SIMULAZIONE DEL COLLASSO DI UN PENDIO CON IL MATERIAL POINT METHOD SIMULATION OF SLOPE FAILURE EXPERIMENT WITH THE MATERIAL POINT METHOD

Size: px
Start display at page:

Download "SIMULAZIONE DEL COLLASSO DI UN PENDIO CON IL MATERIAL POINT METHOD SIMULATION OF SLOPE FAILURE EXPERIMENT WITH THE MATERIAL POINT METHOD"

Transcription

1 SIMULAZIONE DEL COLLASSO DI UN PENDIO CON IL MATERIAL POINT METHOD SIMULATION OF SLOPE FAILURE EXPERIMENT WITH THE MATERIAL POINT METHOD Francesca Ceccato DICEA Universita degli studi di Padova Alexander Rohe Deltares Delft, The Netherlands Paolo Simonini DICEA Universita degli studi di Padova Sommario Metodi numerici agli elementi finiti (FEM) sono stati largamente utilizzati negli ultimi decenni per studiare un gran numero di problemi geotecnici; tuttavia numerose difficoltà appaiono quando applicati nel campo delle grandi deformazioni. Il Material Point Method (MPM) è stato sviluppato per superare gli svantaggi dei classici FEM Lagrangiani in problemi a grandi deformazioni. Nel MPM il continuo viene discretizzato con un insieme di punti detti Material Points (MP) che si muovono all interno di una mesh. I MP trasportano tutte le informazioni del continuo, mentre la mesh è usata per risolvere le equazioni del moto ad ogni incremento temporale, ma non tiene in memoria alcuna informazione permanente. In questa nota si mostra che il MPM è in grado di riprodurre le gradi deformazioni coinvolte nei fenomeni di instabilità dei pendii. I risultati numerici sono inoltre confrontati con quelli sperimentali. Summary Finite Element methods (FEM) have been widely used in the last decades for a great number of geotechnical problems, However, difficulties arises with large displacement problems such as landslides, pile driving, underground excavations ect. The Material Point Method (MPM) has been specifically developed to overcome FEM drawbacks in large displacement problems. In MPM the continuum is discretized by material points (MP) which move through a background mesh, thereby following the large deformations of the solid. The MP carry all the properties of the continuum, while the background mesh is used to solve the governing equations at each time step, but does not store any permanent information. In this paper it is shown that with the MPM it is possible to reproduce the large deformations involved in slope failure. Numerical results are compared to a reference laboratory test. 1. Introduction The Finite Element Method (FEM) has been successfully applied in many fields of engineering and science in the last decades, but shortcomings appear in the field of large displacement problems, mainly because of mesh distortions. The Material Point Method (MPM) can be considered as an evolution of the updated Lagrangian FEM, specifically developed for large displacements problems. The governing equations are solved at the nodes of the grid, similarly as FEM, but the deformations of the body are simulated by material points moving through a fixed mesh, therefore preventing issues of mesh distortions. A brief overview of the method is provided in Section 2. Thanks to its ability to easily model large displacements, the method can be applied for the

2 simulation of problems such as landslides, pile driving, underground excavations ect. In this paper the MPM is used to simulate the failure of a submerged slope. The stability of submerged slopes is an important issue in many countries. In the Netherlands the problem has a great impact in the province of Zeeland, in the south-east of the country, characterized by numerous islands. The shoreline has been severely damaged by sea attack, and submarine landslides compromise the safety of the area. The phenomenon needs to be deeply investigated in order to enforce the design of mitigation techniques. A set of small scale laboratory tests has been performed at Deltares, moreover, numerical modelling adds interesting insight in the understanding of the problem. Indeed, the scale effect can be easily investigated and parametric studies can be done. Section 3 describes the laboratory test which is considered as a reference for the numerical simulation. The MPM model is presented in Section 4, followed by the results in Section 5. The paper ends with conclusions and an outlook on future developments. 1 The Material Point Method The Material Point Method (MPM) is an advanced numerical method particularly suited to model large deformations. It was firstly developed at the end of the previous century (Sulsky et al., 1994) for solid mechanics and later applied to granular materials by Więckowski (1999, 2004) and Coetzee (2005). It recently found entrance into the field of geotechnical engineering (Beuth, 2012; Alonso & Zabala, 2011; Al-Kafaji, 2013; Bandara, 2013). In the following, the method is briefly described. For more detailed information the reader is referred to Al-Kafaji (2013) and Bandara (2013). In the MPM the continuum soil body is represented by a cloud of Lagrangian points, called material points (MP). Large deformations are modelled by MP moving through a fixed background mesh, which covers the entire region where the body is expected to move into. The MP carry all the physical properties of the continuum such as density, momentum, material parameters, strains, stresses, as well as external loads, whereas the background mesh is used to solve the governing equations within each time step, but stores no permanent information. Very often the soil behaviour highly depends on the solid-water interaction. The implementation of the fully coupled two-phase approach follows the v-w-formulation (Zienkiewicz, 1999), i.e. the primary unknowns are the velocity of the water and the velocity of the soil. This formulation, which takes into account all acceleration terms, has proved to be able to capture the physical response of saturated soil under dynamic loading (Van Esch et al., 2011). The current implementation uses an explicit time integration scheme (Al-Kafaji, 2013). For each time step, the background finite element mesh is used to solve the system of equilibrium equations and to determine the velocity of the soil and the water. Once the strains are determined at the locations of the material points, the mesh is usually reset into its original state. Figure 1 illustrates a single calculation step in MPM. Figure 1 a) Configuration of material points (red) and background mesh at the beginning of a calculation step; b) Deformed mesh after solving the equilibrium equations; c) Background mesh in initial position at the end of a calculation step and new location of material points which transport stresses, strains and material parameters.

3 2 The physical model The slope is completely submerged in a test flume which is 5.4m long, 2.5m high and 0.5m wide. The sand is placed in the flume using a fluidisation system: water is injected through the tubes placed on the bottom of the flume and, due to the upward water flow, the whole sand pack goes into suspension. After stopping the water supply the sand settles in a very loose state. The slope is built by slowly sucking the sand through a nozzle, it then flows under a natural slope of the embankment. After the preparation phase, the slope has an inclination of 31 and a height of 0.60 m. Afterwards, in the experiment, the failure is triggered by injection of water under the toe of the slope. The first macro-scale movement is observed in a superficial layer of about one decimetre sliding downward. This lasted for a few seconds (5 to 10 seconds). The movement continued slowly in a thinner layer. The whole process took about a minute (Stoutjesdijk, 2014). 3 The numerical model The geometry just before triggering the failure is considered as the initial situation of the numerical analyses, see Figure 2. The discretized domain is shown in Figure 3. The mesh consists of elements, 1567 of which are active, i.e. filled with 4 MP each at the beginning of the calculation. The part of the mesh in which most of the deformation is expected is refined to increase the accuracy of the results. The final discretization has been chosen after some sensitivity analysis as result of a good compromise between accuracy and computational effciency. At the left and right boundary the displacments are constrained in horizontal direction, while at the bottom no displacments are allowed at all. All boundaries are impermeable for water, except during triggering of the failure at the location where the water-pressure is applied. An elaso-plastic model with Mohr-Coulomb failure criterion is used for the sand, whose input parameters are shown in Table 1. The input parameters are according to specifications derived from the experiment. A local damping factor of 5% is used for the calculation; this value simulates natural energy dissipation inside the material, which is not taken into account by the constitutive model. The failure is triggered by applying an excess pore pressure at the bottom of the domain, below the toe of the slope. The pore pressure is increased linearly from 0 to 10 kpa in 5.0 s. After that, the pore pressure is reduced to zero again. Table 1Material parameters for the sand Material parameter Symbol Value Unit saturated unit weight of sand sat 18.7 kn/m 3 Young modulus of sand E kpa Poisson ratio of sand 0.2 bulk modulus of water K w kpa initial porosity n 0.45 permeability k 1.0*10-4 m/s cohesion c 0 kpa friction angle 32 deg dilatancy angle 0 deg

