3. Convex functions. basic properties and examples. operations that preserve convexity. the conjugate function. quasiconvex functions

Size: px
Start display at page:

Download "3. Convex functions. basic properties and examples. operations that preserve convexity. the conjugate function. quasiconvex functions"

Transcription

1 3. Convex functions Convex Optimization Boyd & Vandenberghe basic properties and examples operations that preserve convexity the conjugate function quasiconvex functions log-concave and log-convex functions convexity with respect to generalized inequalities 3 1

2 Definition f : R n R is convex if domf is a convex set and f(θx+(1 θ)y) θf(x)+(1 θ)f(y) for all x,y domf, 0 θ 1 (x,f(x)) (y,f(y)) f is concave if f is convex f is strictly convex if domf is convex and f(θx+(1 θ)y) < θf(x)+(1 θ)f(y) for x,y domf, x y, 0 < θ < 1 Convex functions 3 2

3 Examples on R convex: affine: ax+b on R, for any a,b R exponential: e ax, for any a R powers: x α on R ++, for α 1 or α 0 powers of absolute value: x p on R, for p 1 negative entropy: xlogx on R ++ concave: affine: ax+b on R, for any a,b R powers: x α on R ++, for 0 α 1 logarithm: logx on R ++ Convex functions 3 3

4 Examples on R n and R m n affine functions are convex and concave; all norms are convex examples on R n affine function f(x) = a T x+b norms: x p = ( n i=1 x i p ) 1/p for p 1; x = max k x k examples on R m n (m n matrices) affine function f(x) = tr(a T X)+b = m i=1 n A ij X ij +b j=1 spectral (maximum singular value) norm f(x) = X 2 = σ max (X) = (λ max (X T X)) 1/2 Convex functions 3 4

5 Restriction of a convex function to a line f : R n R is convex if and only if the function g : R R, g(t) = f(x+tv), domg = {t x+tv domf} is convex (in t) for any x domf, v R n can check convexity of f by checking convexity of functions of one variable example. f : S n R with f(x) = logdetx, domf = S n ++ g(t) = logdet(x +tv) = logdetx +logdet(i +tx 1/2 VX 1/2 ) n = logdetx + log(1+tλ i ) where λ i are the eigenvalues of X 1/2 VX 1/2 g is concave in t (for any choice of X 0, V); hence f is concave i=1 Convex functions 3 5

6 Extended-value extension extended-value extension f of f is f(x) = f(x), x domf, f(x) =, x domf often simplifies notation; for example, the condition 0 θ 1 = f(θx+(1 θ)y) θ f(x)+(1 θ) f(y) (as an inequality in R { }), means the same as the two conditions domf is convex for x,y domf, 0 θ 1 = f(θx+(1 θ)y) θf(x)+(1 θ)f(y) Convex functions 3 6

7 First-order condition f is differentiable if domf is open and the gradient f(x) = exists at each x domf ( f(x), f(x),..., f(x) ) x 1 x 2 x n 1st-order condition: differentiable f with convex domain is convex iff f(y) f(x)+ f(x) T (y x) for all x,y domf f(y) f(x) + f(x) T (y x) (x,f(x)) first-order approximation of f is global underestimator Convex functions 3 7

8 Second-order conditions f is twice differentiable if domf is open and the Hessian 2 f(x) S n, exists at each x domf 2 f(x) ij = 2 f(x) x i x j, i,j = 1,...,n, 2nd-order conditions: for twice differentiable f with convex domain f is convex if and only if 2 f(x) 0 for all x domf if 2 f(x) 0 for all x domf, then f is strictly convex Convex functions 3 8

9 Examples quadratic function: f(x) = (1/2)x T Px+q T x+r (with P S n ) f(x) = Px+q, 2 f(x) = P convex if P 0 least-squares objective: f(x) = Ax b 2 2 f(x) = 2A T (Ax b), 2 f(x) = 2A T A convex (for any A) quadratic-over-linear: f(x,y) = x 2 /y 2 2 f(x,y) = 2 y 3 [ y x ][ y x ] T 0 f(x,y) convex for y > 0 1 y 0 2 x 0 Convex functions 3 9

10 log-sum-exp: f(x) = log n k=1 expx k is convex 2 f(x) = 1 1 T z diag(z) 1 (1 T z) 2zzT (z k = expx k ) to show 2 f(x) 0, we must verify that v T 2 f(x)v 0 for all v: v T 2 f(x)v = ( k z kv 2 k )( k z k) ( k v kz k ) 2 ( k z k) 2 0 since ( k v kz k ) 2 ( k z kv 2 k )( k z k) (from Cauchy-Schwarz inequality) geometric mean: f(x) = ( n k=1 x k) 1/n on R n ++ is concave (similar proof as for log-sum-exp) Convex functions 3 10

11 Epigraph and sublevel set α-sublevel set of f : R n R: C α = {x domf f(x) α} sublevel sets of convex functions are convex (converse is false) epigraph of f : R n R: epif = {(x,t) R n+1 x domf, f(x) t} epif f f is convex if and only if epif is a convex set Convex functions 3 11

12 Jensen s inequality basic inequality: if f is convex, then for 0 θ 1, f(θx+(1 θ)y) θf(x)+(1 θ)f(y) extension: if f is convex, then f(ez) Ef(z) for any random variable z basic inequality is special case with discrete distribution prob(z = x) = θ, prob(z = y) = 1 θ Convex functions 3 12

13 Operations that preserve convexity practical methods for establishing convexity of a function 1. verify definition (often simplified by restricting to a line) 2. for twice differentiable functions, show 2 f(x) 0 3. show that f is obtained from simple convex functions by operations that preserve convexity nonnegative weighted sum composition with affine function pointwise maximum and supremum composition minimization perspective Convex functions 3 13

14 Positive weighted sum & composition with affine function nonnegative multiple: αf is convex if f is convex, α 0 sum: f 1 +f 2 convex if f 1,f 2 convex (extends to infinite sums, integrals) composition with affine function: f(ax+b) is convex if f is convex examples log barrier for linear inequalities f(x) = m log(b i a T i x), i=1 domf = {x a T i x < b i,i = 1,...,m} (any) norm of affine function: f(x) = Ax+b Convex functions 3 14

