do Online Auction Users Interact? Yordanos Beyene, Michalis Faloutsos University of California, Riverside {yordanos, michalis}@cs.ucr.edu Duen Horng (Polo) Chau, Christos Faloutsos

More information

Degree distribution in random Apollonian networks structures

Degree distribution in random Apollonian networks structures Degree distribution in random Apollonian networks structures Alexis Darrasse joint work with Michèle Soria ALÉA 2007 Plan 1 Introduction 2 Properties of real-life graphs Distinctive properties Existing

More information

Open Source Software Developer and Project Networks

Open Source Software Developer and Project Networks Open Source Software Developer and Project Networks Matthew Van Antwerp and Greg Madey University of Notre Dame {mvanantw,gmadey}@cse.nd.edu Abstract. This paper outlines complex network concepts and how

More information

Research Article A Comparison of Online Social Networks and Real-Life Social Networks: A Study of Sina Microblogging

Research Article A Comparison of Online Social Networks and Real-Life Social Networks: A Study of Sina Microblogging Mathematical Problems in Engineering, Article ID 578713, 6 pages http://dx.doi.org/10.1155/2014/578713 Research Article A Comparison of Online Social Networks and Real-Life Social Networks: A Study of

More information

Random graphs and complex networks

Random graphs and complex networks Random graphs and complex networks Remco van der Hofstad Honours Class, spring 2008 Complex networks Figure 2 Ye a s t p ro te in in te ra c tio n n e tw o rk. A m a p o f p ro tein p ro tein in tera c

More information

Cluster detection algorithm in neural networks

Cluster detection algorithm in neural networks Cluster detection algorithm in neural networks David Meunier and Hélène Paugam-Moisy Institute for Cognitive Science, UMR CNRS 5015 67, boulevard Pinel F-69675 BRON - France E-mail: {dmeunier,hpaugam}@isc.cnrs.fr

More information

Distribution Analysis

Distribution Analysis Finding the best distribution that explains your data ENMAX Energy Corporation 8 October, 2015 Introduction Introduction Statistical tests Goodness of fit We often fit observations to a model (e.g., lognormal

More information

Understanding the evolution dynamics of internet topology

Understanding the evolution dynamics of internet topology Understanding the evolution dynamics of internet topology Shi Zhou* University College London, Adastral Park Campus, Ross Building, Ipswich, IP5 3RE, United Kingdom Received 2 December 2005; revised manuscript

More information

DATA ANALYSIS II. Matrix Algorithms

DATA ANALYSIS II. Matrix Algorithms DATA ANALYSIS II Matrix Algorithms Similarity Matrix Given a dataset D = {x i }, i=1,..,n consisting of n points in R d, let A denote the n n symmetric similarity matrix between the points, given as where

More information

Visualization and Modeling of Structural Features of a Large Organizational Email Network

Visualization and Modeling of Structural Features of a Large Organizational Email Network Visualization and Modeling of Structural Features of a Large Organizational Email Network Benjamin H. Sims Statistical Sciences (CCS-6) Email: bsims@lanl.gov Nikolai Sinitsyn Physics of Condensed Matter

More information

Decoding Social Influence and the Wisdom of the Crowd in Financial Trading Network

Decoding Social Influence and the Wisdom of the Crowd in Financial Trading Network Decoding Social Influence and the Wisdom of the Crowd in Financial Trading Network Wei Pan MIT Media Lab Cambridge, MA 2139 Email: panwei@media.mit.edu Yaniv Altshuler MIT Media Lab Cambridge, MA 2139

More information

A MULTI-MODEL DOCKING EXPERIMENT OF DYNAMIC SOCIAL NETWORK SIMULATIONS ABSTRACT

A MULTI-MODEL DOCKING EXPERIMENT OF DYNAMIC SOCIAL NETWORK SIMULATIONS ABSTRACT A MULTI-MODEL DOCKING EXPERIMENT OF DYNAMIC SOCIAL NETWORK SIMULATIONS Jin Xu Yongqin Gao Jeffrey Goett Gregory Madey Dept. of Comp. Science University of Notre Dame Notre Dame, IN 46556 Email: {jxu, ygao,

More information

Bioinformatics: Network Analysis

Bioinformatics: Network Analysis Bioinformatics: Network Analysis Graph-theoretic Properties of Biological Networks COMP 572 (BIOS 572 / BIOE 564) - Fall 2013 Luay Nakhleh, Rice University 1 Outline Architectural features Motifs, modules,

