Introduction to Graphical Models


 Magnus Anthony
 2 years ago
 Views:
Transcription
1 obert Collins CSE586 Credits: Several slides are from: Introduction to Graphical odels eadings in Prince textbook: Chapters 0 and but mainly only on directed graphs at this time eview: Probability Theory Sum rule (marginal distributions) Product rule From these we have Bayes theorem with normalization factor eview: Conditional Probabilty Conditional Probability (rewriting product rule) A B) P (A, B) / B) Chain ule A,B,C,D) A) A,B) A,B,C) A,B,C,D) A) A,B) A,B,C) Conditional Independence A) B A) C A,B) D A,B,C) A, B C) A C ) B C) statistical independence A, B) A) B) Christopher Bishop, S Overview of Graphical odels Graphical odels model conditional dependence/ independence Graph structure specifies how joint probability factors Directed graphs Example:H The Joint Distribution ecipe for making a joint distribution of variables: Example: Boolean variables A, B, C Undirected graphs Example:F Inference by : belief propagation Sumproduct algorithm axproduct (insum if using logs) We will focus mainly on directed graphs right now. Andrew oore, CU
2 The Joint Distribution Example: Boolean variables A, B, C The Joint Distribution Example: Boolean variables A, B, C ecipe for making a joint distribution of variables: A B C ecipe for making a joint distribution of variables: A B C Prob ake a truth table listing all combinations of values of your variables (if there are Boolean variables then the table will have 2 rows) ake a truth table listing all combinations of values of your variables (if there are Boolean variables then the table will have 2 rows). 2. For each combination of values, say how probable it is Andrew oore, CU Andrew oore, CU The Joint Distribution Example: Boolean variables A, B, C Joint distributions ecipe for making a joint distribution of variables:. ake a truth table listing all combinations of values of your variables (if there are Boolean variables then the table will have 2 rows). 2. For each combination of values, say how probable it is. 3. If you subscribe to the axioms of probability, those numbers must sum to. A B C Prob A truth table C Good news Once you have a joint distribution, you can answer all sorts of probabilistic questions involving combinations of attributes 0.30 B 0.0 Andrew oore, CU Using the Joint Using the Joint Poor ale) E) row) rows matching E Poor) E) row) rows matching E Andrew oore, CU Andrew oore, CU 2
3 Inference with the Joint Inference with the Joint computing conditional probabilities E E2) E E2) E ) 2 rows matching E and E2 rows matching E2 row) row) E E2) E E2) E ) 2 rows matching E and E2 rows matching E2 row) row) ale Poor) / Andrew oore, CU Andrew oore, CU Joint distributions Good news Once you have a joint distribution, you can answer all sorts of probabilistic questions involving combinations of attributes Bad news Impossible to create JD for more than about ten attributes because there are so many numbers needed when you build the thing. For 0 binary variables you need to specify numbers 023. (question for class: why the ?) How to use Fewer Numbers Factor the joint distribution into a product of distributions over subsets of variables Identify (or just assume) independence between some subsets of variables Use that independence to simplify some of the distributions Graphical models provide a principled way of doing this. Factoring Directed versus Undirected Graphs Consider an arbitrary joint distribution We can always factor it, by application of the chain rule what this factored form looks like as a graphical model Directed Graph Examples: Bayes nets Hs Undirected Graph Examples FS Note: The word graphical denotes the graph structure underlying the model, not the fact that you can draw a pretty picture of it (although that helps). Christopher Bishop, S Christopher Bishop, S 3
4 Graphical odel Concepts Graphical odel Concepts s)0.3 S )0.6 s)0.3 S )0.6 ^S)0.05 ^~S)0. ~^S)0. ~^~S)0.2 T T )0.3 T ~)0.8 )0.3 ~)0.6 ^S)0.05 ^~S)0. ~^S)0. ~^~S)0.2 T T )0.3 T ~)0.8 )0.3 ~)0.6 Nodes represent random variables. Edges (or lack of edges) represent conditional dependence (or independence). Each node is annotated with a table of conditional probabilities wrt parents. Note: The word graphical denotes the graph structure underlying the model, not the fact that you can draw a pretty picture of it using graphics. Directed Acyclic Graphs Directed acyclic means we can t follow arrows around in a cycle. Examples: chains; trees Also, things that look like this: Factoring Examples Joint distribution where denotes the parents of i We can read the factored form of the joint distribution immediately from a directed graph where denotes the parents of i x parents of x) y parents of y) Factoring Examples Joint distribution Factoring Examples We can read the form of the joint distribution directly from the directed graph where denotes the parents of i where denotes the parents of i p(x,y)p(x)p(y x) p(x,y)p(y)p(x y) p(x,y)p(x)p(y) parents of ) parents of ) parents of ) 4
5 Factoring Examples We can read the form of the joint distribution directly from the directed graph Factoring Examples We can read the form of the joint distribution directly from a directed graph where denotes the parents of i where denotes the parents of i,,) ) ) ) parents of ) parents of ) parents of ) Factoring Examples Graphical odel Concepts We can read the form of the joint distribution directly from a directed graph s)0.3 S )0.6 where denotes the parents of i ^S)0.05 ^~S)0. ~^S)0. ~^~S)0.2 T T )0.3 T ~)0.8 )0.3 ~)0.6 Note:,,),))) How about this one?,,,s,t) Graphical odel Concepts Factoring Examples s)0.3 S )0.6 Joint distribution ^S)0.05 ^~S)0. ~^S)0. ~^~S)0.2 T T )0.3 T ~)0.8 )0.3 ~)0.6 where denotes the parents of i What about this one? How about this one?,,,s,t) S)) S,) )T ) No directed cycles Note to mention T )+T ~) Christopher Bishop, S 5