15 Pointwise maximum if f 1,..., f m are convex, then f(x) = max{f 1 (x),...,f m (x)} is convex examples piecewise-linear function: f(x) = max i=1,...,m (a T i x+b i) is convex sum of r largest components of x R n : f(x) = x [1] +x [2] + +x [r] is convex (x [i] is ith largest component of x) proof: f(x) = max{x i1 +x i2 + +x ir 1 i 1 < i 2 < < i r n} Convex functions 3 15

16 Pointwise supremum if f(x,y) is convex in x for each y A, then is convex examples g(x) = supf(x,y) y A support function of a set C: S C (x) = sup y C y T x is convex distance to farthest point in a set C: f(x) = sup x y y C maximum eigenvalue of symmetric matrix: for X S n, λ max (X) = sup y T Xy y 2 =1 Convex functions 3 16

17 Composition with scalar functions composition of g : R n R and h : R R: f(x) = h(g(x)) f is convex if g convex, h convex, h nondecreasing g concave, h convex, h nonincreasing proof (for n = 1, differentiable g,h) f (x) = h (g(x))g (x) 2 +h (g(x))g (x) note: monotonicity must hold for extended-value extension h examples expg(x) is convex if g is convex 1/g(x) is convex if g is concave and positive Convex functions 3 17

18 Vector composition composition of g : R n R k and h : R k R: f(x) = h(g(x)) = h(g 1 (x),g 2 (x),...,g k (x)) f is convex if g i convex, h convex, h nondecreasing in each argument g i concave, h convex, h nonincreasing in each argument proof (for n = 1, differentiable g,h) f (x) = g (x) T 2 h(g(x))g (x)+ h(g(x)) T g (x) examples m i=1 logg i(x) is concave if g i are concave and positive log m i=1 expg i(x) is convex if g i are convex Convex functions 3 18

19 Minimization if f(x,y) is convex in (x,y) and C is a convex set, then is convex examples g(x) = inf y C f(x,y) f(x,y) = x T Ax+2x T By +y T Cy with [ A B B T C ] 0, C 0 minimizing over y gives g(x) = inf y f(x,y) = x T (A BC 1 B T )x g is convex, hence Schur complement A BC 1 B T 0 distance to a set: dist(x,s) = inf y S x y is convex if S is convex Convex functions 3 19

20 Perspective the perspective of a function f : R n R is the function g : R n R R, g(x,t) = tf(x/t), domg = {(x,t) x/t domf, t > 0} g is convex if f is convex examples f(x) = x T x is convex; hence g(x,t) = x T x/t is convex for t > 0 negative logarithm f(x) = logx is convex; hence relative entropy g(x,t) = tlogt tlogx is convex on R 2 ++ if f is convex, then g(x) = (c T x+d)f ( (Ax+b)/(c T x+d) ) is convex on {x c T x+d > 0, (Ax+b)/(c T x+d) domf} Convex functions 3 20

21 the conjugate of a function f is The conjugate function f (y) = sup (y T x f(x)) x dom f f(x) xy x (0, f (y)) f is convex (even if f is not) will be useful in chapter 5 Convex functions 3 21

22 examples negative logarithm f(x) = logx f (y) = sup(xy +logx) = x>0 { 1 log( y) y < 0 otherwise strictly convex quadratic f(x) = (1/2)x T Qx with Q S n ++ f (y) = sup(y T x (1/2)x T Qx) x = 1 2 yt Q 1 y Convex functions 3 22

23 Quasiconvex functions f : R n R is quasiconvex if domf is convex and the sublevel sets are convex for all α S α = {x domf f(x) α} β α a b c f is quasiconcave if f is quasiconvex f is quasilinear if it is quasiconvex and quasiconcave Convex functions 3 23

24 x is quasiconvex on R Examples ceil(x) = inf{z Z z x} is quasilinear logx is quasilinear on R ++ f(x 1,x 2 ) = x 1 x 2 is quasiconcave on R 2 ++ linear-fractional function is quasilinear distance ratio f(x) = at x+b c T x+d, domf = {x ct x+d > 0} f(x) = x a 2 x b 2, domf = {x x a 2 x b 2 } is quasiconvex Convex functions 3 24

25 internal rate of return cash flow x = (x 0,...,x n ); x i is payment in period i (to us if x i > 0) we assume x 0 < 0 and x 0 +x 1 + +x n > 0 present value of cash flow x, for interest rate r: PV(x,r) = n (1+r) i x i i=0 internal rate of return is smallest interest rate for which PV(x,r) = 0: IRR(x) = inf{r 0 PV(x,r) = 0} IRR is quasiconcave: superlevel set is intersection of open halfspaces IRR(x) R n (1+r) i x i > 0 for 0 r < R i=0 Convex functions 3 25

26 Properties modified Jensen inequality: for quasiconvex f 0 θ 1 = f(θx+(1 θ)y) max{f(x),f(y)} first-order condition: differentiable f with cvx domain is quasiconvex iff f(y) f(x) = f(x) T (y x) 0 x f(x) sums of quasiconvex functions are not necessarily quasiconvex Convex functions 3 26

27 Log-concave and log-convex functions a positive function f is log-concave if logf is concave: f(θx+(1 θ)y) f(x) θ f(y) 1 θ for 0 θ 1 f is log-convex if logf is convex powers: x a on R ++ is log-convex for a 0, log-concave for a 0 many common probability densities are log-concave, e.g., normal: f(x) = 1 (2π)n detσ e 1 2 (x x)t Σ 1 (x x) cumulative Gaussian distribution function Φ is log-concave Φ(x) = 1 2π x e u2 /2 du Convex functions 3 27

28 Properties of log-concave functions twice differentiable f with convex domain is log-concave if and only if f(x) 2 f(x) f(x) f(x) T for all x domf product of log-concave functions is log-concave sum of log-concave functions is not always log-concave integration: if f : R n R m R is log-concave, then g(x) = f(x,y) dy is log-concave (not easy to show) Convex functions 3 28