4 Figure 2 Configuration of the slope immediately before triggering the failure. The location of applied water pressure is indicated. Figure 3 Numerical model of background mesh (active elements are shaded, inactive elements are transparent). The left and right boundaries are horizontally fixed, the bottom boundary is fully fixed. 2. Results The initial stresses are generated using a gravity loading phase. A quasi-static convergence criterion is applied, which implies that the slope is in static equilibrium and the kinetic energy and the unbalance force are below a limit value. The pore pressure distribution is initially hydrostatic. After the initialisation phase, the failure is triggered as described in the previous section. The excess pore pressure is applied at the bottom of the mesh below the toe of the slope, and the excess pore pressures propagate upwards. While the excess pore pressures increase, the effective stresses decrease causing instability of the slope. The first clearly visible displacements appear at the crest of the slope after 3.75 s since pore pressure application, and the new equilibrium configuration is reached after approximately 8.5 s. The failure surface localizes at a depth of about 0.15 m.

5 The final equilibrium state is compared with the experimental results in Figures 4 and 5. It can be concluded that the numerical simulation is in very good agreement with the experiment. Figure 4 Final state of the slope after failure in the experiment (blue line). The initial state is indicated by the red line. Figure 5 Comparison of numerical results (MPM) with experimental results. The red line indicates the initial situation and the blue line the final state after failure. Displacements are shown in [mm]. 3. Conclusions and future developments It is demonstrated that with MPM it is possible to model large displacement problems. The failure of a submerged slope triggered by a suddenly increased water pressure at the bottom can be successfully simulated using the fully coupled MPM implementation. The numerical results of the deformed slope in the final equilibrium state are in good agreement with the experimental data (see

6 Figure 5). The behaviour of sand is complex; the elasto-plastic model with Mohr-Coulomb failure criteria is a very simplified way of describing soil behaviour. Deeper understanding of the failure process could be achieved with more sophisticated material models such as the Hypoplastic model (Niemunis, 1997), the NorSand model (Jefferies, 1993) and the Mohr-Coulomb with strain softening model(abbo, 1995). The latter proved to be able to capture the progressive failure of the slope (Alonso & Zabala, 2011; Yerro et al., 2014). It is of great interest to investigate the behaviour of true scale slopes, as found in the region of Zeeland, whose high ranges between 10 and 50 m. Special attention needs to be paid to the stiffness and the density of the sand which is not assumable to be constant with depth, especially for slopes of larger high. Therefore it is expected that slopes with larger scale would behave differently than slopes in model scale. Numerical simulations can indicate safe inclination angle in the natural conditions. Revetments of various types have been used to prevent erosion and improve the stability of the slope. The effect of a stone revetment will be considered in the future also in the numerical simulations. 4 Bibliography Abbo, A. J., Sloan, S. W. (1995). A smooth hyperbolic approximation to the Mohr-Coulomb yield criterion, Computers & Structures, 54(3), Al-Kafaji I.K.J. (2013). Formulation of a Dynamic Material Point Method (MPM) for Geomechanical Problems. University of Stuttgart, Germany. Alonso E.E., Zabala F. (2011). Progressive failure of Aznalcóllar dam using the material point method, Géotechnique, 61(9), doi: /geot.9.p.134. Bandara S. (2013). Material Point Method to simulate Large Deformation Problems in Fluid-saturated Granular Medium. University of Cambridge, United Kingdom. Beuth L. (2012). Formulation and Application of a Quasi-Static Material Point Method. PhD-thesis, University of Stuttgart. Ceccato F., Beuth L., Vermeer P.A. (2014). Two-phase analysis of soil penetration using MPM, In International conference for Ports for Container Ships of Future Generations, Hamburg, Germany. van Esch J., Stolle D., Jassim, I. (2011). Finite element method for coupled dynamic flow deformation simulation, In 2nd International Symposium on Computational Geomechanics (COMGEO II). Jefferies, M. G. (1993). Nor-Sand: a simle critical state model for sand, Geotechnique, 43(1), Niemunis, A., & Herle, I. (1997). Hypoplastic model for cohesionless soils with elastic strain range, Mechanics of Cohesive and frictional Materials, 2(4), Sulsky D., Chen Z. and Schreyer H. L. (1994). A particle method for hystory-dependent materials, Computer Methods in Applied Mechanics and Engineering, 118(1-2), Stoutjesdijk T. (2014). Onderbouwing hellingcriteria ontgrondingskuilen Oosterseheldekering. Deltares report GEO-0008 Yerro A., Alonso E., Pinyol N. (2014). Modelling progressive failure with MPM, 8th NUMGE Conference, June, Delft, The Netherlands. Więckowski Z. (2004). The material point method in large strain engineering problems, Computer Methods in Applied Mechanics and Engineering, 193(39-41), p Zienkiewicz O., Chan A., Pastor M., Schrefler B., Shiomi, T. (1999). Computational Geomechanics with Special Reference to Earthquake Engineering. John Wiley & Sons, New York. p. 94, 98, 102, 109, 171.