6 Factoring Examples How many probabilities do we have to specify/learn (assuming each x i is a binary variable)? if fully connected, we would need 2^727 but, for this connectivity, we need Important Case: Time Series Consider modeling a time series of sequential data x, x2,..., xn These could represent locations of a tracked object over time observations of the weather each day spectral coefficients of a speech signal joint angles during human motion Note: If all nodes were independent, we would only need 7! odeling Time Series odeling Time Series Simplest model of a time series is that all observations are independent. In the most general case, we could use chain rule to state that any node is dependent on all previous nodes... This would be appropriate for modeling successive tosses {heads,tails} of an unbiased coin. However, it doesn t really treat the series as a sequence. That is, we could permute the ordering of the observations and not change a thing. x,x2,x3,x4,...) x)x2 x)x3 x,x2)x4 x,x2,x3)... ook for an intermediate model between these two extremes. odeling Time Series odeling Time Series arkov assumption: xn x,x2,...,xn) xn xn) that is, assume all conditional distributions depend only on the most recent previous observation. Generalization: StateSpace odels You have a arkov chain of latent (unobserved) states Each state generates an observation x! x 2! x n! x n! x n+! The result is a firstorder arkov Chain y! y 2! y n! y n! y n+! x,x2,x3,x4,...) x)x2 x)x3 x2)x4 x3)... Goal: Given a sequence of observations, predict the sequence of unobserved states that imizes the joint probability. 6
7 odeling Time Series Examples of State Space models Hidden arkov model Kalman filter x! x 2! x n! x n! x n+! odeling Time Series x,x2,x3,x4,...,y,y2,y3,y4,...) x)y x)x2 x)y2 x2)x3 x2)y3 x3)x4 x3)y4 x4)... x! x 2! x n! x n! x n+! y! y 2! y n! y n! y n+! y! y 2! y n! y n! y n+! Example of a Treestructured odel essage Passing Confusion alert: Our textbook uses w to denote a world state variable and x to denote a measurement. (we have been using x to denote world state and y as the measurement). essage Passing : Belief Propagation Example: D chain Find marginal for a particular node Key Idea of essage Passing multiplication distributes over addition a * b + a * c a * (b + c) as a consequence: for state nodes, cost is exponential in length of chain but, we can exploit the graphical structure (conditional independences) is number of discrete values a variable can take is number of variables Applicable to both directed and undirected graphs. 7
8 Example essage Passing In the next several slides, we will consider an example of a simple, fourvariable arkov chain. 48 multiplications + 23 additions 5 multiplications + 6 additions For, this principle is applied to functions of random variables, rather than the variables as done here. essage Passing Now consider computing the marginal distribution of variable x3 essage Passing ultiplication distributes over addition... essage Passing, aka ForwardBackward Algorithm Can view as sending/combining messages... ForwardBackward Algorithm Express marginals as product of messages evaluated forward from ancesters of xi and backwards from decendents of xi α β Forw * Back ecursive evaluation of messages  + Find Z by normalizing Works in both directed and undirected graphs Christopher Bishop, S 8
9 Confusion Alert! This standard notation for defining heavily overloads the notion of multiplication, e.g. the messages are not scalars it is more appropriate to think of them as vectors, matrices, or even tensors depending on how many variables are involved, with multiplication defined accordingly. [] Note: these are conditional probability tables, so values in each row must sum to one Not scalar multiplication! [] Note: these are conditional probability tables, so values in each row must sum to one [] Note: these are conditional probability tables, so values in each row must sum to one Interpretation x) x2) x2) x22) x22 X) 0.6 Sample computations: x, x2, x3, x4) (.7)(.4)(.8)().2 x2, x2, x32, x4) (.3)()(.2)(.7).02 Joint Probability, represented in a truth table x x2 x3 x4 x,x2,x3,x4) Joint Probability x x2 x3 x4 x,x2,x3,x4) Compute marginal of x3: x3) x32) 042 9
10 now compute via now compute via [] [] x)x2 x) x)x22 x).3.3 x2)x2 x2) x2)x22 x2) (.7)(.4) + (.3)() (.7)(.6) + (.3)() x)x2 x) x)x22 x).3.3 x2)x2 x2) x2)x22 x2) (.7)(.4) + (.3)() (.7)(.6) + (.3)() simpler way to compute this... [] [.43 7] i.e. matrix multiply can do the combining and marginalization all at once!!!! now compute via now compute via [] [] [] [.43 7] [ ] [] compute sum along rows of x4 x3) Can also do that with matrix multiply: [.43 7] note: this is not [ ] a coincidence essage Passing Can view as sending/combining messages... essage Passing Can view as sending/combining messages... Forw [ ] Belief that x3, from front part of chain Belief that x32, from front part of chain * How to combine them? Back Belief that x32, from back part of chain Belief that x3, from back part of chain Forw [ ] * Back [ (.458)() (42)() ] [ ] [ ] (after normalizing, but note that it was already normalized. Again, not a coincidence) These are the same values for the marginal x3) that we computed from the raw joint probability table. Whew!!! 0