29 consequences of integration property convolution f g of log-concave functions f, g is log-concave (f g)(x) = f(x y)g(y)dy if C R n convex and y is a random variable with log-concave pdf then is log-concave f(x) = prob(x+y C) proof: write f(x) as integral of product of log-concave functions p is pdf of y f(x) = g(x+y)p(y)dy, g(u) = { 1 u C 0 u C, Convex functions 3 29

30 example: yield function Y(x) = prob(x+w S) x R n : nominal parameter values for product w R n : random variations of parameters in manufactured product S: set of acceptable values if S is convex and w has a log-concave pdf, then Y is log-concave yield regions {x Y(x) α} are convex Convex functions 3 30

31 Convexity with respect to generalized inequalities f : R n R m is K-convex if domf is convex and for x, y domf, 0 θ 1 f(θx+(1 θ)y) K θf(x)+(1 θ)f(y) example f : S m S m, f(x) = X 2 is S m +-convex proof: for fixed z R m, z T X 2 z = Xz 2 2 is convex in X, i.e., z T (θx +(1 θ)y) 2 z θz T X 2 z +(1 θ)z T Y 2 z for X,Y S m, 0 θ 1 therefore (θx +(1 θ)y) 2 θx 2 +(1 θ)y 2 Convex functions 3 31

Optimisation et simulation numérique.

Optimisation et simulation numérique. Optimisation et simulation numérique. Lecture 1 A. d Aspremont. M2 MathSV: Optimisation et simulation numérique. 1/106 Today Convex optimization: introduction Course organization and other gory details...

More information

2.3 Convex Constrained Optimization Problems

2.3 Convex Constrained Optimization Problems 42 CHAPTER 2. FUNDAMENTAL CONCEPTS IN CONVEX OPTIMIZATION Theorem 15 Let f : R n R and h : R R. Consider g(x) = h(f(x)) for all x R n. The function g is convex if either of the following two conditions

More information

Convex Optimization. Lieven Vandenberghe University of California, Los Angeles

Convex Optimization. Lieven Vandenberghe University of California, Los Angeles Convex Optimization Lieven Vandenberghe University of California, Los Angeles Tutorial lectures, Machine Learning Summer School University of Cambridge, September 3-4, 2009 Sources: Boyd & Vandenberghe,

More information

Additional Exercises for Convex Optimization

Additional Exercises for Convex Optimization Additional Exercises for Convex Optimization Stephen Boyd Lieven Vandenberghe February 11, 2016 This is a collection of additional exercises, meant to supplement those found in the book Convex Optimization,

More information

Convex analysis and profit/cost/support functions

Convex analysis and profit/cost/support functions CALIFORNIA INSTITUTE OF TECHNOLOGY Division of the Humanities and Social Sciences Convex analysis and profit/cost/support functions KC Border October 2004 Revised January 2009 Let A be a subset of R m

More information

1 Norms and Vector Spaces

1 Norms and Vector Spaces 008.10.07.01 1 Norms and Vector Spaces Suppose we have a complex vector space V. A norm is a function f : V R which satisfies (i) f(x) 0 for all x V (ii) f(x + y) f(x) + f(y) for all x,y V (iii) f(λx)

More information

Pattern Analysis. Logistic Regression. 12. Mai 2009. Joachim Hornegger. Chair of Pattern Recognition Erlangen University

Pattern Analysis. Logistic Regression. 12. Mai 2009. Joachim Hornegger. Chair of Pattern Recognition Erlangen University Pattern Analysis Logistic Regression 12. Mai 2009 Joachim Hornegger Chair of Pattern Recognition Erlangen University Pattern Analysis 2 / 43 1 Logistic Regression Posteriors and the Logistic Function Decision

More information

Vector and Matrix Norms

Vector and Matrix Norms Chapter 1 Vector and Matrix Norms 11 Vector Spaces Let F be a field (such as the real numbers, R, or complex numbers, C) with elements called scalars A Vector Space, V, over the field F is a non-empty

More information

10. Proximal point method

10. Proximal point method L. Vandenberghe EE236C Spring 2013-14) 10. Proximal point method proximal point method augmented Lagrangian method Moreau-Yosida smoothing 10-1 Proximal point method a conceptual algorithm for minimizing

More information

Bindel, Spring 2012 Intro to Scientific Computing (CS 3220) Week 3: Wednesday, Feb 8

Bindel, Spring 2012 Intro to Scientific Computing (CS 3220) Week 3: Wednesday, Feb 8 Spaces and bases Week 3: Wednesday, Feb 8 I have two favorite vector spaces 1 : R n and the space P d of polynomials of degree at most d. For R n, we have a canonical basis: R n = span{e 1, e 2,..., e

More information

Lecture 5 Principal Minors and the Hessian

Lecture 5 Principal Minors and the Hessian Lecture 5 Principal Minors and the Hessian Eivind Eriksen BI Norwegian School of Management Department of Economics October 01, 2010 Eivind Eriksen (BI Dept of Economics) Lecture 5 Principal Minors and

More information

SF2940: Probability theory Lecture 8: Multivariate Normal Distribution

SF2940: Probability theory Lecture 8: Multivariate Normal Distribution SF2940: Probability theory Lecture 8: Multivariate Normal Distribution Timo Koski 24.09.2015 Timo Koski Matematisk statistik 24.09.2015 1 / 1 Learning outcomes Random vectors, mean vector, covariance matrix,

More information

Inner Product Spaces

Inner Product Spaces Math 571 Inner Product Spaces 1. Preliminaries An inner product space is a vector space V along with a function, called an inner product which associates each pair of vectors u, v with a scalar u, v, and

More information

SMOOTHING APPROXIMATIONS FOR TWO CLASSES OF CONVEX EIGENVALUE OPTIMIZATION PROBLEMS YU QI. (B.Sc.(Hons.), BUAA)

SMOOTHING APPROXIMATIONS FOR TWO CLASSES OF CONVEX EIGENVALUE OPTIMIZATION PROBLEMS YU QI. (B.Sc.(Hons.), BUAA) SMOOTHING APPROXIMATIONS FOR TWO CLASSES OF CONVEX EIGENVALUE OPTIMIZATION PROBLEMS YU QI (B.Sc.(Hons.), BUAA) A THESIS SUBMITTED FOR THE DEGREE OF MASTER OF SCIENCE DEPARTMENT OF MATHEMATICS NATIONAL