MODELING CPT PENETRATION UNDER UNDRAINED CONDITIONS BY THE MATERIAL POINT METHOD MODELLAZIONE DELLA PENETRAZIONE DEL PIEZOCONO IN CONDIZIONI NON

MODELING CPT PENETRATION UNDER UNDRAINED CONDITIONS BY THE MATERIAL POINT METHOD MODELLAZIONE DELLA PENETRAZIONE DEL PIEZOCONO IN CONDIZIONI NON MODELING CPT PENETRATION UNDER UNDRAINED CONDITIONS BY THE MATERIAL POINT METHOD MODELLAZIONE DELLA PENETRAZIONE DEL PIEZOCONO IN CONDIZIONI NON DRENATE CON IL MATERIAL POINT METHOD Francesca Ceccato Università

More information

Large deformation analysis of cone penetration testing in undrained clay

Large deformation analysis of cone penetration testing in undrained clay Installation Effects in Geotechnical Engineering Hicks et al. (eds) 13 Taylor & Francis Group, London, ISBN 978-1-138-41-4 Large deformation analysis of cone penetration testing in undrained clay L. Beuth

More information

4.3 Results... 27 4.3.1 Drained Conditions... 27 4.3.2 Undrained Conditions... 28 4.4 References... 30 4.5 Data Files... 30 5 Undrained Analysis of

4.3 Results... 27 4.3.1 Drained Conditions... 27 4.3.2 Undrained Conditions... 28 4.4 References... 30 4.5 Data Files... 30 5 Undrained Analysis of Table of Contents 1 One Dimensional Compression of a Finite Layer... 3 1.1 Problem Description... 3 1.1.1 Uniform Mesh... 3 1.1.2 Graded Mesh... 5 1.2 Analytical Solution... 6 1.3 Results... 6 1.3.1 Uniform

More information

Numerical Simulation of CPT Tip Resistance in Layered Soil

Numerical Simulation of CPT Tip Resistance in Layered Soil Numerical Simulation of CPT Tip Resistance in Layered Soil M.M. Ahmadi, Assistant Professor, mmahmadi@sharif.edu Dept. of Civil Engineering, Sharif University of Technology, Tehran, Iran Abstract The paper

More information

DEM modelling of the dynamic penetration process on Mars as a part of the NASA InSight Mission

DEM modelling of the dynamic penetration process on Mars as a part of the NASA InSight Mission Proceedings of the 4th European Young Geotechnical Engineers Conference (EYGEC), Durham, UK Osman, A.S. & Toll, D.G. (Eds.) 05 ISBN 978-0-9933836-0 DEM modelling of the dynamic penetration process on Mars

More information

NUMERICAL MODELLING OF PIEZOCONE PENETRATION IN CLAY

NUMERICAL MODELLING OF PIEZOCONE PENETRATION IN CLAY NUMERICAL MODELLING OF PIEZOCONE PENETRATION IN CLAY Ilaria Giusti University of Pisa ilaria.giusti@for.unipi.it Andrew J. Whittle Massachusetts Institute of Technology ajwhittl@mit.edu Abstract This paper

More information

EN 1997-1 Eurocode 7. Section 10 Hydraulic Failure Section 11 Overall Stability Section 12 Embankments. Trevor L.L. Orr Trinity College Dublin Ireland

EN 1997-1 Eurocode 7. Section 10 Hydraulic Failure Section 11 Overall Stability Section 12 Embankments. Trevor L.L. Orr Trinity College Dublin Ireland EN 1997 1: Sections 10, 11 and 12 Your logo Brussels, 18-20 February 2008 Dissemination of information workshop 1 EN 1997-1 Eurocode 7 Section 10 Hydraulic Failure Section 11 Overall Stability Section

More information

Program COLANY Stone Columns Settlement Analysis. User Manual

Program COLANY Stone Columns Settlement Analysis. User Manual User Manual 1 CONTENTS SYNOPSIS 3 1. INTRODUCTION 4 2. PROBLEM DEFINITION 4 2.1 Material Properties 2.2 Dimensions 2.3 Units 6 7 7 3. EXAMPLE PROBLEM 8 3.1 Description 3.2 Hand Calculation 8 8 4. COLANY

More information

INTRODUCTION TO SOIL MODULI. Jean-Louis BRIAUD 1

INTRODUCTION TO SOIL MODULI. Jean-Louis BRIAUD 1 INTRODUCTION TO SOIL MODULI By Jean-Louis BRIAUD 1 The modulus of a soil is one of the most difficult soil parameters to estimate because it depends on so many factors. Therefore when one says for example:

More information

DYNAMIC RESPONSE OF CONCRETE GRAVITY DAM ON RANDOM SOIL

DYNAMIC RESPONSE OF CONCRETE GRAVITY DAM ON RANDOM SOIL International Journal of Civil Engineering and Technology (IJCIET) Volume 6, Issue 11, Nov 2015, pp. 21-31, Article ID: IJCIET_06_11_003 Available online at http://www.iaeme.com/ijciet/issues.asp?jtype=ijciet&vtype=6&itype=11

More information

Embankment Consolidation

Embankment Consolidation Embankment Consolidation 36-1 Embankment Consolidation In this tutorial, RS2 is used for a coupled analysis of a road embankment subject to loading from typical daily traffic. Model Start the RS2 9.0 Model

More information

Benchmarking Multi-Dimensional Large Strain Consolidation Analyses D. Priestley 1, M.D. Fredlund 2 and D. van Zyl 3

Benchmarking Multi-Dimensional Large Strain Consolidation Analyses D. Priestley 1, M.D. Fredlund 2 and D. van Zyl 3 Benchmarking Multi-Dimensional Large Strain Consolidation Analyses D. Priestley 1, M.D. Fredlund 2 and D. van Zyl 3 1,3 University of British Columbia 6350 Stores Road Vancouver, BC, V6T 1Z4 2 SoilVision

More information

Numerical Analysis of Independent Wire Strand Core (IWSC) Wire Rope

Numerical Analysis of Independent Wire Strand Core (IWSC) Wire Rope Numerical Analysis of Independent Wire Strand Core (IWSC) Wire Rope Rakesh Sidharthan 1 Gnanavel B K 2 Assistant professor Mechanical, Department Professor, Mechanical Department, Gojan engineering college,

More information

METHODS FOR ACHIEVEMENT UNIFORM STRESSES DISTRIBUTION UNDER THE FOUNDATION

METHODS FOR ACHIEVEMENT UNIFORM STRESSES DISTRIBUTION UNDER THE FOUNDATION International Journal of Civil Engineering and Technology (IJCIET) Volume 7, Issue 2, March-April 2016, pp. 45-66, Article ID: IJCIET_07_02_004 Available online at http://www.iaeme.com/ijciet/issues.asp?jtype=ijciet&vtype=7&itype=2

More information

Fluid-Induced Material Transport: A Volume Averaged Approach to Modelling in SPH

Fluid-Induced Material Transport: A Volume Averaged Approach to Modelling in SPH Fluid-Induced Material Transport: A Volume Averaged Approach to Modelling in SPH Vinay Kumar SPH Workshop, 30.06. 01.07.2014, Karlsruhe www.baw.de Outline Motivation Model concept Groundwater model SPH

More information

Figure 2.31. CPT Equipment

Figure 2.31. CPT Equipment Soil tests (1) In-situ test In order to sound the strength of the soils in Las Colinas Mountain, portable cone penetration tests (Japan Geotechnical Society, 1995) were performed at three points C1-C3

More information

CHAPTER 9 FEM MODELING OF SOIL-SHEET PILE WALL INTERACTION

CHAPTER 9 FEM MODELING OF SOIL-SHEET PILE WALL INTERACTION 391 CHAPTER 9 FEM MODELING OF SOIL-SHEET PILE WALL INTERACTION 9.1 OVERVIEW OF FE SOIL-STRUCTURE INTERACTION Clough and Denby (1969) introduced Finite Element analysis into the soil-structure interaction

More information

DEM modeling of penetration test in static and dynamic conditions

DEM modeling of penetration test in static and dynamic conditions DEM modeling of penetration test in static and dynamic conditions Quoc Anh Tran, Bastien Chevalier, Pierre Breul To cite this version: Quoc Anh Tran, Bastien Chevalier, Pierre Breul. DEM modeling of penetration

More information

How To Model A Shallow Foundation

How To Model A Shallow Foundation Finite Element Analysis of Elastic Settlement of Spreadfootings Founded in Soil Jae H. Chung, Ph.D. Bid Bridge Software Institute t University of Florida, Gainesville, FL, USA Content 1. Background 2.