11 [] [] If we want to compute all marginals, we can do it in one shot by cascading, for a big computational savings. We need one cascaded forward pass, one separate cascaded backward pass, then a combination and normalization at each node. forward pass [] backward pass Then combine each by elementwise multiply and normalize forward pass [] backward pass Then combine each by elementwise multiply and normalize Forward: [] [.43 7] [ ] [ ] Backward: [ ] [ ] [ ] [ ] combined+ normalized [] [.43 7] [ ] [ ] Note: In this example, a directed arkov chain using true conditional probabilities (rows sum to one), only the forward pass is needed. This is true because the backward pass sums along rows, and always produces [ ]. ax arginals What if we want to know the most probably state (mode of the distribution)? Since the marginal distributions can tell us which value of each variable yields the highest marginal probability (that is, which value is most likely), we might try to just take the arg of each marginal distribution. We didn t really need forward AND backward in this example. Forward: [] [.43 7] [ ] [ ] Backward: [ ] [ ] [ ] [ ] combined+ normalized [] [.43 7] [ ] [ ] these are already the marginals for this example Didn t need to do these steps marginals computed by belief propagation marginals [] [.43 7] [ ] [ ] arg x x 2 2 x 3 2 x 4 Although that s correct in this example, it isn t always the case
12 ax arginals can Fail to Find the AP However, the marginals find most likely values of each variable treated individually, which may not be the combination of values that jointly imize the distribution. marginals: w4, w22 actual AP solution: w2, w24 axproduct Algorithm Goal: find define the marginal then essage passing algorithm with sum replaced by Generalizes to any two operations forming a semiring Christopher Bishop, S Computing AP Value product Can solve using algorithm with sum replaced by. [] In our chain, we start at the end and work our way back to the root (x) using the product algorithm, keeping track of the value as we go. marginal stage.7.4 x)x2 x).3 x2)x2 x2).7.6 x)x22 x).3 x2)x22 x2) stage3 stage2 [(.7)(.4), (.3)()] [(.7)(.6), (.3)()] product product [] [] [.28.42] [ ] (.28)(.8) (.28)(.2) (.42)(.2) (.42)(.8) Note that this is no longer matrix multiplication, since we are not summing down the columns but taking instead... [.28.42] [ ] (.28)(.8) (.28)(.2) (.42)(.2) (.42)(.8) compute along rows of x4 x3).7 2
13 [] product Joint Probability, represented in a truth table x x2 x3 x4 x,x2,x3,x4) argest value of joint prob mode AP interpretation: the mode of the joint distribution is.2352, and the value of variable x3, in the configuration that yields the mode value, is 2. [ ] [(.224)(), (.336)(.7)] arg 2 x3 interpretation: the mode of the joint distribution is.2352, and the value of variable x3, in the configuration that yields the mode value, is [(.224)(), (.336)(.7)].2352 arg 2 x3 Computing Argax of AP Value : AP Estimate Chris Bishop, P: At this point, we might be tempted simply to continue with the algorithm [sending forwardbackward messages and combining to compute arg for each variable node]. However, because we are now imizing rather than summing, it is possible that there may be multiple configurations of x all of which give rise to the imum value for p(x). In such cases, this strategy can fail because it is possible for the individual variable values obtained by imizing the product of messages at each node to belong to different imizing configurations, giving an overall configuration that no longer corresponds to a imum. The problem can be resolved by adopting a rather different kind of... Essentially, the solution is to write a dynamic programming algorithm based on product. DP State Space Trellis : AP Estimate Joint Probability, represented in a truth table x x2 x3 x4 x,x2,x3,x4) DP State Space Trellis argest value of joint prob mode AP achieved for x, x22, x32, x4 3
14 Belief Propagation Summary Definition can be extended to general treestructured graphs Works for both directed AND undirected graphs Efficiently computes marginals and AP configurations At each node: form product of incoming messages and local evidence marginalize to give outgoing message one message in each direction across every link oopy Belief Propagation BP applied to graph that contains loops needs a propagation schedule needs multiple iterations might not converge Typically works well, even though it isn t supposed to Stateoftheart performance in errorcorrecting codes Gives exact answer in any acyclic graph (no loops). Christopher Bishop, S Christopher Bishop, S 4
The Basics of Graphical Models
The Basics of Graphical Models David M. Blei Columbia University October 3, 2015 Introduction These notes follow Chapter 2 of An Introduction to Probabilistic Graphical Models by Michael Jordan. Many figures
More informationCS 188: Artificial Intelligence. Probability recap
CS 188: Artificial Intelligence Bayes Nets Representation and Independence Pieter Abbeel UC Berkeley Many slides over this course adapted from Dan Klein, Stuart Russell, Andrew Moore Conditional probability
More informationCourse: Model, Learning, and Inference: Lecture 5
Course: Model, Learning, and Inference: Lecture 5 Alan Yuille Department of Statistics, UCLA Los Angeles, CA 90095 yuille@stat.ucla.edu Abstract Probability distributions on structured representation.