More information

The real communication network behind the formal chart: community structure in organizations

The real communication network behind the formal chart: community structure in organizations The real communication network behind the formal chart: community structure in organizations R. Guimerà, L. Danon, A. Díaz-Guilera, F. Giralt and A. Arenas Department of Chemical Engineering, Northwestern

More information

Graph Mining Techniques for Social Media Analysis

Graph Mining Techniques for Social Media Analysis Graph Mining Techniques for Social Media Analysis Mary McGlohon Christos Faloutsos 1 1-1 What is graph mining? Extracting useful knowledge (patterns, outliers, etc.) from structured data that can be represented

More information

WISE Power Tutorial All Exercises

WISE Power Tutorial All Exercises ame Date Class WISE Power Tutorial All Exercises Power: The B.E.A.. Mnemonic Four interrelated features of power can be summarized using BEA B Beta Error (Power = 1 Beta Error): Beta error (or Type II

More information

Complex Network Visualization based on Voronoi Diagram and Smoothed-particle Hydrodynamics

Complex Network Visualization based on Voronoi Diagram and Smoothed-particle Hydrodynamics Complex Network Visualization based on Voronoi Diagram and Smoothed-particle Hydrodynamics Zhao Wenbin 1, Zhao Zhengxu 2 1 School of Instrument Science and Engineering, Southeast University, Nanjing, Jiangsu

More information

Overlapping ETF: Pair trading between two gold stocks

Overlapping ETF: Pair trading between two gold stocks MPRA Munich Personal RePEc Archive Overlapping ETF: Pair trading between two gold stocks Peter N Bell and Brian Lui and Alex Brekke University of Victoria 1. April 2012 Online at http://mpra.ub.uni-muenchen.de/39534/

More information

Statistical Analysis of the Social Network and Discussion Threads in Slashdot

Statistical Analysis of the Social Network and Discussion Threads in Slashdot WWW 28 / Refereed Track: Social Networks & Web 2. - Analysis of Social Networks & Online Interaction Statistical Analysis of the Social Network and Discussion Threads in Slashdot Vicenç Gómez vgomez@iua.upf.edu

More information

Towards Modelling The Internet Topology The Interactive Growth Model

Towards Modelling The Internet Topology The Interactive Growth Model Towards Modelling The Internet Topology The Interactive Growth Model Shi Zhou (member of IEEE & IEE) Department of Electronic Engineering Queen Mary, University of London Mile End Road, London, E1 4NS

More information

Applying Social Network Analysis to the Information in CVS Repositories

Applying Social Network Analysis to the Information in CVS Repositories Applying Social Network Analysis to the Information in CVS Repositories Luis Lopez-Fernandez, Gregorio Robles, Jesus M. Gonzalez-Barahona GSyC, Universidad Rey Juan Carlos {llopez,grex,jgb}@gsyc.escet.urjc.es

More information

arxiv:physics/0601033 v1 6 Jan 2006

arxiv:physics/0601033 v1 6 Jan 2006 Analysis of telephone network traffic based on a complex user network Yongxiang Xia, Chi K. Tse, Francis C. M. Lau, Wai Man Tam, Michael Small arxiv:physics/0601033 v1 6 Jan 2006 Department of Electronic

More information

Graph Theory Approaches to Protein Interaction Data Analysis

Graph Theory Approaches to Protein Interaction Data Analysis Graph Theory Approaches to Protein Interaction Data Analysis Nataša Pržulj Technical Report 322/04 Department of Computer Science, University of Toronto Completed on September 8, 2003 Report issued on

More information

Complex Network Analysis of Brain Connectivity: An Introduction LABREPORT 5

Complex Network Analysis of Brain Connectivity: An Introduction LABREPORT 5 Complex Network Analysis of Brain Connectivity: An Introduction LABREPORT 5 Fernando Ferreira-Santos 2012 Title: Complex Network Analysis of Brain Connectivity: An Introduction Technical Report Authors:

More information

Characterizing and Modelling Clustering Features in AS-Level Internet Topology

Characterizing and Modelling Clustering Features in AS-Level Internet Topology Characterizing and Modelling Clustering Features in AS-Level Topology Yan Li, Jun-Hong Cui, Dario Maggiorini and Michalis Faloutsos yan.li@uconn.edu, jcui@engr.uconn.edu, dario@dico.unimi.it, michalis@cs.ucr.edu