More information

Numerical study of rate effects in cone penetration test

Numerical study of rate effects in cone penetration test Numerical study of rate effects in cone penetration test Daichao Sheng, Richard Kelly, Jubert Pineda and Lachlan Bates Australian Research Council Centre of Excellence for Geotechnical Science and Engineering,

More information

When to Use Immediate Settlement in Settle 3D

When to Use Immediate Settlement in Settle 3D When to Use Immediate Settlement in Settle 3D Most engineers agree that settlement is made up of three components: immediate, primary consolidation and secondary consolidation (or creep). Most engineers

More information

Validation of Cable Bolt Support Design in Weak Rock Using SMART Instruments and Phase 2

Validation of Cable Bolt Support Design in Weak Rock Using SMART Instruments and Phase 2 Validation of Cable Bolt Support Design in Weak Rock Using SMART Instruments and Phase 2 W.F. Bawden, Chair Lassonde Mineral Engineering Program, U. of Toronto, Canada J.D. Tod, Senior Engineer, Mine Design

More information

Application Study of FLAC in Analysis of Slope Stability

Application Study of FLAC in Analysis of Slope Stability Application Study of FLAC in Analysis of Slope Stability HAO Fengshan, WANG Lei College of Civil and Traffic, Liaoning Technical University, Fuxin, Liaoning Abstract: FLAC is a numerical analysis software

More information

ANALYTICAL AND EXPERIMENTAL EVALUATION OF SPRING BACK EFFECTS IN A TYPICAL COLD ROLLED SHEET

ANALYTICAL AND EXPERIMENTAL EVALUATION OF SPRING BACK EFFECTS IN A TYPICAL COLD ROLLED SHEET International Journal of Mechanical Engineering and Technology (IJMET) Volume 7, Issue 1, Jan-Feb 2016, pp. 119-130, Article ID: IJMET_07_01_013 Available online at http://www.iaeme.com/ijmet/issues.asp?jtype=ijmet&vtype=7&itype=1

More information

Introduction to Solid Modeling Using SolidWorks 2012 SolidWorks Simulation Tutorial Page 1

Introduction to Solid Modeling Using SolidWorks 2012 SolidWorks Simulation Tutorial Page 1 Introduction to Solid Modeling Using SolidWorks 2012 SolidWorks Simulation Tutorial Page 1 In this tutorial, we will use the SolidWorks Simulation finite element analysis (FEA) program to analyze the response

More information

Numerical modelling of shear connection between concrete slab and sheeting deck

Numerical modelling of shear connection between concrete slab and sheeting deck 7th fib International PhD Symposium in Civil Engineering 2008 September 10-13, Universität Stuttgart, Germany Numerical modelling of shear connection between concrete slab and sheeting deck Noémi Seres

More information

Numerical Analysis of Texas Cone Penetration Test

Numerical Analysis of Texas Cone Penetration Test International Journal of Applied Science and Technology Vol. 2 No. 3; March 2012 Numerical Analysis of Texas Cone Penetration Test Nutan Palla Project Engineer, Tolunay-Wong Engineers, Inc. 10710 S Sam

More information

Lecture 16 - Free Surface Flows. Applied Computational Fluid Dynamics

Lecture 16 - Free Surface Flows. Applied Computational Fluid Dynamics Lecture 16 - Free Surface Flows Applied Computational Fluid Dynamics Instructor: André Bakker http://www.bakker.org André Bakker (2002-2006) Fluent Inc. (2002) 1 Example: spinning bowl Example: flow in

More information

Soil Mechanics SOIL STRENGTH page 1

Soil Mechanics SOIL STRENGTH page 1 Soil Mechanics SOIL STRENGTH page 1 Contents of this chapter : CHAPITRE 6. SOIL STRENGTH...1 6.1 PRINCIPAL PLANES AND PRINCIPAL STRESSES...1 6.2 MOHR CIRCLE...1 6.2.1 POLE METHOD OF FINDING STRESSES ON

More information

Dynamic Load Testing of Helical Piles

Dynamic Load Testing of Helical Piles Dynamic Load Testing of Helical Piles ANNUAL KANSAS CITY SPECIALTY SEMINAR 2014 JANUARY 10, 2014 Jorge Beim JWB Consulting LLC Pile Dynamics, Inc. Main Topics Brief description of the Dynamic Load Test

More information

CONSTANT HEAD AND FALLING HEAD PERMEABILITY TEST

CONSTANT HEAD AND FALLING HEAD PERMEABILITY TEST CONSTANT HEAD AND FALLING HEAD PERMEABILITY TEST 1 Permeability is a measure of the ease in which water can flow through a soil volume. It is one of the most important geotechnical parameters. However,

More information

Applying a circular load. Immediate and consolidation settlement. Deformed contours. Query points and query lines. Graph query.

Applying a circular load. Immediate and consolidation settlement. Deformed contours. Query points and query lines. Graph query. Quick Start Tutorial 1-1 Quick Start Tutorial This quick start tutorial will cover some of the basic features of Settle3D. A circular load is applied to a single soil layer and settlements are examined.

More information

ESTIMATION OF UNDRAINED SETTLEMENT OF SHALLOW FOUNDATIONS ON LONDON CLAY

ESTIMATION OF UNDRAINED SETTLEMENT OF SHALLOW FOUNDATIONS ON LONDON CLAY International Conference on Structural and Foundation Failures August 2-4, 2004, Singapore ESTIMATION OF UNDRAINED SETTLEMENT OF SHALLOW FOUNDATIONS ON LONDON CLAY A. S. Osman, H.C. Yeow and M.D. Bolton

More information

Laterally Loaded Piles

Laterally Loaded Piles Laterally Loaded Piles 1 Soil Response Modelled by p-y Curves In order to properly analyze a laterally loaded pile foundation in soil/rock, a nonlinear relationship needs to be applied that provides soil

More information

CFD SIMULATION OF SDHW STORAGE TANK WITH AND WITHOUT HEATER

CFD SIMULATION OF SDHW STORAGE TANK WITH AND WITHOUT HEATER International Journal of Advancements in Research & Technology, Volume 1, Issue2, July-2012 1 CFD SIMULATION OF SDHW STORAGE TANK WITH AND WITHOUT HEATER ABSTRACT (1) Mr. Mainak Bhaumik M.E. (Thermal Engg.)