More informationLecture 11: Graphical Models for Inference
Lecture 11: Graphical Models for Inference So far we have seen two graphical models that are used for inference  the Bayesian network and the Join tree. These two both represent the same joint probability
More information13.3 Inference Using Full Joint Distribution
191 The probability distribution on a single variable must sum to 1 It is also true that any joint probability distribution on any set of variables must sum to 1 Recall that any proposition a is equivalent
More informationLogic, Probability and Learning
Logic, Probability and Learning Luc De Raedt luc.deraedt@cs.kuleuven.be Overview Logic Learning Probabilistic Learning Probabilistic Logic Learning Closely following : Russell and Norvig, AI: a modern
More informationNotes on Matrix Multiplication and the Transitive Closure
ICS 6D Due: Wednesday, February 25, 2015 Instructor: Sandy Irani Notes on Matrix Multiplication and the Transitive Closure An n m matrix over a set S is an array of elements from S with n rows and m columns.
More informationLecture 10: Sequential Data Models
CSC2515 Fall 2007 Introduction to Machine Learning Lecture 10: Sequential Data Models 1 Example: sequential data Until now, considered data to be i.i.d. Turn attention to sequential data Timeseries: stock
More informationSYSM 6304: Risk and Decision Analysis Lecture 5: Methods of Risk Analysis
SYSM 6304: Risk and Decision Analysis Lecture 5: Methods of Risk Analysis M. Vidyasagar Cecil & Ida Green Chair The University of Texas at Dallas Email: M.Vidyasagar@utdallas.edu October 17, 2015 Outline
More informationThese axioms must hold for all vectors ū, v, and w in V and all scalars c and d.
DEFINITION: A vector space is a nonempty set V of objects, called vectors, on which are defined two operations, called addition and multiplication by scalars (real numbers), subject to the following axioms
More informationLinear Dependence Tests
Linear Dependence Tests The book omits a few key tests for checking the linear dependence of vectors. These short notes discuss these tests, as well as the reasoning behind them. Our first test checks
More informationApproximation Algorithms
Approximation Algorithms or: How I Learned to Stop Worrying and Deal with NPCompleteness Ong Jit Sheng, Jonathan (A0073924B) March, 2012 Overview Key Results (I) General techniques: Greedy algorithms
More informationArtificial Intelligence Mar 27, Bayesian Networks 1 P (T D)P (D) + P (T D)P ( D) =
Artificial Intelligence 15381 Mar 27, 2007 Bayesian Networks 1 Recap of last lecture Probability: precise representation of uncertainty Probability theory: optimal updating of knowledge based on new information
More informationAlgorithmic Crowdsourcing. Denny Zhou Microsoft Research Redmond Dec 9, NIPS13, Lake Tahoe
Algorithmic Crowdsourcing Denny Zhou icrosoft Research Redmond Dec 9, NIPS13, Lake Tahoe ain collaborators John Platt (icrosoft) Xi Chen (UC Berkeley) Chao Gao (Yale) Nihar Shah (UC Berkeley) Qiang Liu
More information3. The Junction Tree Algorithms
A Short Course on Graphical Models 3. The Junction Tree Algorithms Mark Paskin mark@paskin.org 1 Review: conditional independence Two random variables X and Y are independent (written X Y ) iff p X ( )
More informationFactor Graphs and the SumProduct Algorithm
498 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 47, NO. 2, FEBRUARY 2001 Factor Graphs and the SumProduct Algorithm Frank R. Kschischang, Senior Member, IEEE, Brendan J. Frey, Member, IEEE, and HansAndrea
More informationBayesian Networks Chapter 14. Mausam (Slides by UWAI faculty & David Page)
Bayesian Networks Chapter 14 Mausam (Slides by UWAI faculty & David Page) Bayes Nets In general, joint distribution P over set of variables (X 1 x... x X n ) requires exponential space for representation
More informationPoints Addressed in this Lecture. Standard form of Boolean Expressions. Lecture 5: Logic Simplication & Karnaugh Map
Points Addressed in this Lecture Lecture 5: Logic Simplication & Karnaugh Map Professor Peter Cheung Department of EEE, Imperial College London (Floyd 4.54.) (Tocci 4.4.5) Standard form of Boolean Expressions
More informationLecture Notes on Spanning Trees
Lecture Notes on Spanning Trees 15122: Principles of Imperative Computation Frank Pfenning Lecture 26 April 26, 2011 1 Introduction In this lecture we introduce graphs. Graphs provide a uniform model
More informationa 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a 2n x n = b 2.
Chapter 1 LINEAR EQUATIONS 1.1 Introduction to linear equations A linear equation in n unknowns x 1, x,, x n is an equation of the form a 1 x 1 + a x + + a n x n = b, where a 1, a,..., a n, b are given
More informationWe seek a factorization of a square matrix A into the product of two matrices which yields an
LU Decompositions We seek a factorization of a square matrix A into the product of two matrices which yields an efficient method for solving the system where A is the coefficient matrix, x is our variable
More informationAnalysis MA131. University of Warwick. Term
Analysis MA131 University of Warwick Term 1 01 13 September 8, 01 Contents 1 Inequalities 5 1.1 What are Inequalities?........................ 5 1. Using Graphs............................. 6 1.3 Case
More informationCS 331: Artificial Intelligence Fundamentals of Probability II. Joint Probability Distribution. Marginalization. Marginalization
Full Joint Probability Distributions CS 331: Artificial Intelligence Fundamentals of Probability II Toothache Cavity Catch Toothache, Cavity, Catch false false false 0.576 false false true 0.144 false
More informationGREEN CHICKEN EXAM  NOVEMBER 2012
GREEN CHICKEN EXAM  NOVEMBER 2012 GREEN CHICKEN AND STEVEN J. MILLER Question 1: The Green Chicken is planning a surprise party for his grandfather and grandmother. The sum of the ages of the grandmother
More informationCOS513 LECTURE 5 JUNCTION TREE ALGORITHM
COS513 LECTURE 5 JUNCTION TREE ALGORITHM D. EIS AND V. KOSTINA The junction tree algorithm is the culmination of the way graph theory and probability combine to form graphical models. After we discuss
More informationCHAPTER 2 Estimating Probabilities
CHAPTER 2 Estimating Probabilities Machine Learning Copyright c 2016. Tom M. Mitchell. All rights reserved. *DRAFT OF January 24, 2016* *PLEASE DO NOT DISTRIBUTE WITHOUT AUTHOR S PERMISSION* This is a
More information2.1: MATRIX OPERATIONS
.: MATRIX OPERATIONS What are diagonal entries and the main diagonal of a matrix? What is a diagonal matrix? When are matrices equal? Scalar Multiplication 45 Matrix Addition Theorem (pg 0) Let A, B, and
More information2. Methods of Proof Types of Proofs. Suppose we wish to prove an implication p q. Here are some strategies we have available to try.