More information

Duality in General Programs. Ryan Tibshirani Convex Optimization 10-725/36-725

Duality in General Programs. Ryan Tibshirani Convex Optimization 10-725/36-725 Duality in General Programs Ryan Tibshirani Convex Optimization 10-725/36-725 1 Last time: duality in linear programs Given c R n, A R m n, b R m, G R r n, h R r : min x R n c T x max u R m, v R r b T

More information

October 3rd, 2012. Linear Algebra & Properties of the Covariance Matrix

October 3rd, 2012. Linear Algebra & Properties of the Covariance Matrix Linear Algebra & Properties of the Covariance Matrix October 3rd, 2012 Estimation of r and C Let rn 1, rn, t..., rn T be the historical return rates on the n th asset. rn 1 rṇ 2 r n =. r T n n = 1, 2,...,

More information

Notes on Symmetric Matrices

Notes on Symmetric Matrices CPSC 536N: Randomized Algorithms 2011-12 Term 2 Notes on Symmetric Matrices Prof. Nick Harvey University of British Columbia 1 Symmetric Matrices We review some basic results concerning symmetric matrices.

More information

PUTNAM TRAINING POLYNOMIALS. Exercises 1. Find a polynomial with integral coefficients whose zeros include 2 + 5.

PUTNAM TRAINING POLYNOMIALS. Exercises 1. Find a polynomial with integral coefficients whose zeros include 2 + 5. PUTNAM TRAINING POLYNOMIALS (Last updated: November 17, 2015) Remark. This is a list of exercises on polynomials. Miguel A. Lerma Exercises 1. Find a polynomial with integral coefficients whose zeros include

More information

MATH 304 Linear Algebra Lecture 20: Inner product spaces. Orthogonal sets.

MATH 304 Linear Algebra Lecture 20: Inner product spaces. Orthogonal sets. MATH 304 Linear Algebra Lecture 20: Inner product spaces. Orthogonal sets. Norm The notion of norm generalizes the notion of length of a vector in R n. Definition. Let V be a vector space. A function α

More information

Lecture 13 Linear quadratic Lyapunov theory

Lecture 13 Linear quadratic Lyapunov theory EE363 Winter 28-9 Lecture 13 Linear quadratic Lyapunov theory the Lyapunov equation Lyapunov stability conditions the Lyapunov operator and integral evaluating quadratic integrals analysis of ARE discrete-time

More information

Summer course on Convex Optimization. Fifth Lecture Interior-Point Methods (1) Michel Baes, K.U.Leuven Bharath Rangarajan, U.

Summer course on Convex Optimization. Fifth Lecture Interior-Point Methods (1) Michel Baes, K.U.Leuven Bharath Rangarajan, U. Summer course on Convex Optimization Fifth Lecture Interior-Point Methods (1) Michel Baes, K.U.Leuven Bharath Rangarajan, U.Minnesota Interior-Point Methods: the rebirth of an old idea Suppose that f is

More information

Section 6.1 - Inner Products and Norms

Section 6.1 - Inner Products and Norms Section 6.1 - Inner Products and Norms Definition. Let V be a vector space over F {R, C}. An inner product on V is a function that assigns, to every ordered pair of vectors x and y in V, a scalar in F,

More information

Introduction to Algebraic Geometry. Bézout s Theorem and Inflection Points

Introduction to Algebraic Geometry. Bézout s Theorem and Inflection Points Introduction to Algebraic Geometry Bézout s Theorem and Inflection Points 1. The resultant. Let K be a field. Then the polynomial ring K[x] is a unique factorisation domain (UFD). Another example of a

More information

NOV - 30211/II. 1. Let f(z) = sin z, z C. Then f(z) : 3. Let the sequence {a n } be given. (A) is bounded in the complex plane

NOV - 30211/II. 1. Let f(z) = sin z, z C. Then f(z) : 3. Let the sequence {a n } be given. (A) is bounded in the complex plane Mathematical Sciences Paper II Time Allowed : 75 Minutes] [Maximum Marks : 100 Note : This Paper contains Fifty (50) multiple choice questions. Each question carries Two () marks. Attempt All questions.

More information

Modern Optimization Methods for Big Data Problems MATH11146 The University of Edinburgh

Modern Optimization Methods for Big Data Problems MATH11146 The University of Edinburgh Modern Optimization Methods for Big Data Problems MATH11146 The University of Edinburgh Peter Richtárik Week 3 Randomized Coordinate Descent With Arbitrary Sampling January 27, 2016 1 / 30 The Problem

More information

EE364a Homework 3 solutions

EE364a Homework 3 solutions EE364a, Winter 2007-08 Prof. S. Boyd EE364a Homework 3 solutions 3.42 Approximation width. Let f 0,...,f n : R R be given continuous functions. We consider the problem of approximating f 0 as a linear

More information

t := maxγ ν subject to ν {0,1,2,...} and f(x c +γ ν d) f(x c )+cγ ν f (x c ;d).

t := maxγ ν subject to ν {0,1,2,...} and f(x c +γ ν d) f(x c )+cγ ν f (x c ;d). 1. Line Search Methods Let f : R n R be given and suppose that x c is our current best estimate of a solution to P min x R nf(x). A standard method for improving the estimate x c is to choose a direction

More information

BANACH AND HILBERT SPACE REVIEW

BANACH AND HILBERT SPACE REVIEW BANACH AND HILBET SPACE EVIEW CHISTOPHE HEIL These notes will briefly review some basic concepts related to the theory of Banach and Hilbert spaces. We are not trying to give a complete development, but

More information

Inner Product Spaces and Orthogonality

Inner Product Spaces and Orthogonality Inner Product Spaces and Orthogonality week 3-4 Fall 2006 Dot product of R n The inner product or dot product of R n is a function, defined by u, v a b + a 2 b 2 + + a n b n for u a, a 2,, a n T, v b,