More information

Greedy Routing on Hidden Metric Spaces as a Foundation of Scalable Routing Architectures

Greedy Routing on Hidden Metric Spaces as a Foundation of Scalable Routing Architectures Greedy Routing on Hidden Metric Spaces as a Foundation of Scalable Routing Architectures Dmitri Krioukov, kc claffy, and Kevin Fall CAIDA/UCSD, and Intel Research, Berkeley Problem High-level Routing is

More information

Evolution of a Location-based Online Social Network: Analysis and Models

Evolution of a Location-based Online Social Network: Analysis and Models Evolution of a Location-based Online Social Network: Analysis and Models Miltiadis Allamanis Computer Laboratory University of Cambridge ma536@cam.ac.uk Salvatore Scellato Computer Laboratory University

More information

How Placing Limitations on the Size of Personal Networks Changes the Structural Properties of Complex Networks

How Placing Limitations on the Size of Personal Networks Changes the Structural Properties of Complex Networks How Placing Limitations on the Size of Personal Networks Changes the Structural Properties of Complex Networks Somayeh Koohborfardhaghighi, Jörn Altmann Technology Management, Economics, and Policy Program

More information

A discussion of Statistical Mechanics of Complex Networks P. Part I

A discussion of Statistical Mechanics of Complex Networks P. Part I A discussion of Statistical Mechanics of Complex Networks Part I Review of Modern Physics, Vol. 74, 2002 Small Word Networks Clustering Coefficient Scale-Free Networks Erdös-Rényi model cover only parts

More information

Information Network or Social Network? The Structure of the Twitter Follow Graph

Information Network or Social Network? The Structure of the Twitter Follow Graph Information Network or Social Network? The Structure of the Twitter Follow Graph Seth A. Myers, Aneesh Sharma, Pankaj Gupta, and Jimmy Lin Twitter, Inc. @seth_a_myers @aneeshs @pankaj @lintool ABSTRACT

More information

Robustness of onionlike correlated networks against targeted attacks

Robustness of onionlike correlated networks against targeted attacks PHYSICAL REVIEW E 85,046109(2012) Robustness of onionlike correlated networks against targeted attacks Toshihiro Tanizawa, 1,* Shlomo Havlin, 2 and H. Eugene Stanley 3 1 Kochi National College of Technology,

More information

Many systems take the form of networks, sets of nodes or

Many systems take the form of networks, sets of nodes or Community structure in social and biological networks M. Girvan* and M. E. J. Newman* *Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501; Department of Physics, Cornell University, Clark Hall,

More information

Network Theory: 80/20 Rule and Small Worlds Theory

Network Theory: 80/20 Rule and Small Worlds Theory Scott J. Simon / p. 1 Network Theory: 80/20 Rule and Small Worlds Theory Introduction Starting with isolated research in the early twentieth century, and following with significant gaps in research progress,

More information

ATM Network Performance Evaluation And Optimization Using Complex Network Theory

ATM Network Performance Evaluation And Optimization Using Complex Network Theory ATM Network Performance Evaluation And Optimization Using Complex Network Theory Yalin LI 1, Bruno F. Santos 2 and Richard Curran 3 Air Transport and Operations Faculty of Aerospace Engineering The Technical

More information

MINFS544: Business Network Data Analytics and Applications

MINFS544: Business Network Data Analytics and Applications MINFS544: Business Network Data Analytics and Applications March 30 th, 2015 Daning Hu, Ph.D., Department of Informatics University of Zurich F Schweitzer et al. Science 2009 Stop Contagious Failures in

More information

Sampling Biases in IP Topology Measurements

Sampling Biases in IP Topology Measurements Sampling Biases in IP Topology Measurements Anukool Lakhina with John Byers, Mark Crovella and Peng Xie Department of Boston University Discovering the Internet topology Goal: Discover the Internet Router

More information

PUBLIC TRANSPORT SYSTEMS IN POLAND: FROM BIAŁYSTOK TO ZIELONA GÓRA BY BUS AND TRAM USING UNIVERSAL STATISTICS OF COMPLEX NETWORKS

PUBLIC TRANSPORT SYSTEMS IN POLAND: FROM BIAŁYSTOK TO ZIELONA GÓRA BY BUS AND TRAM USING UNIVERSAL STATISTICS OF COMPLEX NETWORKS Vol. 36 (2005) ACTA PHYSICA POLONICA B No 5 PUBLIC TRANSPORT SYSTEMS IN POLAND: FROM BIAŁYSTOK TO ZIELONA GÓRA BY BUS AND TRAM USING UNIVERSAL STATISTICS OF COMPLEX NETWORKS Julian Sienkiewicz and Janusz