2. METHODS OF PROOF 69 2. Methods of Proof 2.1. Types of Proofs. Suppose we wish to prove an implication p q. Here are some strategies we have available to try. Trivial Proof: If we know q is true then
More informationChapter 8. Matrices II: inverses. 8.1 What is an inverse?
Chapter 8 Matrices II: inverses We have learnt how to add subtract and multiply matrices but we have not defined division. The reason is that in general it cannot always be defined. In this chapter, we
More informationL10: Probability, statistics, and estimation theory
L10: Probability, statistics, and estimation theory Review of probability theory Bayes theorem Statistics and the Normal distribution Least Squares Error estimation Maximum Likelihood estimation Bayesian
More informationCompression algorithm for Bayesian network modeling of binary systems
Compression algorithm for Bayesian network modeling of binary systems I. Tien & A. Der Kiureghian University of California, Berkeley ABSTRACT: A Bayesian network (BN) is a useful tool for analyzing the
More informationLS.6 Solution Matrices
LS.6 Solution Matrices In the literature, solutions to linear systems often are expressed using square matrices rather than vectors. You need to get used to the terminology. As before, we state the definitions
More informationSimplifying Logic Circuits with Karnaugh Maps
Simplifying Logic Circuits with Karnaugh Maps The circuit at the top right is the logic equivalent of the Boolean expression: f = abc + abc + abc Now, as we have seen, this expression can be simplified
More informationMagic Hexagon Puzzles
Magic Hexagon Puzzles Arthur Holshouser 3600 Bullard St Charlotte NC USA Harold Reiter Department of Mathematics University of North Carolina Charlotte Charlotte NC 28223 USA hbreiter@unccedu 1 Abstract
More informationA crash course in probability and Naïve Bayes classification
Probability theory A crash course in probability and Naïve Bayes classification Chapter 9 Random variable: a variable whose possible values are numerical outcomes of a random phenomenon. s: A person s
More informationSimilarity and Diagonalization. Similar Matrices
MATH022 Linear Algebra Brief lecture notes 48 Similarity and Diagonalization Similar Matrices Let A and B be n n matrices. We say that A is similar to B if there is an invertible n n matrix P such that
More informationLinear transformations Affine transformations Transformations in 3D. Graphics 2011/2012, 4th quarter. Lecture 5: linear and affine transformations
Lecture 5 Linear and affine transformations Vector transformation: basic idea Definition Examples Finding matrices Compositions of transformations Transposing normal vectors Multiplication of an n n matrix
More informationThe equation for the 3input XOR gate is derived as follows
The equation for the 3input XOR gate is derived as follows The last four product terms in the above derivation are the four 1minterms in the 3input XOR truth table. For 3 or more inputs, the XOR gate
More informationLecture Note 1 Set and Probability Theory. MIT 14.30 Spring 2006 Herman Bennett
Lecture Note 1 Set and Probability Theory MIT 14.30 Spring 2006 Herman Bennett 1 Set Theory 1.1 Definitions and Theorems 1. Experiment: any action or process whose outcome is subject to uncertainty. 2.
More informationLesson 3. Algebraic graph theory. Sergio Barbarossa. Rome  February 2010
Lesson 3 Algebraic graph theory Sergio Barbarossa Basic notions Definition: A directed graph (or digraph) composed by a set of vertices and a set of edges We adopt the convention that the information flows
More informationDecision Making under Uncertainty
6.825 Techniques in Artificial Intelligence Decision Making under Uncertainty How to make one decision in the face of uncertainty Lecture 19 1 In the next two lectures, we ll look at the question of how
More informationMath 4310 Handout  Quotient Vector Spaces
Math 4310 Handout  Quotient Vector Spaces Dan Collins The textbook defines a subspace of a vector space in Chapter 4, but it avoids ever discussing the notion of a quotient space. This is understandable
More informationGraph Theory. Directed and undirected graphs make useful mental models for many situations. These objects are loosely defined as follows:
Graph Theory Directed and undirected graphs make useful mental models for many situations. These objects are loosely defined as follows: Definition An undirected graph is a (finite) set of nodes, some
More informationOutline. Probability. Random Variables. Joint and Marginal Distributions Conditional Distribution Product Rule, Chain Rule, Bayes Rule.
