Networks and Operating Systems Chapter 7: Transport Layer

Size: px
Start display at page:

Download "Networks and Operating Systems Chapter 7: Transport Layer"

Transcription

1 Systems Group Department of Computer Science ETH Zürich Networks and Operating Systems Chapter 7: Transport Layer Donald Kossmann & Torsten Höfler Frühjahrssemester 2013

2 Overview Part 1 Transport layer services Multiplexing/Demultiplexing Connectionless transport: UDP 2 Part 2 Connection-oriented transport: TCP reliable transfer flow control connection management Principles of congestion control TCP congestion control:

3 3 Transport Layer

4 SENDER Transport layer in perspective 4 RECEIVER

5 Transport-layer protocols Internet transport services reliable, in-order unicast delivery (TCP) congestion control flow control connection setup unreliable ( best-effort ), unordered unicast or multicast delivery (UDP) application transport network data link physical network data link physical network data link physical network data link physical network data link physical network data link physical Services not available real-time / latency guarantees application transport network data link physical bandwidth guarantees reliable multicast 5

6 Multiplexing Demultiplexing IP (Internet protocol) delivers packages to interface (i.e., NIC). How do we know to which socket the package should go? Transport Layer is responsible for delivering data to correct socket. It does that based on info from IP and its own info (i.e., ports). UDP and TCP do it differently bits source port # dest port # other header fields application data (message) TCP/UDP segment format (inside of an IP packet that contains source & dest IP)

7 UDP Recall: The receiver has only one DatagramSocket identified by IP address and Port bind operation of socket will fail if violate uniqueness De-multiplexing based on destip, destport only (uniquely define socket)

8 UDP and ports (De-multiplexing) Application process Application process Application process Application process PORTS (sockets) queues UDP 8 packets

9 TCP Recall: server can have several sockets attached to the same interface (destip) and port (destport) Case 1: listener for new connection requests Case 2: sockets for established connections Case 2: de-multiplex based on destip, destport, sourceip, sourceport sender can have several connections to same destip, destport, but they have different sourceport Case 1: de-multiplex based on destip, destport, special SYN flag (see later) (SYN flag indicates connection request)

10 Multiplexing/Demultiplexing host A source port: x dest. port: 23 server B Web client host C source port:23 dest. port: x port use: simple telnet app (UDP) Source IP: C Dest IP: B source port: y dest. port: 80 Source IP: C Dest IP: B source port: x dest. port: 80 Web client host A Source IP: A Dest IP: B source port: x dest. port: 80 Web server B port use: Web server (TCP) 10

11 UDP: User Datagram Protocol RFC 768 no frills, bare bones Internet transport protocol best effort service, UDP segments may be lost delivered out of order to application UDP is connectionless no handshaking between UDP sender and receiver each UDP segment handled independently of others Why is there a UDP? no connection establishment (which can add delay) simple: no connection state at sender, receiver small segment header no congestion control: UDP can blast away as fast as desired 11

12 UDP Segment Structure often used for streaming multimedia apps Length, in loss tolerant bytes of UDP rate sensitive segment, other UDP uses including DNS header SNMP [Why?] reliable transfer over UDP add reliability at application layer application-specific error recovery 32 bits source port # dest port # length Application data (message) checksum UDP segment format 12

13 UDP checksum Goal: detect errors (e.g., flipped bits) in transmitted segment Sender treat segment contents as sequence of 16-bit integers checksum: 1 s complement sum of addition of segment contents sender puts checksum value into UDP checksum field Receiver add all 16-bit integers (including checksum) check if computed sum is 11 1 NO! error detected YES! no error detected. But maybe errors nonetheless! 13

14 TCP Overview socket door application writes data TCP send buffer application reads data TCP receive buffer socket door segment Reliable, connection-oriented byte-stream Most widely used protocol today Byte stream: no message boundaries Connection oriented: point-to-point, 1 sender, 1 receiver Full-duplex: bidirectional data on one connection See RFCs: 793, 1122, 1323, 2018, 2581, 14 Or Stevens.