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 5 9/17/2008 RANDOM VARIABLES

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 5 9/17/2008 RANDOM VARIABLES MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 5 9/17/2008 RANDOM VARIABLES Contents 1. Random variables and measurable functions 2. Cumulative distribution functions 3. Discrete

More information

SF2940: Probability theory Lecture 8: Multivariate Normal Distribution

SF2940: Probability theory Lecture 8: Multivariate Normal Distribution SF2940: Probability theory Lecture 8: Multivariate Normal Distribution Timo Koski 24.09.2014 Timo Koski () Mathematisk statistik 24.09.2014 1 / 75 Learning outcomes Random vectors, mean vector, covariance

More information

Cost Minimization and the Cost Function

Cost Minimization and the Cost Function Cost Minimization and the Cost Function Juan Manuel Puerta October 5, 2009 So far we focused on profit maximization, we could look at a different problem, that is the cost minimization problem. This is

More information

NP-hardness of Deciding Convexity of Quartic Polynomials and Related Problems

NP-hardness of Deciding Convexity of Quartic Polynomials and Related Problems NP-hardness of Deciding Convexity of Quartic Polynomials and Related Problems Amir Ali Ahmadi, Alex Olshevsky, Pablo A. Parrilo, and John N. Tsitsiklis Abstract We show that unless P=NP, there exists no

More information

Tim Kerins. Leaving Certificate Honours Maths - Algebra. Tim Kerins. the date

Tim Kerins. Leaving Certificate Honours Maths - Algebra. Tim Kerins. the date Leaving Certificate Honours Maths - Algebra the date Chapter 1 Algebra This is an important portion of the course. As well as generally accounting for 2 3 questions in examination it is the basis for many

More information

Proximal mapping via network optimization

Proximal mapping via network optimization L. Vandenberghe EE236C (Spring 23-4) Proximal mapping via network optimization minimum cut and maximum flow problems parametric minimum cut problem application to proximal mapping Introduction this lecture:

More information

MATH PROBLEMS, WITH SOLUTIONS

MATH PROBLEMS, WITH SOLUTIONS MATH PROBLEMS, WITH SOLUTIONS OVIDIU MUNTEANU These are free online notes that I wrote to assist students that wish to test their math skills with some problems that go beyond the usual curriculum. These

More information

NP-hardness of Deciding Convexity of Quartic Polynomials and Related Problems

NP-hardness of Deciding Convexity of Quartic Polynomials and Related Problems NP-hardness of Deciding Convexity of Quartic Polynomials and Related Problems Amir Ali Ahmadi, Alex Olshevsky, Pablo A. Parrilo, and John N. Tsitsiklis Abstract We show that unless P=NP, there exists no

More information

1 Introduction to Matrices

1 Introduction to Matrices 1 Introduction to Matrices In this section, important definitions and results from matrix algebra that are useful in regression analysis are introduced. While all statements below regarding the columns

More information

A QUICK GUIDE TO THE FORMULAS OF MULTIVARIABLE CALCULUS

A QUICK GUIDE TO THE FORMULAS OF MULTIVARIABLE CALCULUS A QUIK GUIDE TO THE FOMULAS OF MULTIVAIABLE ALULUS ontents 1. Analytic Geometry 2 1.1. Definition of a Vector 2 1.2. Scalar Product 2 1.3. Properties of the Scalar Product 2 1.4. Length and Unit Vectors

More information

sekolahsultanalamshahkoleksisoalansi jilpelajaranmalaysiasekolahsultanala mshahkoleksisoalansijilpelajaranmala ysiasekolahsultanalamshahkoleksisoal

sekolahsultanalamshahkoleksisoalansi jilpelajaranmalaysiasekolahsultanala mshahkoleksisoalansijilpelajaranmala ysiasekolahsultanalamshahkoleksisoal sekolahsultanalamshahkoleksisoalansi jilpelajaranmalaysiasekolahsultanala mshahkoleksisoalansijilpelajaranmala ysiasekolahsultanalamshahkoleksisoal KOLEKSI SOALAN SPM ansijilpelajaranmalaysiasekolahsultan

More information

Follow links for Class Use and other Permissions. For more information send email to: permissions@pupress.princeton.edu

Follow links for Class Use and other Permissions. For more information send email to: permissions@pupress.princeton.edu COPYRIGHT NOTICE: Ariel Rubinstein: Lecture Notes in Microeconomic Theory is published by Princeton University Press and copyrighted, c 2006, by Princeton University Press. All rights reserved. No part

More information

MATH 425, PRACTICE FINAL EXAM SOLUTIONS.

MATH 425, PRACTICE FINAL EXAM SOLUTIONS. MATH 45, PRACTICE FINAL EXAM SOLUTIONS. Exercise. a Is the operator L defined on smooth functions of x, y by L u := u xx + cosu linear? b Does the answer change if we replace the operator L by the operator

More information

LABEL PROPAGATION ON GRAPHS. SEMI-SUPERVISED LEARNING. ----Changsheng Liu 10-30-2014

LABEL PROPAGATION ON GRAPHS. SEMI-SUPERVISED LEARNING. ----Changsheng Liu 10-30-2014 LABEL PROPAGATION ON GRAPHS. SEMI-SUPERVISED LEARNING ----Changsheng Liu 10-30-2014 Agenda Semi Supervised Learning Topics in Semi Supervised Learning Label Propagation Local and global consistency Graph

More information

Two-Stage Stochastic Linear Programs

Two-Stage Stochastic Linear Programs Two-Stage Stochastic Linear Programs Operations Research Anthony Papavasiliou 1 / 27 Two-Stage Stochastic Linear Programs 1 Short Reviews Probability Spaces and Random Variables Convex Analysis 2 Deterministic

More information

Understanding Basic Calculus

Understanding Basic Calculus Understanding Basic Calculus S.K. Chung Dedicated to all the people who have helped me in my life. i Preface This book is a revised and expanded version of the lecture notes for Basic Calculus and other

More information

Stochastic Inventory Control

Stochastic Inventory Control Chapter 3 Stochastic Inventory Control 1 In this chapter, we consider in much greater details certain dynamic inventory control problems of the type already encountered in section 1.3. In addition to the