Probability 1 Probability Random Variables Outline Joint and Marginal Distributions Conditional Distribution Product Rule, Chain Rule, Bayes Rule Inference Independence 2 Inference in Ghostbusters A ghost
More informationThe PageRank Citation Ranking: Bring Order to the Web
The PageRank Citation Ranking: Bring Order to the Web presented by: Xiaoxi Pang 25.Nov 2010 1 / 20 Outline Introduction A ranking for every page on the Web Implementation Convergence Properties Personalized
More informationLecture Notes 2: Matrices as Systems of Linear Equations
2: Matrices as Systems of Linear Equations 33A Linear Algebra, Puck Rombach Last updated: April 13, 2016 Systems of Linear Equations Systems of linear equations can represent many things You have probably
More informationSection 10.4 Vectors
Section 10.4 Vectors A vector is represented by using a ray, or arrow, that starts at an initial point and ends at a terminal point. Your textbook will always use a bold letter to indicate a vector (such
More informationBayesian Updating with Discrete Priors Class 11, 18.05, Spring 2014 Jeremy Orloff and Jonathan Bloom
1 Learning Goals Bayesian Updating with Discrete Priors Class 11, 18.05, Spring 2014 Jeremy Orloff and Jonathan Bloom 1. Be able to apply Bayes theorem to compute probabilities. 2. Be able to identify
More informationECON 459 Game Theory. Lecture Notes Auctions. Luca Anderlini Spring 2015
ECON 459 Game Theory Lecture Notes Auctions Luca Anderlini Spring 2015 These notes have been used before. If you can still spot any errors or have any suggestions for improvement, please let me know. 1
More informationDynamic Programming. Lecture 11. 11.1 Overview. 11.2 Introduction
Lecture 11 Dynamic Programming 11.1 Overview Dynamic Programming is a powerful technique that allows one to solve many different types of problems in time O(n 2 ) or O(n 3 ) for which a naive approach
More informationLearning. Artificial Intelligence. Learning. Types of Learning. Inductive Learning Method. Inductive Learning. Learning.
Learning Learning is essential for unknown environments, i.e., when designer lacks omniscience Artificial Intelligence Learning Chapter 8 Learning is useful as a system construction method, i.e., expose
More informationMATHEMATICAL THEORY FOR SOCIAL SCIENTISTS THE BINOMIAL THEOREM. (p + q) 0 =1,
THE BINOMIAL THEOREM Pascal s Triangle and the Binomial Expansion Consider the following binomial expansions: (p + q) 0 1, (p+q) 1 p+q, (p + q) p +pq + q, (p + q) 3 p 3 +3p q+3pq + q 3, (p + q) 4 p 4 +4p
More informationApplied Algorithm Design Lecture 5
Applied Algorithm Design Lecture 5 Pietro Michiardi Eurecom Pietro Michiardi (Eurecom) Applied Algorithm Design Lecture 5 1 / 86 Approximation Algorithms Pietro Michiardi (Eurecom) Applied Algorithm Design
More informationCSE 20: Discrete Mathematics for Computer Science. Prof. Miles Jones. Today s Topics: Graphs. The Internet graph
Today s Topics: CSE 0: Discrete Mathematics for Computer Science Prof. Miles Jones. Graphs. Some theorems on graphs. Eulerian graphs Graphs! Model relations between pairs of objects The Internet graph!
More informationThe basic unit in matrix algebra is a matrix, generally expressed as: a 11 a 12. a 13 A = a 21 a 22 a 23
(copyright by Scott M Lynch, February 2003) Brief Matrix Algebra Review (Soc 504) Matrix algebra is a form of mathematics that allows compact notation for, and mathematical manipulation of, highdimensional
More information1 What s done well in CVXPY. Figure 1: Expression tree.
Figure 1: Expression tree. Here are my thoughts on what s done well in CVXPY, what s missing, and what I d like to see in a core CVX library. 1 What s done well in CVXPY The best design decision I made
More informationDETERMINANTS. b 2. x 2
DETERMINANTS 1 Systems of two equations in two unknowns A system of two equations in two unknowns has the form a 11 x 1 + a 12 x 2 = b 1 a 21 x 1 + a 22 x 2 = b 2 This can be written more concisely in
More informationChapter 5: Sequential Circuits (LATCHES)
Chapter 5: Sequential Circuits (LATCHES) Latches We focuses on sequential circuits, where we add memory to the hardware that we ve already seen Our schedule will be very similar to before: We first show
More informationE3: PROBABILITY AND STATISTICS lecture notes
E3: PROBABILITY AND STATISTICS lecture notes 2 Contents 1 PROBABILITY THEORY 7 1.1 Experiments and random events............................ 7 1.2 Certain event. Impossible event............................
More informationGRAPH THEORY and APPLICATIONS. Trees
GRAPH THEORY and APPLICATIONS Trees Properties Tree: a connected graph with no cycle (acyclic) Forest: a graph with no cycle Paths are trees. Star: A tree consisting of one vertex adjacent to all the others.