More information

Evolving Networks with Distance Preferences

Evolving Networks with Distance Preferences Evolving Networks with Distance Preferences Juergen Jost M. P. Joy SFI WORKING PAPER: 2002-07-030 SFI Working Papers contain accounts of scientific work of the author(s) and do not necessarily represent

More information

What Leads to Innovation? An Analysis of Collaborative Problem-Solving

What Leads to Innovation? An Analysis of Collaborative Problem-Solving What Leads to Innovation? An Analysis of Collaborative Problem-Solving Randy M. Casstevens Department of Computational Social Science George Mason University Fairfax, VA 3 rcasstev@gmu.edu January 3, Abstract

More information

Social Media Mining. Network Measures

Social Media Mining. Network Measures Klout Measures and Metrics 22 Why Do We Need Measures? Who are the central figures (influential individuals) in the network? What interaction patterns are common in friends? Who are the like-minded users

More information

arxiv:physics/0607202v2 [physics.comp-ph] 9 Nov 2006

arxiv:physics/0607202v2 [physics.comp-ph] 9 Nov 2006 Stock price fluctuations and the mimetic behaviors of traders Jun-ichi Maskawa Department of Management Information, Fukuyama Heisei University, Fukuyama, Hiroshima 720-0001, Japan (Dated: February 2,

More information

Exploring contact patterns between two subpopulations

Exploring contact patterns between two subpopulations Exploring contact patterns between two subpopulations Winfried Just Hannah Callender M. Drew LaMar December 23, 2015 In this module 1 we introduce a construction of generic random graphs for a given degree

More information

Graph theoretic approach to analyze amino acid network

Graph theoretic approach to analyze amino acid network Int. J. Adv. Appl. Math. and Mech. 2(3) (2015) 31-37 (ISSN: 2347-2529) Journal homepage: www.ijaamm.com International Journal of Advances in Applied Mathematics and Mechanics Graph theoretic approach to

More information

Robustness of Spatial Databases: Using Network Analysis on GIS Data Models

Robustness of Spatial Databases: Using Network Analysis on GIS Data Models DEPARTMENT OF TECHNOLOGY AND BUILT ENVIRONMENT Robustness of Spatial Databases: Using Network Analysis on GIS Data Models Finn Hedefalk November 2009 Thesis for Degree of Master of Science in Geomatics

More information

Mining Network Relationships in the Internet of Things

Mining Network Relationships in the Internet of Things Mining Network Relationships in the Internet of Things PAT DOODY, DIRECTOR OF THE CENTRE FOR INNOVATION IN DISTRIBUTED SYSTEMS (CIDS) INSTITUTE OF TECHNOLOGY TRALEE ANDREW SHIELDS IRC FUNDED RESEARCHER

More information

Joan Paola Cruz, Camilo Olaya

Joan Paola Cruz, Camilo Olaya A SYSTEM DYNAMICS MODEL FOR STUDYING THE STRUCTURE OF NETWORK MARKETING ORGANIZATIONS Joan Paola Cruz, Camilo Olaya Universidad de los Andes, Dpto. de Ingeniería Industrial Carrera 1 N 18A 10 Bogotá, Colombia

More information

Structure of a large social network

Structure of a large social network PHYSICAL REVIEW E 69, 036131 2004 Structure of a large social network Gábor Csányi 1, * and Balázs Szendrői 2, 1 TCM Group, Cavendish Laboratory, University of Cambridge, Madingley Road, Cambridge CB3

More information

Structural constraints in complex networks

Structural constraints in complex networks Structural constraints in complex networks Dr. Shi Zhou Lecturer of University College London Royal Academy of Engineering / EPSRC Research Fellow Part 1. Complex networks and three key topological properties

More information

WORKSHOP Analisi delle Reti Sociali per conoscere uno strumento uno strumento per conoscere

WORKSHOP Analisi delle Reti Sociali per conoscere uno strumento uno strumento per conoscere Università di Salerno WORKSHOP Analisi delle Reti Sociali per conoscere uno strumento uno strumento per conoscere The scientific collaboration network of the University of Salerno Michele La Rocca, Giuseppe