More information

NUMERICAL SIMULATION OF REGULAR WAVES RUN-UP OVER SLOPPING BEACH BY OPEN FOAM

NUMERICAL SIMULATION OF REGULAR WAVES RUN-UP OVER SLOPPING BEACH BY OPEN FOAM NUMERICAL SIMULATION OF REGULAR WAVES RUN-UP OVER SLOPPING BEACH BY OPEN FOAM Parviz Ghadimi 1*, Mohammad Ghandali 2, Mohammad Reza Ahmadi Balootaki 3 1*, 2, 3 Department of Marine Technology, Amirkabir

More information

SIMULATION OF PIEZOCONE PENETRATION IN SATURATED POROUS MEDIUM USING THE FE REMESHING TECHNIQUE

SIMULATION OF PIEZOCONE PENETRATION IN SATURATED POROUS MEDIUM USING THE FE REMESHING TECHNIQUE F O U N D A T I O N S O F C I V I L A N D E N V I R O N M E N T A L E N G I N E E R I N G No. 6 2005 Darius MARKAUSKAS *, Rimantas KAIANAUSKAS *, Rolf KATZENBACH ** * Vilnius Gediminas Technical University

More information

Soil Strength. Performance Evaluation of Constructed Facilities Fall 2004. Prof. Mesut Pervizpour Office: KH #203 Ph: x4046

Soil Strength. Performance Evaluation of Constructed Facilities Fall 2004. Prof. Mesut Pervizpour Office: KH #203 Ph: x4046 ENGR-627 Performance Evaluation of Constructed Facilities, Lecture # 4 Performance Evaluation of Constructed Facilities Fall 2004 Prof. Mesut Pervizpour Office: KH #203 Ph: x4046 1 Soil Strength 2 Soil

More information

Eurocode 7 - Geotechnical design - Part 2 Ground investigation and testing

Eurocode 7 - Geotechnical design - Part 2 Ground investigation and testing Brussels, 18-20 February 2008 Dissemination of information workshop 1 Eurocode 7 - Geotechnical design - Part 2 Ground investigation and testing Dr.-Ing. Bernd Schuppener, Federal Waterways Engineering

More information

Worked Example 2 (Version 1) Design of concrete cantilever retaining walls to resist earthquake loading for residential sites

Worked Example 2 (Version 1) Design of concrete cantilever retaining walls to resist earthquake loading for residential sites Worked Example 2 (Version 1) Design of concrete cantilever retaining walls to resist earthquake loading for residential sites Worked example to accompany MBIE Guidance on the seismic design of retaining

More information

COMPUTATIONAL ENGINEERING OF FINITE ELEMENT MODELLING FOR AUTOMOTIVE APPLICATION USING ABAQUS

COMPUTATIONAL ENGINEERING OF FINITE ELEMENT MODELLING FOR AUTOMOTIVE APPLICATION USING ABAQUS International Journal of Advanced Research in Engineering and Technology (IJARET) Volume 7, Issue 2, March-April 2016, pp. 30 52, Article ID: IJARET_07_02_004 Available online at http://www.iaeme.com/ijaret/issues.asp?jtype=ijaret&vtype=7&itype=2

More information

8.2 Elastic Strain Energy

8.2 Elastic Strain Energy Section 8. 8. Elastic Strain Energy The strain energy stored in an elastic material upon deformation is calculated below for a number of different geometries and loading conditions. These expressions for

More information

1. Fluids Mechanics and Fluid Properties. 1.1 Objectives of this section. 1.2 Fluids

1. Fluids Mechanics and Fluid Properties. 1.1 Objectives of this section. 1.2 Fluids 1. Fluids Mechanics and Fluid Properties What is fluid mechanics? As its name suggests it is the branch of applied mechanics concerned with the statics and dynamics of fluids - both liquids and gases.

More information

CHAPTER 4 4 NUMERICAL ANALYSIS

CHAPTER 4 4 NUMERICAL ANALYSIS 41 CHAPTER 4 4 NUMERICAL ANALYSIS Simulation is a powerful tool that engineers use to predict the result of a phenomenon or to simulate the working situation in which a part or machine will perform in

More information

PDCA Driven-Pile Terms and Definitions

PDCA Driven-Pile Terms and Definitions PDCA Driven-Pile Terms and Definitions This document is available for free download at piledrivers.org. Preferred terms are descriptively defined. Potentially synonymous (but not preferred) terms are identified

More information

Plates and Shells: Theory and Computation - 4D9 - Dr Fehmi Cirak (fc286@) Office: Inglis building mezzanine level (INO 31)

Plates and Shells: Theory and Computation - 4D9 - Dr Fehmi Cirak (fc286@) Office: Inglis building mezzanine level (INO 31) Plates and Shells: Theory and Computation - 4D9 - Dr Fehmi Cirak (fc286@) Office: Inglis building mezzanine level (INO 31) Outline -1-! This part of the module consists of seven lectures and will focus

More information

The elements used in commercial codes can be classified in two basic categories:

The elements used in commercial codes can be classified in two basic categories: CHAPTER 3 Truss Element 3.1 Introduction The single most important concept in understanding FEA, is the basic understanding of various finite elements that we employ in an analysis. Elements are used for

More information

Finite Element Method (ENGC 6321) Syllabus. Second Semester 2013-2014

Finite Element Method (ENGC 6321) Syllabus. Second Semester 2013-2014 Finite Element Method Finite Element Method (ENGC 6321) Syllabus Second Semester 2013-2014 Objectives Understand the basic theory of the FEM Know the behaviour and usage of each type of elements covered

More information

Stress and deformation of offshore piles under structural and wave loading

Stress and deformation of offshore piles under structural and wave loading Stress and deformation of offshore piles under structural and wave loading J. A. Eicher, H. Guan, and D. S. Jeng # School of Engineering, Griffith University, Gold Coast Campus, PMB 50 Gold Coast Mail

More information

CEEN 162 - Geotechnical Engineering Laboratory Session 7 - Direct Shear and Unconfined Compression Tests

CEEN 162 - Geotechnical Engineering Laboratory Session 7 - Direct Shear and Unconfined Compression Tests PURPOSE: The parameters of the shear strength relationship provide a means of evaluating the load carrying capacity of soils, stability of slopes, and pile capacity. The direct shear test is one of the

More information

INDIRECT METHODS SOUNDING OR PENETRATION TESTS. Dr. K. M. Kouzer, Associate Professor in Civil Engineering, GEC Kozhikode

INDIRECT METHODS SOUNDING OR PENETRATION TESTS. Dr. K. M. Kouzer, Associate Professor in Civil Engineering, GEC Kozhikode INDIRECT METHODS SOUNDING OR PENETRATION TESTS STANDARD PENETRATION TEST (SPT) Reference can be made to IS 2131 1981 for details on SPT. It is a field edtest to estimate e the penetration e resistance

More information

STUDY OF DAM-RESERVOIR DYNAMIC INTERACTION USING VIBRATION TESTS ON A PHYSICAL MODEL

STUDY OF DAM-RESERVOIR DYNAMIC INTERACTION USING VIBRATION TESTS ON A PHYSICAL MODEL STUDY OF DAM-RESERVOIR DYNAMIC INTERACTION USING VIBRATION TESTS ON A PHYSICAL MODEL Paulo Mendes, Instituto Superior de Engenharia de Lisboa, Portugal Sérgio Oliveira, Laboratório Nacional de Engenharia