More informationBayesian Networks. Mausam (Slides by UWAI faculty)
Bayesian Networks Mausam (Slides by UWAI faculty) Bayes Nets In general, joint distribution P over set of variables (X 1 x... x X n ) requires exponential space for representation & inference BNs provide
More informationVectors. Philippe B. Laval. Spring 2012 KSU. Philippe B. Laval (KSU) Vectors Spring /
Vectors Philippe B Laval KSU Spring 2012 Philippe B Laval (KSU) Vectors Spring 2012 1 / 18 Introduction  Definition Many quantities we use in the sciences such as mass, volume, distance, can be expressed
More informationBayesian Networks. Read R&N Ch. 14.114.2. Next lecture: Read R&N 18.118.4
Bayesian Networks Read R&N Ch. 14.114.2 Next lecture: Read R&N 18.118.4 You will be expected to know Basic concepts and vocabulary of Bayesian networks. Nodes represent random variables. Directed arcs
More informationTracking Algorithms. Lecture17: Stochastic Tracking. Joint Probability and Graphical Model. Probabilistic Tracking
Tracking Algorithms (2015S) Lecture17: Stochastic Tracking Bohyung Han CSE, POSTECH bhhan@postech.ac.kr Deterministic methods Given input video and current state, tracking result is always same. Local
More informationCOT5405 Analysis of Algorithms Homework 3 Solutions
COT0 Analysis of Algorithms Homework 3 Solutions. Prove or give a counter example: (a) In the textbook, we have two routines for graph traversal  DFS(G) and BFS(G,s)  where G is a graph and s is any
More informationSummary of Probability
Summary of Probability Mathematical Physics I Rules of Probability The probability of an event is called P(A), which is a positive number less than or equal to 1. The total probability for all possible
More informationBinary Adders: Half Adders and Full Adders
Binary Adders: Half Adders and Full Adders In this set of slides, we present the two basic types of adders: 1. Half adders, and 2. Full adders. Each type of adder functions to add two binary bits. In order
More informationSolutions for Chapter 8
Solutions for Chapter 8 Solutions for exercises in section 8. 2 8.2.1. The eigenvalues are σ (A ={12, 6} with alg mult A (6 = 2, and it s clear that 12 = ρ(a σ (A. The eigenspace N(A 12I is spanned by
More information9.4. The Scalar Product. Introduction. Prerequisites. Learning Style. Learning Outcomes
The Scalar Product 9.4 Introduction There are two kinds of multiplication involving vectors. The first is known as the scalar product or dot product. This is socalled because when the scalar product of
More informationLikelihood: Frequentist vs Bayesian Reasoning
"PRINCIPLES OF PHYLOGENETICS: ECOLOGY AND EVOLUTION" Integrative Biology 200B University of California, Berkeley Spring 2009 N Hallinan Likelihood: Frequentist vs Bayesian Reasoning Stochastic odels and
More informationGraph Theory for Articulated Bodies
Graph Theory for Articulated Bodies Alba PerezGracia Department of Mechanical Engineering, Idaho State University Articulated Bodies A set of rigid bodies (links) joined by joints that allow relative
More informationLecture 6: The Bayesian Approach
Lecture 6: The Bayesian Approach What Did We Do Up to Now? We are given a model Loglinear model, Markov network, Bayesian network, etc. This model induces a distribution P(X) Learning: estimate a set
More informationEquilibrium of Concurrent Forces (Force Table)
Equilibrium of Concurrent Forces (Force Table) Objectives: Experimental objective Students will verify the conditions required (zero net force) for a system to be in equilibrium under the influence of
More informationTheory of Computation Prof. Kamala Krithivasan Department of Computer Science and Engineering Indian Institute of Technology, Madras
Theory of Computation Prof. Kamala Krithivasan Department of Computer Science and Engineering Indian Institute of Technology, Madras Lecture No. # 31 Recursive Sets, Recursively Innumerable Sets, Encoding
More informationApproximation Algorithms: LP Relaxation, Rounding, and Randomized Rounding Techniques. My T. Thai
Approximation Algorithms: LP Relaxation, Rounding, and Randomized Rounding Techniques My T. Thai 1 Overview An overview of LP relaxation and rounding method is as follows: 1. Formulate an optimization
More informationQuestion 2: How do you solve a matrix equation using the matrix inverse?
Question : How do you solve a matrix equation using the matrix inverse? In the previous question, we wrote systems of equations as a matrix equation AX B. In this format, the matrix A contains the coefficients
More informationProbability, Conditional Independence
Probability, Conditional Independence June 19, 2012 Probability, Conditional Independence Probability Sample space Ω of events Each event ω Ω has an associated measure Probability of the event P(ω) Axioms
More informationConditional Random Fields: An Introduction
Conditional Random Fields: An Introduction Hanna M. Wallach February 24, 2004 1 Labeling Sequential Data The task of assigning label sequences to a set of observation sequences arises in many fields, including
More informationAlgorithms. Theresa MiglerVonDollen CMPS 5P
Algorithms Theresa MiglerVonDollen CMPS 5P 1 / 32 Algorithms Write a Python function that accepts a list of numbers and a number, x. If x is in the list, the function returns the position in the list
More informationMidterm Exam Solutions CS161 Computer Security, Spring 2008
Midterm Exam Solutions CS161 Computer Security, Spring 2008 1. To encrypt a series of plaintext blocks p 1, p 2,... p n using a block cipher E operating in electronic code book (ECB) mode, each ciphertext
More informationMINI LESSON. Lesson 5b Solving Quadratic Equations
MINI LESSON Lesson 5b Solving Quadratic Equations Lesson Objectives By the end of this lesson, you should be able to: 1. Determine the number and type of solutions to a QUADRATIC EQUATION by graphing 2.
More informationSolutions to Exercises 8
Discrete Mathematics Lent 2009 MA210 Solutions to Exercises 8 (1) Suppose that G is a graph in which every vertex has degree at least k, where k 1, and in which every cycle contains at least 4 vertices.