More information

DATA ANALYSIS II. Matrix Algorithms

DATA ANALYSIS II. Matrix Algorithms DATA ANALYSIS II Matrix Algorithms Similarity Matrix Given a dataset D = {x i }, i=1,..,n consisting of n points in R d, let A denote the n n symmetric similarity matrix between the points, given as where

More information

Adaptive Online Gradient Descent

Adaptive Online Gradient Descent Adaptive Online Gradient Descent Peter L Bartlett Division of Computer Science Department of Statistics UC Berkeley Berkeley, CA 94709 bartlett@csberkeleyedu Elad Hazan IBM Almaden Research Center 650

More information

Error Bound for Classes of Polynomial Systems and its Applications: A Variational Analysis Approach

Error Bound for Classes of Polynomial Systems and its Applications: A Variational Analysis Approach Outline Error Bound for Classes of Polynomial Systems and its Applications: A Variational Analysis Approach The University of New South Wales SPOM 2013 Joint work with V. Jeyakumar, B.S. Mordukhovich and

More information

A FIRST COURSE IN OPTIMIZATION THEORY

A FIRST COURSE IN OPTIMIZATION THEORY A FIRST COURSE IN OPTIMIZATION THEORY RANGARAJAN K. SUNDARAM New York University CAMBRIDGE UNIVERSITY PRESS Contents Preface Acknowledgements page xiii xvii 1 Mathematical Preliminaries 1 1.1 Notation

More information

Introduction to Probability

Introduction to Probability Introduction to Probability EE 179, Lecture 15, Handout #24 Probability theory gives a mathematical characterization for experiments with random outcomes. coin toss life of lightbulb binary data sequence

More information

Mathematics Review for MS Finance Students

Mathematics Review for MS Finance Students Mathematics Review for MS Finance Students Anthony M. Marino Department of Finance and Business Economics Marshall School of Business Lecture 1: Introductory Material Sets The Real Number System Functions,

More information

The Steepest Descent Algorithm for Unconstrained Optimization and a Bisection Line-search Method

The Steepest Descent Algorithm for Unconstrained Optimization and a Bisection Line-search Method The Steepest Descent Algorithm for Unconstrained Optimization and a Bisection Line-search Method Robert M. Freund February, 004 004 Massachusetts Institute of Technology. 1 1 The Algorithm The problem

More information

Problem Set 5 Due: In class Thursday, Oct. 18 Late papers will be accepted until 1:00 PM Friday.

Problem Set 5 Due: In class Thursday, Oct. 18 Late papers will be accepted until 1:00 PM Friday. Math 312, Fall 2012 Jerry L. Kazdan Problem Set 5 Due: In class Thursday, Oct. 18 Late papers will be accepted until 1:00 PM Friday. In addition to the problems below, you should also know how to solve

More information

1 VECTOR SPACES AND SUBSPACES

1 VECTOR SPACES AND SUBSPACES 1 VECTOR SPACES AND SUBSPACES What is a vector? Many are familiar with the concept of a vector as: Something which has magnitude and direction. an ordered pair or triple. a description for quantities such

More information

14. Nonlinear least-squares

14. Nonlinear least-squares 14 Nonlinear least-squares EE103 (Fall 2011-12) definition Newton s method Gauss-Newton method 14-1 Nonlinear least-squares minimize r i (x) 2 = r(x) 2 r i is a nonlinear function of the n-vector of variables

More information

Eigenvalues, Eigenvectors, Matrix Factoring, and Principal Components

Eigenvalues, Eigenvectors, Matrix Factoring, and Principal Components Eigenvalues, Eigenvectors, Matrix Factoring, and Principal Components The eigenvalues and eigenvectors of a square matrix play a key role in some important operations in statistics. In particular, they

More information

3. INNER PRODUCT SPACES

3. INNER PRODUCT SPACES . INNER PRODUCT SPACES.. Definition So far we have studied abstract vector spaces. These are a generalisation of the geometric spaces R and R. But these have more structure than just that of a vector space.

More information

Applications to Data Smoothing and Image Processing I

Applications to Data Smoothing and Image Processing I Applications to Data Smoothing and Image Processing I MA 348 Kurt Bryan Signals and Images Let t denote time and consider a signal a(t) on some time interval, say t. We ll assume that the signal a(t) is

More information

South Carolina College- and Career-Ready (SCCCR) Pre-Calculus

South Carolina College- and Career-Ready (SCCCR) Pre-Calculus South Carolina College- and Career-Ready (SCCCR) Pre-Calculus Key Concepts Arithmetic with Polynomials and Rational Expressions PC.AAPR.2 PC.AAPR.3 PC.AAPR.4 PC.AAPR.5 PC.AAPR.6 PC.AAPR.7 Standards Know

More information

Class Meeting # 1: Introduction to PDEs

Class Meeting # 1: Introduction to PDEs MATH 18.152 COURSE NOTES - CLASS MEETING # 1 18.152 Introduction to PDEs, Fall 2011 Professor: Jared Speck Class Meeting # 1: Introduction to PDEs 1. What is a PDE? We will be studying functions u = u(x

More information

Pacific Journal of Mathematics

Pacific Journal of Mathematics Pacific Journal of Mathematics GLOBAL EXISTENCE AND DECREASING PROPERTY OF BOUNDARY VALUES OF SOLUTIONS TO PARABOLIC EQUATIONS WITH NONLOCAL BOUNDARY CONDITIONS Sangwon Seo Volume 193 No. 1 March 2000

More information

Calculus. Contents. Paul Sutcliffe. Office: CM212a.