More information

Estimation of Adjacent Building Settlement During Drilling of Urban Tunnels

Estimation of Adjacent Building Settlement During Drilling of Urban Tunnels Estimation of Adjacent Building During Drilling of Urban Tunnels Shahram Pourakbar 1, Mohammad Azadi 2, Bujang B. K. Huat 1, Afshin Asadi 1 1 Department of Civil Engineering, University Putra Malaysia

More information

FATIGUE FRACTURE IN CONCRETE STRUCTURES

FATIGUE FRACTURE IN CONCRETE STRUCTURES FATIGUE FRACTURE IN CONCRETE STRUCTURES Fabrizio Barpi and Silvio Valente Dipartimento di Ingegneria Strutturale e Geotecnica, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino. E-mail:

More information

FEM analysis of the forming process of automotive suspension springs

FEM analysis of the forming process of automotive suspension springs FEM analysis of the forming process of automotive suspension springs Berti G. and Monti M. University of Padua, DTG, Stradella San Nicola 3, I-36100 Vicenza (Italy) guido.berti@unipd.it, manuel.monti@unipd.it.

More information

Finite Element Modelling of Penetration Tests into Martian analogue Materials 27 June 1 July 2005, Anavyssos, Attica, Greece

Finite Element Modelling of Penetration Tests into Martian analogue Materials 27 June 1 July 2005, Anavyssos, Attica, Greece Finite Element Modelling of Penetration Tests into Martian analogue Materials 27 June 1 July 2005, Anavyssos, Attica, Greece A. Zöhrer (1), G. Kargl (2) (1) Space Research Institute, Austrian Academy of

More information

Soil Mechanics. Outline. Shear Strength of Soils. Shear Failure Soil Strength. Laboratory Shear Strength Test. Stress Path Pore Pressure Parameters

Soil Mechanics. Outline. Shear Strength of Soils. Shear Failure Soil Strength. Laboratory Shear Strength Test. Stress Path Pore Pressure Parameters Soil Mechanics Shear Strength of Soils Chih-Ping Lin National Chiao Tung Univ. cplin@mail.nctu.edu.tw 1 Outline Shear Failure Soil Strength Mohr-Coulomb Failure Criterion Laboratory Shear Strength Test

More information

A Strategy for Teaching Finite Element Analysis to Undergraduate Students

A Strategy for Teaching Finite Element Analysis to Undergraduate Students A Strategy for Teaching Finite Element Analysis to Undergraduate Students Gordon Smyrell, School of Computing and Mathematics, University of Teesside The analytical power and design flexibility offered

More information

The simulation of machine tools can be divided into two stages. In the first stage the mechanical behavior of a machine tool is simulated with FEM

The simulation of machine tools can be divided into two stages. In the first stage the mechanical behavior of a machine tool is simulated with FEM 1 The simulation of machine tools can be divided into two stages. In the first stage the mechanical behavior of a machine tool is simulated with FEM tools. The approach to this simulation is different

More information

Settlement of Precast Culverts Under High Fills; The Influence of Construction Sequence and Structural Effects of Longitudinal Strains

Settlement of Precast Culverts Under High Fills; The Influence of Construction Sequence and Structural Effects of Longitudinal Strains Settlement of Precast Culverts Under High Fills; The Influence of Construction Sequence and Structural Effects of Longitudinal Strains Doug Jenkins 1, Chris Lawson 2 1 Interactive Design Services, 2 Reinforced

More information

Effect of grain size, gradation and relative density on shear strength and dynamic cone penetration index of Mahi, Sabarmati and Vatrak Sand

Effect of grain size, gradation and relative density on shear strength and dynamic cone penetration index of Mahi, Sabarmati and Vatrak Sand Discovery ANALYSIS The International Daily journal ISSN 2278 5469 EISSN 2278 5450 2015 Discovery Publication. All Rights Reserved Effect of grain size, gradation and relative density on shear strength

More information

PREDICTING THE HYDRAULIC CONDUCTIVITY OF MAKASSAR MARINE CLAY USING FIELD PENETRATION TEST (CPTU) RESULTS

PREDICTING THE HYDRAULIC CONDUCTIVITY OF MAKASSAR MARINE CLAY USING FIELD PENETRATION TEST (CPTU) RESULTS Proceedings of the Sixth International Conference on Asian and Pacific Coasts (APAC 2011) December 14 16, 2011, Hong Kong, China PREDICTING THE HYDRAULIC CONDUCTIVITY OF MAKASSAR MARINE CLAY USING FIELD

More information

TRAVELING WAVE EFFECTS ON NONLINEAR SEISMIC BEHAVIOR OF CONCRETE GRAVITY DAMS

TRAVELING WAVE EFFECTS ON NONLINEAR SEISMIC BEHAVIOR OF CONCRETE GRAVITY DAMS TRAVELING WAVE EFFECTS ON NONLINEAR SEISMIC BEHAVIOR OF CONCRETE GRAVITY DAMS H. Mirzabozorg 1, M. R. Kianoush 2 and M. Varmazyari 3 1,3 Assistant Professor and Graduate Student respectively, Department

More information

Soil Mechanics. Soil Mechanics

Soil Mechanics. Soil Mechanics Soil is the most misunderstood term in the field. The problem arises in the reasons for which different groups or professions study soils. Soil scientists are interested in soils as a medium for plant

More information

DIRECT SHEAR TEST SOIL MECHANICS SOIL MECHANICS LABORATORY DEPARTMENT OF CIVIL ENGINEERING UNIVERSITY OF MORATUWA SRI LANKA

DIRECT SHEAR TEST SOIL MECHANICS SOIL MECHANICS LABORATORY DEPARTMENT OF CIVIL ENGINEERING UNIVERSITY OF MORATUWA SRI LANKA DIRECT SHEAR TEST SOIL MECHANICS SOIL MECHANICS LABORATORY DEPARTMENT OF CIVIL ENGINEERING UNIVERSITY OF MORATUWA SRI LANKA DIRECT SHEAR TEST OBJEVTIVES To determine the shear strength parameters for a

More information

7.2.4 Seismic velocity, attenuation and rock properties

7.2.4 Seismic velocity, attenuation and rock properties 7.2.4 Seismic velocity, attenuation and rock properties Rock properties that affect seismic velocity Porosity Lithification Pressure Fluid saturation Velocity in unconsolidated near surface soils (the

More information

Drained and Undrained Conditions. Undrained and Drained Shear Strength

Drained and Undrained Conditions. Undrained and Drained Shear Strength Drained and Undrained Conditions Undrained and Drained Shear Strength Lecture No. October, 00 Drained condition occurs when there is no change in pore water pressure due to external loading. In a drained