More information1. LINEAR EQUATIONS. A linear equation in n unknowns x 1, x 2,, x n is an equation of the form
1. LINEAR EQUATIONS A linear equation in n unknowns x 1, x 2,, x n is an equation of the form a 1 x 1 + a 2 x 2 + + a n x n = b, where a 1, a 2,..., a n, b are given real numbers. For example, with x and
More informationWhy? A central concept in Computer Science. Algorithms are ubiquitous.
Analysis of Algorithms: A Brief Introduction Why? A central concept in Computer Science. Algorithms are ubiquitous. Using the Internet (sending email, transferring files, use of search engines, online
More informationCMSC 451: Graph Properties, DFS, BFS, etc.
CMSC 451: Graph Properties, DFS, BFS, etc. Slides By: Carl Kingsford Department of Computer Science University of Maryland, College Park Based on Chapter 3 of Algorithm Design by Kleinberg & Tardos. Graphs
More information4. MATRICES Matrices
4. MATRICES 170 4. Matrices 4.1. Definitions. Definition 4.1.1. A matrix is a rectangular array of numbers. A matrix with m rows and n columns is said to have dimension m n and may be represented as follows:
More informationMatrix Algebra 2.3 CHARACTERIZATIONS OF INVERTIBLE MATRICES Pearson Education, Inc.
2 Matrix Algebra 2.3 CHARACTERIZATIONS OF INVERTIBLE MATRICES Theorem 8: Let A be a square matrix. Then the following statements are equivalent. That is, for a given A, the statements are either all true
More informationFinding the M Most Probable Configurations Using Loopy Belief Propagation
Finding the M Most Probable Configurations Using Loopy Belief Propagation Chen Yanover and Yair Weiss School of Computer Science and Engineering The Hebrew University of Jerusalem 91904 Jerusalem, Israel
More informationTU e. Advanced Algorithms: experimentation project. The problem: load balancing with bounded lookahead. Input: integer m 2: number of machines
The problem: load balancing with bounded lookahead Input: integer m 2: number of machines integer k 0: the lookahead numbers t 1,..., t n : the job sizes Problem: assign jobs to machines machine to which
More informationStructured Learning and Prediction in Computer Vision. Contents
Foundations and Trends R in Computer Graphics and Vision Vol. 6, Nos. 3 4 (2010) 185 365 c 2011 S. Nowozin and C. H. Lampert DOI: 10.1561/0600000033 Structured Learning and Prediction in Computer Vision
More informationA1. Basic Reviews PERMUTATIONS and COMBINATIONS... or HOW TO COUNT
A1. Basic Reviews Appendix / A1. Basic Reviews / Perms & Combos1 PERMUTATIONS and COMBINATIONS... or HOW TO COUNT Question 1: Suppose we wish to arrange n 5 people {a, b, c, d, e}, standing side by side,
More informationMathematics for Computer Science/Software Engineering. Notes for the course MSM1F3 Dr. R. A. Wilson
Mathematics for Computer Science/Software Engineering Notes for the course MSM1F3 Dr. R. A. Wilson October 1996 Chapter 1 Logic Lecture no. 1. We introduce the concept of a proposition, which is a statement
More informationBayesian networks  Timeseries models  Apache Spark & Scala
Bayesian networks  Timeseries models  Apache Spark & Scala Dr John Sandiford, CTO Bayes Server Data Science London Meetup  November 2014 1 Contents Introduction Bayesian networks Latent variables Anomaly
More informationMATH 304 Linear Algebra Lecture 4: Matrix multiplication. Diagonal matrices. Inverse matrix.
MATH 304 Linear Algebra Lecture 4: Matrix multiplication. Diagonal matrices. Inverse matrix. Matrices Definition. An mbyn matrix is a rectangular array of numbers that has m rows and n columns: a 11
More informationLinear Equations and Inverse Matrices
Chapter 4 Linear Equations and Inverse Matrices 4. Two Pictures of Linear Equations The central problem of linear algebra is to solve a system of equations. Those equations are linear, which means that
More information7 Communication Classes
this version: 26 February 2009 7 Communication Classes Perhaps surprisingly, we can learn much about the longrun behavior of a Markov chain merely from the zero pattern of its transition matrix. In the
More informationAn Interesting Way to Combine Numbers
An Interesting Way to Combine Numbers Joshua Zucker and Tom Davis November 28, 2007 Abstract This exercise can be used for middle school students and older. The original problem seems almost impossibly
More informationMATH 240 Fall, Chapter 1: Linear Equations and Matrices
MATH 240 Fall, 2007 Chapter Summaries for Kolman / Hill, Elementary Linear Algebra, 9th Ed. written by Prof. J. Beachy Sections 1.1 1.5, 2.1 2.3, 4.2 4.9, 3.1 3.5, 5.3 5.5, 6.1 6.3, 6.5, 7.1 7.3 DEFINITIONS
More information2. INEQUALITIES AND ABSOLUTE VALUES
2. INEQUALITIES AND ABSOLUTE VALUES 2.1. The Ordering of the Real Numbers In addition to the arithmetic structure of the real numbers there is the order structure. The real numbers can be represented by
More information2D Geometric Transformations. COMP 770 Fall 2011
2D Geometric Transformations COMP 770 Fall 2011 1 A little quick math background Notation for sets, functions, mappings Linear transformations Matrices Matrixvector multiplication Matrixmatrix multiplication
More information