More information

Evolution of the Internet AS-Level Ecosystem

Evolution of the Internet AS-Level Ecosystem Evolution of the Internet AS-Level Ecosystem Srinivas Shakkottai, Marina Fomenkov 2, Ryan Koga 2, Dmitri Krioukov 2, and kc claffy 2 Texas A&M University, College Station, USA, sshakkot@tamu.edu, 2 Cooperative

More information

Dmitri Krioukov CAIDA/UCSD

Dmitri Krioukov CAIDA/UCSD Hyperbolic geometry of complex networks Dmitri Krioukov CAIDA/UCSD dima@caida.org F. Papadopoulos, M. Boguñá, A. Vahdat, and kc claffy Complex networks Technological Internet Transportation Power grid

More information

Computer Network Topologies: Models and Generation Tools

Computer Network Topologies: Models and Generation Tools Consiglio Nazionale delle Ricerche Technical Report n. 5/200 Computer Network Topologies: Models and Generation Tools Giuseppe Di Fatta, Giuseppe Lo Presti 2, Giuseppe Lo Re CE.R.E. Researcher 2 CE.R.E.,

More information

Characterization of Latent Social Networks Discovered through Computer Network Logs

Characterization of Latent Social Networks Discovered through Computer Network Logs Characterization of Latent Social Networks Discovered through Computer Network Logs Kevin M. Carter MIT Lincoln Laboratory 244 Wood St Lexington, MA 02420 kevin.carter@ll.mit.edu Rajmonda S. Caceres MIT

More information

Subgraph Patterns: Network Motifs and Graphlets. Pedro Ribeiro

Subgraph Patterns: Network Motifs and Graphlets. Pedro Ribeiro Subgraph Patterns: Network Motifs and Graphlets Pedro Ribeiro Analyzing Complex Networks We have been talking about extracting information from networks Some possible tasks: General Patterns Ex: scale-free,

More information

A scalable multilevel algorithm for graph clustering and community structure detection

A scalable multilevel algorithm for graph clustering and community structure detection A scalable multilevel algorithm for graph clustering and community structure detection Hristo N. Djidjev 1 Los Alamos National Laboratory, Los Alamos, NM 87545 Abstract. One of the most useful measures

More information

A Simple but More Realistic Agent-based Model of a Social Network

A Simple but More Realistic Agent-based Model of a Social Network A Simple but More Realistic Agent-based Model of a Social Network Lynne Hamill and Nigel Gilbert Centre for Research in Social Simulation University of Surrey, Guildford, Surrey, GU2 7XH, United Kingdom

More information

Department of Biological Sciences, National University of Singapore, Singapore

Department of Biological Sciences, National University of Singapore, Singapore 1 2 3 4 5 6 Extreme inequalities of citation counts in environmental sciences Deepthi Chimalakonda 1, Alex R. Cook 2, 3, L. Roman Carrasco 1,* 1 Department of Biological Sciences, National University of

More information

Pivot Point Trading. If you would rather work the pivot points out by yourself, the formula I use is below:

Pivot Point Trading. If you would rather work the pivot points out by yourself, the formula I use is below: Pivot Point Trading You are going to love this lesson. Using pivot points as a trading strategy has been around for a long time and was originally used by floor traders. This was a nice simple way for

More information

MANAGEMENT SCIENCE. Special Issue on Complex Systems Luis A. Nunes Amaral, Brian Uzzi, Editors

MANAGEMENT SCIENCE. Special Issue on Complex Systems Luis A. Nunes Amaral, Brian Uzzi, Editors A JOURNAL OF THE INSTITUTE FOR OPERATIONS RESEARCH AND THE MANAGEMENT SCIENCES MANAGEMENT SCIENCE Volume 53 Number 7 July 7 Special Issue on Complex Systems Luis A. Nunes Amaral, Brian Uzzi, Editors Amaral,

More information

Small-World Internet Topologies

Small-World Internet Topologies Small-World Internet Topologies Possible auses and Implications on Scalability of End-System Multicast Shudong Jin Azer Bestavros omputer Science Department Boston University Boston, MA 0225 jins,best@cs.bu.edu

More information

The Structure of an Autonomic Network

The Structure of an Autonomic Network doi:1.198/rspa.27.182 Published online Radial structure of the Internet BY PETTER HOLME 1, *, JOSH KARLIN 1 AND STEPHANIE FORREST 1,2 1 Department of Computer Science, University of New Mexico, Albuquerque,