Calculus. Contents. Paul Sutcliffe. Office: CM212a. Calculus Paul Sutcliffe Office: CM212a. www.maths.dur.ac.uk/~dma0pms/calc/calc.html Books One and several variables calculus, Salas, Hille & Etgen. Calculus, Spivak. Mathematical methods in the physical

More information

Math Review. for the Quantitative Reasoning Measure of the GRE revised General Test

Math Review. for the Quantitative Reasoning Measure of the GRE revised General Test Math Review for the Quantitative Reasoning Measure of the GRE revised General Test www.ets.org Overview This Math Review will familiarize you with the mathematical skills and concepts that are important

More information

Numerisches Rechnen. (für Informatiker) M. Grepl J. Berger & J.T. Frings. Institut für Geometrie und Praktische Mathematik RWTH Aachen

Numerisches Rechnen. (für Informatiker) M. Grepl J. Berger & J.T. Frings. Institut für Geometrie und Praktische Mathematik RWTH Aachen (für Informatiker) M. Grepl J. Berger & J.T. Frings Institut für Geometrie und Praktische Mathematik RWTH Aachen Wintersemester 2010/11 Problem Statement Unconstrained Optimality Conditions Constrained

More information

Inverse Functions and Logarithms

Inverse Functions and Logarithms Section 3. Inverse Functions and Logarithms 1 Kiryl Tsishchanka Inverse Functions and Logarithms DEFINITION: A function f is called a one-to-one function if it never takes on the same value twice; that

More information

Concentration inequalities for order statistics Using the entropy method and Rényi s representation

Concentration inequalities for order statistics Using the entropy method and Rényi s representation Concentration inequalities for order statistics Using the entropy method and Rényi s representation Maud Thomas 1 in collaboration with Stéphane Boucheron 1 1 LPMA Université Paris-Diderot High Dimensional

More information

1 if 1 x 0 1 if 0 x 1

1 if 1 x 0 1 if 0 x 1 Chapter 3 Continuity In this chapter we begin by defining the fundamental notion of continuity for real valued functions of a single real variable. When trying to decide whether a given function is or

More information

Linear Threshold Units

Linear Threshold Units Linear Threshold Units w x hx (... w n x n w We assume that each feature x j and each weight w j is a real number (we will relax this later) We will study three different algorithms for learning linear

More information

RESULTANT AND DISCRIMINANT OF POLYNOMIALS

RESULTANT AND DISCRIMINANT OF POLYNOMIALS RESULTANT AND DISCRIMINANT OF POLYNOMIALS SVANTE JANSON Abstract. This is a collection of classical results about resultants and discriminants for polynomials, compiled mainly for my own use. All results

More information

Algebra Unpacked Content For the new Common Core standards that will be effective in all North Carolina schools in the 2012-13 school year.

Algebra Unpacked Content For the new Common Core standards that will be effective in all North Carolina schools in the 2012-13 school year. This document is designed to help North Carolina educators teach the Common Core (Standard Course of Study). NCDPI staff are continually updating and improving these tools to better serve teachers. Algebra

More information

Advanced Microeconomics

Advanced Microeconomics Advanced Microeconomics Ordinal preference theory Harald Wiese University of Leipzig Harald Wiese (University of Leipzig) Advanced Microeconomics 1 / 68 Part A. Basic decision and preference theory 1 Decisions

More information

Master s Theory Exam Spring 2006

Master s Theory Exam Spring 2006 Spring 2006 This exam contains 7 questions. You should attempt them all. Each question is divided into parts to help lead you through the material. You should attempt to complete as much of each problem

More information

Solutions to TOPICS IN ALGEBRA I.N. HERSTEIN. Part II: Group Theory

Solutions to TOPICS IN ALGEBRA I.N. HERSTEIN. Part II: Group Theory Solutions to TOPICS IN ALGEBRA I.N. HERSTEIN Part II: Group Theory No rights reserved. Any part of this work can be reproduced or transmitted in any form or by any means. Version: 1.1 Release: Jan 2013

More information

Several Views of Support Vector Machines

Several Views of Support Vector Machines Several Views of Support Vector Machines Ryan M. Rifkin Honda Research Institute USA, Inc. Human Intention Understanding Group 2007 Tikhonov Regularization We are considering algorithms of the form min

More information

Mathematical Methods of Engineering Analysis

Mathematical Methods of Engineering Analysis Mathematical Methods of Engineering Analysis Erhan Çinlar Robert J. Vanderbei February 2, 2000 Contents Sets and Functions 1 1 Sets................................... 1 Subsets.............................

More information

it is easy to see that α = a

it is easy to see that α = a 21. Polynomial rings Let us now turn out attention to determining the prime elements of a polynomial ring, where the coefficient ring is a field. We already know that such a polynomial ring is a UF. Therefore

More information

Algebra I Vocabulary Cards

Algebra I Vocabulary Cards Algebra I Vocabulary Cards Table of Contents Expressions and Operations Natural Numbers Whole Numbers Integers Rational Numbers Irrational Numbers Real Numbers Absolute Value Order of Operations Expression

More information

Nonlinear Programming Methods.S2 Quadratic Programming

Nonlinear Programming Methods.S2 Quadratic Programming Nonlinear Programming Methods.S2 Quadratic Programming Operations Research Models and Methods Paul A. Jensen and Jonathan F. Bard A linearly constrained optimization problem with a quadratic objective

More information

MINIMIZATION OF ENTROPY FUNCTIONALS UNDER MOMENT CONSTRAINTS. denote the family of probability density functions g on X satisfying

MINIMIZATION OF ENTROPY FUNCTIONALS UNDER MOMENT CONSTRAINTS. denote the family of probability density functions g on X satisfying MINIMIZATION OF ENTROPY FUNCTIONALS UNDER MOMENT CONSTRAINTS I. Csiszár (Budapest) Given a σ-finite measure space (X, X, µ) and a d-tuple ϕ = (ϕ 1,..., ϕ d ) of measurable functions on X, for a = (a 1,...,

More information

Electrical Engineering 103 Applied Numerical Computing

Electrical Engineering 103 Applied Numerical Computing UCLA Fall Quarter 2011-12 Electrical Engineering 103 Applied Numerical Computing Professor L Vandenberghe Notes written in collaboration with S Boyd (Stanford Univ) Contents I Matrix theory 1 1 Vectors

More information

Tail inequalities for order statistics of log-concave vectors and applications

Tail inequalities for order statistics of log-concave vectors and applications Tail inequalities for order statistics of log-concave vectors and applications Rafał Latała Based in part on a joint work with R.Adamczak, A.E.Litvak, A.Pajor and N.Tomczak-Jaegermann Banff, May 2011 Basic