More information

Validation of methods for assessing tunnelling-induced settlements on piles

Validation of methods for assessing tunnelling-induced settlements on piles Validation of methods for assessing tunnelling-induced settlements on piles Mike Devriendt, Arup Michael Williamson, University of Cambridge & Arup technical note Abstract For tunnelling projects, settlements

More information

THE TRANSITION FROM OPEN PIT TO UNDERGROUND MINING: AN UNUSUAL SLOPE FAILURE MECHANISM AT PALABORA

THE TRANSITION FROM OPEN PIT TO UNDERGROUND MINING: AN UNUSUAL SLOPE FAILURE MECHANISM AT PALABORA THE TRANSITION FROM OPEN PIT TO UNDERGROUND MINING: AN UNUSUAL SLOPE FAILURE MECHANISM AT PALABORA Richard K. Brummer*, Hao Li* & Allan Moss *Itasca Consulting Canada Inc., Rio Tinto Limited ABSTRACT At

More information

MASTER DEGREE PROJECT

MASTER DEGREE PROJECT MASTER DEGREE PROJECT Finite Element Analysis of a Washing Machine Cylinder Thesis in Applied Mechanics one year Master Degree Program Performed : Spring term, 2010 Level Author Supervisor s Examiner :

More information

Tutorial for using Titan2D, online simulation tool on Vhub. Sylvain Charbonnier

Tutorial for using Titan2D, online simulation tool on Vhub. Sylvain Charbonnier Tutorial for using Titan2D, online simulation tool on Vhub Sylvain Charbonnier Introduction The Titan2D toolkit is used for modeling of geophysical mass flows over natural terrain (volcanic flows, avalanches,

More information

Modeling of Cone Penetration Test Using SPH and MM-ALE Approaches

Modeling of Cone Penetration Test Using SPH and MM-ALE Approaches 1-1 Modeling of Cone Penetration Test Using SPH and MM-ALE Approaches Ronald F. Kulak 1a, 2 Cezary Bojanowski 1b 1) Transportation Research and Analysis Computing Center, Energy Systems Division, Argonne

More information

SOUTH AFRICAN NATIONAL INSTITUTE OF ROCK MECHANICS CHAMBER OF MINES OF SOUTH AFRICA CERTIFICATE IN ROCK MECHANICS PART 1 ROCK MECHANICS THEORY

SOUTH AFRICAN NATIONAL INSTITUTE OF ROCK MECHANICS CHAMBER OF MINES OF SOUTH AFRICA CERTIFICATE IN ROCK MECHANICS PART 1 ROCK MECHANICS THEORY SOUTH AFRICAN NATIONAL INSTITUTE OF ROCK MECHANICS CHAMBER OF MINES OF SOUTH AFRICA CERTIFICATE IN ROCK MECHANICS PART 1 ROCK MECHANICS THEORY SYLLABUS Copyright 2006 SANIRE CONTENTS PREAMBLE... 3 TOPICS

More information

DYNAMICAL ANALYSIS OF SILO SURFACE CLEANING ROBOT USING FINITE ELEMENT METHOD

DYNAMICAL ANALYSIS OF SILO SURFACE CLEANING ROBOT USING FINITE ELEMENT METHOD International Journal of Mechanical Engineering and Technology (IJMET) Volume 7, Issue 1, Jan-Feb 2016, pp. 190-202, Article ID: IJMET_07_01_020 Available online at http://www.iaeme.com/ijmet/issues.asp?jtype=ijmet&vtype=7&itype=1

More information

Appendix A Sub surface displacements around excavations Data presented in Xdisp sample file

Appendix A Sub surface displacements around excavations Data presented in Xdisp sample file Appendix A Sub surface displacements around excavations Data presented in Xdisp sample file Notation B1 = lowest level of basement slab c = cohesion E = drained Young s Modulus Eu = undrained Young s Modulus

More information

Multiphase Flow - Appendices

Multiphase Flow - Appendices Discovery Laboratory Multiphase Flow - Appendices 1. Creating a Mesh 1.1. What is a geometry? The geometry used in a CFD simulation defines the problem domain and boundaries; it is the area (2D) or volume

More information

Behaviour of buildings due to tunnel induced subsidence

Behaviour of buildings due to tunnel induced subsidence Behaviour of buildings due to tunnel induced subsidence A thesis submitted to the University of London for the degree of Doctor of Philosophy and for the Diploma of the Imperial College of Science, Technology

More information

Modelling the Discharge Rate and the Ground Settlement produced by the Tunnel Boring

Modelling the Discharge Rate and the Ground Settlement produced by the Tunnel Boring Modelling the Discharge Rate and the Ground Settlement produced by the Tunnel Boring Giona Preisig*, Antonio Dematteis, Riccardo Torri, Nathalie Monin, Ellen Milnes, Pierre Perrochet *Center for Hydrogeology

More information

Numerical analysis of boundary conditions to tunnels

Numerical analysis of boundary conditions to tunnels Global journal of multidisciplinary and applied sciences Available online at www.gjmas.com 2015 GJMAS Journal-2015-3-2/37-41 ISSN 2313-6685 2015 GJMAS Numerical analysis of boundary conditions to tunnels

More information

Overset Grids Technology in STAR-CCM+: Methodology and Applications

Overset Grids Technology in STAR-CCM+: Methodology and Applications Overset Grids Technology in STAR-CCM+: Methodology and Applications Eberhard Schreck, Milovan Perić and Deryl Snyder eberhard.schreck@cd-adapco.com milovan.peric@cd-adapco.com deryl.snyder@cd-adapco.com

More information

Periodical meeting CO2Monitor. Leakage characterization at the Sleipner injection site

Periodical meeting CO2Monitor. Leakage characterization at the Sleipner injection site Periodical meeting CO2Monitor Leakage characterization at the Sleipner injection site Stefano Picotti, Davide Gei, Jose Carcione Objective Modelling of the Sleipner overburden to study the sensitivity

More information

TWO-DIMENSIONAL FINITE ELEMENT ANALYSIS OF FORCED CONVECTION FLOW AND HEAT TRANSFER IN A LAMINAR CHANNEL FLOW

TWO-DIMENSIONAL FINITE ELEMENT ANALYSIS OF FORCED CONVECTION FLOW AND HEAT TRANSFER IN A LAMINAR CHANNEL FLOW TWO-DIMENSIONAL FINITE ELEMENT ANALYSIS OF FORCED CONVECTION FLOW AND HEAT TRANSFER IN A LAMINAR CHANNEL FLOW Rajesh Khatri 1, 1 M.Tech Scholar, Department of Mechanical Engineering, S.A.T.I., vidisha

More information

Technology of EHIS (stamping) applied to the automotive parts production

Technology of EHIS (stamping) applied to the automotive parts production Laboratory of Applied Mathematics and Mechanics Technology of EHIS (stamping) applied to the automotive parts production Churilova Maria, Saint-Petersburg State Polytechnical University Department of Applied