More information

A mixture model for random graphs

A mixture model for random graphs A mixture model for random graphs J-J Daudin, F. Picard, S. Robin robin@inapg.inra.fr UMR INA-PG / ENGREF / INRA, Paris Mathématique et Informatique Appliquées Examples of networks. Social: Biological:

More information

The Computer Experiment in Computational Social Science

The Computer Experiment in Computational Social Science The Computer Experiment in Computational Social Science Greg Madey Yongqin Gao Computer Science & Engineering University of Notre Dame http://www.nd.edu/~gmadey Eighth Annual Swarm Users/Researchers Conference

More information

An Investigation of Synchrony in Transport Networks

An Investigation of Synchrony in Transport Networks An Investigation of Synchrony in Transport Networks REX K. KINCAID 1, NATALIA ALEXANDROV 2, AND MICHAEL J. HOLROYD 3 1 Department of Mathematics, The College of William and Mary,Williamsburg,Virginia;

More information

The physics of networks

The physics of networks The physics of networks Mark Newman Statistical analysis of interconnected groups of computers, animals, or people yields important clues about how they function and even offers predictions of their future

More information

Important problems of graph theory and the Internet

Important problems of graph theory and the Internet Important problems of graph theory and the Internet Andrei Raigorodskii Lomonosov Moscow State University, Moscow Institute of Physics and Technology, Yandex Division of Theoretical and Applied Research,

More information

USE OF GRAPH THEORY AND NETWORKS IN BIOLOGY

USE OF GRAPH THEORY AND NETWORKS IN BIOLOGY USE OF GRAPH THEORY AND NETWORKS IN BIOLOGY Ladislav Beránek, Václav Novák University of South Bohemia Abstract In this paper we will present some basic concepts of network analysis. We will present some

More information

Towards Modeling Legitimate and Unsolicited Email Traffic Using Social Network Properties

Towards Modeling Legitimate and Unsolicited Email Traffic Using Social Network Properties Towards Modeling Legitimate and Unsolicited Email Traffic Using Social Network Properties Farnaz Moradi Tomas Olovsson Philippas Tsigas Computer Science and Engineering Chalmers University of Technology,

More information

Stock price fluctuations and the mimetic behaviors of traders

Stock price fluctuations and the mimetic behaviors of traders Physica A 382 (2007) 172 178 www.elsevier.com/locate/physa Stock price fluctuations and the mimetic behaviors of traders Jun-ichi Maskawa Department of Management Information, Fukuyama Heisei University,

More information

How To Determine If Technical Currency Trading Is Profitable For Individual Currency Traders

How To Determine If Technical Currency Trading Is Profitable For Individual Currency Traders Is Technical Analysis Profitable for Individual Currency Traders? Boris S. Abbey and John A. Doukas * Journal of Portfolio Management, 2012, 39, 1,142-150 Abstract This study examines whether technical

More information

Q. Yan, X. Huang School of Economics and Management, Beijing University of Posts and Telecommunications, Beijing, China, 100876 Email: yq_10@sohu.

Q. Yan, X. Huang School of Economics and Management, Beijing University of Posts and Telecommunications, Beijing, China, 100876 Email: yq_10@sohu. JOURNAL OF NETWORKS, VOL. 3, NO. 7, JULY 28 1 fuser Behavior and Topology Analysis Q. Yan, X. Huang School of Economics and Management, Beijing University of Posts and Telecommunications, Beijing, China,

More information

Stationary random graphs on Z with prescribed iid degrees and finite mean connections

Stationary random graphs on Z with prescribed iid degrees and finite mean connections Stationary random graphs on Z with prescribed iid degrees and finite mean connections Maria Deijfen Johan Jonasson February 2006 Abstract Let F be a probability distribution with support on the non-negative

More information

Statistical mechanics of complex networks

Statistical mechanics of complex networks Statistical mechanics of complex networks Réka Albert* and Albert-László Barabási Department of Physics, University of Notre Dame, Notre Dame, Indiana 46556 (Published 30 January 2002) REVIEWS OF MODERN

More information

Effects of component-subscription network topology on large-scale data centre performance scaling

Effects of component-subscription network topology on large-scale data centre performance scaling Effects of component-subscription network topology on large-scale data centre performance scaling Ilango Sriram & Dave Cliff Department of Computer Science University of Bristol Bristol, UK {ilango, dc}

More information