More information

LS.6 Solution Matrices

LS.6 Solution Matrices LS.6 Solution Matrices In the literature, solutions to linear systems often are expressed using square matrices rather than vectors. You need to get used to the terminology. As before, we state the definitions

More information

FINAL EXAM SECTIONS AND OBJECTIVES FOR COLLEGE ALGEBRA

FINAL EXAM SECTIONS AND OBJECTIVES FOR COLLEGE ALGEBRA FINAL EXAM SECTIONS AND OBJECTIVES FOR COLLEGE ALGEBRA 1.1 Solve linear equations and equations that lead to linear equations. a) Solve the equation: 1 (x + 5) 4 = 1 (2x 1) 2 3 b) Solve the equation: 3x

More information

Lecture Notes to Accompany. Scientific Computing An Introductory Survey. by Michael T. Heath. Chapter 10

Lecture Notes to Accompany. Scientific Computing An Introductory Survey. by Michael T. Heath. Chapter 10 Lecture Notes to Accompany Scientific Computing An Introductory Survey Second Edition by Michael T. Heath Chapter 10 Boundary Value Problems for Ordinary Differential Equations Copyright c 2001. Reproduction

More information

Linear Algebra I. Ronald van Luijk, 2012

Linear Algebra I. Ronald van Luijk, 2012 Linear Algebra I Ronald van Luijk, 2012 With many parts from Linear Algebra I by Michael Stoll, 2007 Contents 1. Vector spaces 3 1.1. Examples 3 1.2. Fields 4 1.3. The field of complex numbers. 6 1.4.

More information

3 1. Note that all cubes solve it; therefore, there are no more

3 1. Note that all cubes solve it; therefore, there are no more Math 13 Problem set 5 Artin 11.4.7 Factor the following polynomials into irreducible factors in Q[x]: (a) x 3 3x (b) x 3 3x + (c) x 9 6x 6 + 9x 3 3 Solution: The first two polynomials are cubics, so if

More information

Lecture Notes on Elasticity of Substitution

Lecture Notes on Elasticity of Substitution Lecture Notes on Elasticity of Substitution Ted Bergstrom, UCSB Economics 210A March 3, 2011 Today s featured guest is the elasticity of substitution. Elasticity of a function of a single variable Before

More information

INTRODUCTORY SET THEORY

INTRODUCTORY SET THEORY M.Sc. program in mathematics INTRODUCTORY SET THEORY Katalin Károlyi Department of Applied Analysis, Eötvös Loránd University H-1088 Budapest, Múzeum krt. 6-8. CONTENTS 1. SETS Set, equal sets, subset,

More information

Lecture 7: Finding Lyapunov Functions 1

Lecture 7: Finding Lyapunov Functions 1 Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.243j (Fall 2003): DYNAMICS OF NONLINEAR SYSTEMS by A. Megretski Lecture 7: Finding Lyapunov Functions 1

More information

Chapter 13: Basic ring theory

Chapter 13: Basic ring theory Chapter 3: Basic ring theory Matthew Macauley Department of Mathematical Sciences Clemson University http://www.math.clemson.edu/~macaule/ Math 42, Spring 24 M. Macauley (Clemson) Chapter 3: Basic ring

More information

Online Convex Optimization

Online Convex Optimization E0 370 Statistical Learning heory Lecture 19 Oct 22, 2013 Online Convex Optimization Lecturer: Shivani Agarwal Scribe: Aadirupa 1 Introduction In this lecture we shall look at a fairly general setting

More information

Math 241, Exam 1 Information.

Math 241, Exam 1 Information. Math 241, Exam 1 Information. 9/24/12, LC 310, 11:15-12:05. Exam 1 will be based on: Sections 12.1-12.5, 14.1-14.3. The corresponding assigned homework problems (see http://www.math.sc.edu/ boylan/sccourses/241fa12/241.html)

More information

Math 2280 - Assignment 6

Math 2280 - Assignment 6 Math 2280 - Assignment 6 Dylan Zwick Spring 2014 Section 3.8-1, 3, 5, 8, 13 Section 4.1-1, 2, 13, 15, 22 Section 4.2-1, 10, 19, 28 1 Section 3.8 - Endpoint Problems and Eigenvalues 3.8.1 For the eigenvalue

More information

M2S1 Lecture Notes. G. A. Young http://www2.imperial.ac.uk/ ayoung

M2S1 Lecture Notes. G. A. Young http://www2.imperial.ac.uk/ ayoung M2S1 Lecture Notes G. A. Young http://www2.imperial.ac.uk/ ayoung September 2011 ii Contents 1 DEFINITIONS, TERMINOLOGY, NOTATION 1 1.1 EVENTS AND THE SAMPLE SPACE......................... 1 1.1.1 OPERATIONS

More information

Increasing for all. Convex for all. ( ) Increasing for all (remember that the log function is only defined for ). ( ) Concave for all.

Increasing for all. Convex for all. ( ) Increasing for all (remember that the log function is only defined for ). ( ) Concave for all. 1. Differentiation The first derivative of a function measures by how much changes in reaction to an infinitesimal shift in its argument. The largest the derivative (in absolute value), the faster is evolving.

More information

8. Linear least-squares

8. Linear least-squares 8. Linear least-squares EE13 (Fall 211-12) definition examples and applications solution of a least-squares problem, normal equations 8-1 Definition overdetermined linear equations if b range(a), cannot

More information

THREE DIMENSIONAL GEOMETRY

THREE DIMENSIONAL GEOMETRY Chapter 8 THREE DIMENSIONAL GEOMETRY 8.1 Introduction In this chapter we present a vector algebra approach to three dimensional geometry. The aim is to present standard properties of lines and planes,

More information

Notes from Week 1: Algorithms for sequential prediction

Notes from Week 1: Algorithms for sequential prediction CS 683 Learning, Games, and Electronic Markets Spring 2007 Notes from Week 1: Algorithms for sequential prediction Instructor: Robert Kleinberg 22-26 Jan 2007 1 Introduction In this course we will be looking

More information