More information

DESIGN SPECIFICATIONS FOR HIGHWAY BRIDGES PART V SEISMIC DESIGN

DESIGN SPECIFICATIONS FOR HIGHWAY BRIDGES PART V SEISMIC DESIGN DESIGN SPECIFICATIONS FOR HIGHWAY BRIDGES PART V SEISMIC DESIGN MARCH 2002 CONTENTS Chapter 1 General... 1 1.1 Scope... 1 1.2 Definition of Terms... 1 Chapter 2 Basic Principles for Seismic Design... 4

More information

EM 1110-2-1902 31 Oct 2003. US Army Corps of Engineers ENGINEERING AND DESIGN. Slope Stability ENGINEER MANUAL

EM 1110-2-1902 31 Oct 2003. US Army Corps of Engineers ENGINEERING AND DESIGN. Slope Stability ENGINEER MANUAL 31 Oct 2003 US Army Corps of Engineers ENGINEERING AND DESIGN Slope Stability ENGINEER MANUAL AVAILABILITY Electronic copies of this and other U.S. Army Corps of Engineers (USACE) publications are available

More information

Period #16: Soil Compressibility and Consolidation (II)

Period #16: Soil Compressibility and Consolidation (II) Period #16: Soil Compressibility and Consolidation (II) A. Review and Motivation (1) Review: In most soils, changes in total volume are associated with reductions in void volume. The volume change of the

More information

SEISMIC UPGRADE OF OAK STREET BRIDGE WITH GFRP

SEISMIC UPGRADE OF OAK STREET BRIDGE WITH GFRP 13 th World Conference on Earthquake Engineering Vancouver, B.C., Canada August 1-6, 2004 Paper No. 3279 SEISMIC UPGRADE OF OAK STREET BRIDGE WITH GFRP Yuming DING 1, Bruce HAMERSLEY 2 SUMMARY Vancouver

More information

Prelab Exercises: Hooke's Law and the Behavior of Springs

Prelab Exercises: Hooke's Law and the Behavior of Springs 59 Prelab Exercises: Hooke's Law and the Behavior of Springs Study the description of the experiment that follows and answer the following questions.. (3 marks) Explain why a mass suspended vertically

More information

CAE -Finite Element Method

CAE -Finite Element Method 16.810 Engineering Design and Rapid Prototyping Lecture 3b CAE -Finite Element Method Instructor(s) Prof. Olivier de Weck January 16, 2007 Numerical Methods Finite Element Method Boundary Element Method

More information

A Theoretical Solution for Consolidation Rates of Stone Column-Reinforced Foundations Accounting for Smear and Well Resistance Effects

A Theoretical Solution for Consolidation Rates of Stone Column-Reinforced Foundations Accounting for Smear and Well Resistance Effects The International Journal of Geomechanics Volume, Number, 135 151 (00) A Theoretical Solution for Consolidation Rates of Stone Column-Reinforced Foundations Accounting for Smear and Well Resistance Effects

More information

NUMERICAL ANALYSIS OF SEEPAGE THROUGH EMBANKMENT DAMS (CASE STUDY: KOCHARY DAM, GOLPAYEGAN)

NUMERICAL ANALYSIS OF SEEPAGE THROUGH EMBANKMENT DAMS (CASE STUDY: KOCHARY DAM, GOLPAYEGAN) NUMERICAL ANALYSIS OF SEEPAGE THROUGH EMBANKMENT DAMS (CASE STUDY: KOCHARY DAM, GOLPAYEGAN) *Reza Naghmehkhan Dahande 1 and Ahmad Taheri 2 1 Department of Civil Engineering-Water Management, Islamic Azad

More information

SIESMIC SLOSHING IN CYLINDRICAL TANKS WITH FLEXIBLE BAFFLES

SIESMIC SLOSHING IN CYLINDRICAL TANKS WITH FLEXIBLE BAFFLES SIESMIC SLOSHING IN CYLINDRICAL TANKS WITH FLEXIBLE BAFFLES Kayahan AKGUL 1, Yasin M. FAHJAN 2, Zuhal OZDEMIR 3 and Mhamed SOULI 4 ABSTRACT Sloshing has been one of the major concerns for engineers in

More information

Paper Pulp Dewatering

Paper Pulp Dewatering Paper Pulp Dewatering Dr. Stefan Rief stefan.rief@itwm.fraunhofer.de Flow and Transport in Industrial Porous Media November 12-16, 2007 Utrecht University Overview Introduction and Motivation Derivation

More information

Use of OpenFoam in a CFD analysis of a finger type slug catcher. Dynaflow Conference 2011 January 13 2011, Rotterdam, the Netherlands

Use of OpenFoam in a CFD analysis of a finger type slug catcher. Dynaflow Conference 2011 January 13 2011, Rotterdam, the Netherlands Use of OpenFoam in a CFD analysis of a finger type slug catcher Dynaflow Conference 2011 January 13 2011, Rotterdam, the Netherlands Agenda Project background Analytical analysis of two-phase flow regimes

More information

ANNEX D1 BASIC CONSIDERATIONS FOR REVIEWING STUDIES IN THE DETAILED RISK ASSESSMENT FOR SAFETY

ANNEX D1 BASIC CONSIDERATIONS FOR REVIEWING STUDIES IN THE DETAILED RISK ASSESSMENT FOR SAFETY ANNEX D1 BASIC CONSIDERATIONS FOR REVIEWING STUDIES IN THE DETAILED RISK ASSESSMENT FOR SAFETY ANNEX D1: BASIC CONSIDERATIONS FOR REVIEWING STUDIES IN DRA FOR SAFETY D1-1 ANNEX D1 BASIC CONSIDERATIONS

More information

DYNAMIC ANALYSIS OF THICK PLATES SUBJECTED TO EARTQUAKE

DYNAMIC ANALYSIS OF THICK PLATES SUBJECTED TO EARTQUAKE DYNAMIC ANALYSIS OF THICK PLATES SUBJECTED TO EARTQUAKE ÖZDEMİR Y. I, AYVAZ Y. Posta Adresi: Department of Civil Engineering, Karadeniz Technical University, 68 Trabzon, TURKEY E-posta: yaprakozdemir@hotmail.com

More information

Fracture and strain rate behavior of airplane fuselage materials under blast loading

Fracture and strain rate behavior of airplane fuselage materials under blast loading EPJ Web of Conferences 6, 6 42017 (2010) DOI:10.1051/epjconf/20100642017 Owned by the authors, published by EDP Sciences, 2010 Fracture and strain rate behavior of airplane fuselage materials under blast

More information

Offshore Wind Turbine Support Structures

Offshore Wind Turbine Support Structures 1 Wind Power R&D Seminar Deep Sea Offshore Wind Royal Garden Hotel, Trondheim, Norway January 21, 2011 Effect of Foundation Modeling Methodology on the Dynamic Response of Offshore Wind Turbine Support

More information

Abaqus Technology Brief. Automobile Roof Crush Analysis with Abaqus

Abaqus Technology Brief. Automobile Roof Crush Analysis with Abaqus Abaqus Technology Brief Automobile Roof Crush Analysis with Abaqus TB-06-RCA-1 Revised: April 2007. Summary The National Highway Traffic Safety Administration (NHTSA) mandates the use of certain test procedures

More information