15 TCP functionality is complex! Lots of things happening Connection management Setup, teardown, protocol error handling, failures, etc. Multiplexing of connections over IP End-to-end management over many hops Flow control Sender should not be able to overwhelm receiver Reliability Data is always delivered eventually, nothing is lost or corrupted Data is delivered in order Congestion control Senders should not cause Internet to collapse 15 Note: all this functionality is intertwined!

16 TCP in stages Segment layout and basic operation Connection management Reliable delivery & Flow control Retransmissions and adaptive timeouts Congestion control 16

17 TCP Segment layout And basic operation

18 TCP Segments Port numbers for multiplexing head len 32 bits source port # dest port # sequence number acknowledgement number not used checksum U A P R S F rcvr window size ptr urgent data Options (variable length) application data (variable length) 18

19 TCP Segments Counting data for sliding window - Note: bytes not segments! head len 32 bits source port # dest port # sequence number acknowledgement number not used checksum U A P R S F rcvr window size ptr urgent data Options (variable length) application data (variable length) 19

20 TCP Segments Flags for connection management: ACK: ack # valid SYN: setup conn. FIN: teardown RST: error URG: urgent data PSH: push data head len 32 bits source port # dest port # sequence number acknowledgement number not used checksum U A P R S F application data (variable length) rcvr window size ptr urgent data Options (variable length) 20

21 TCP Segments Internet checksum (as in UDP) head len 32 bits source port # dest port # sequence number acknowledgement number not used checksum U A P R S F rcvr window size ptr urgent data Options (variable length) application data (variable length) 21

22 TCP Segments How many bytes the receiver is willing to accept (flow control) head len 32 bits source port # dest port # sequence number acknowledgement number not used checksum U A P R S F rcvr window size ptr urgent data Options (variable length) application data (variable length) 22

23 TCP sequence numbers and ACKs Sequence numbers byte stream number of first byte in segment s data ACKs Sequence number of next byte expected from other side cumulative ACK User types C Host A Host B host ACKs receipt of C, echoes back C Q How does receiver handle out-of-order segments? TCP spec doesn t say; it is up to implementation! but sender must assume worst (i.e., Go Back N) 23 host ACKs receipt of echoed C simple telnet scenario time

24 TCP Connection management

25 Generic problem Both client and server need to agree: Is there a connection at all? What state is it in? What sequence numbers shall we start with? start at random position disentangle with previous conversations between same entities improves security (more difficult to guess for man in middle ) When is the connection torn down? What to do if either side misbehaves? How to handle (any) packets being lost? 25

26 Three-way handshake Setting up a connection Need to exchange initial sequence numbers Acks are always sequence number + 1! Client Server time 26

27 Connection teardown 1) client sends FIN segment 2) server replies with ACK. Closes connection, sends FIN. closing client server 3) client replies with ACK. Enters timed wait - will respond with ACK to received FINs 4) server receives ACK. Connection closed. 27 timed wait closed closing closed

28 State transitions at client and server Server Client 28

29 TCP state-transition diagram Close / FIN SYN_rcvd Passive Open SYN / SYNACK Closed Listen Close Close Send / SYN SYN / SYNACK ACK SYNACK / ACK Established Active open / SYN SYN_sent Close / FIN FIN / ACK FIN_wait_1 FIN / ACK Close_wait ACK Close / FIN FIN_wait_2 Closing Last_Ack 29 FIN / ACK ACK Time_wait Timeout after 2 segment lifetimes ACK Closed

30 Not shown in the previous diagram! Most states that send a packet set a timeout If no reply, retry Eventually close If unexpected messages arrive (bad flags, or weird sequence numbers) RST segments used to immediately terminate connection Also used where server doesn t want to talk 30

31 TCP reliability and flow control

32 TCP: reliable data transfer event: data received from application above create, send segment wait wait for event event event: timer timeout for segment with seq # y retransmit segment simplified sender, with one way data transfer no flow control no congestion control event: ACK received, with ACK # y ACK processing 32

33 TCP Sender (simplified) NextSeqNum = InitialSeqNum SendBase = InitialSeqNum loop (forever) { switch(event) event: data received from application above create TCP segment with sequence number NextSeqNum if (timer currently not running) start timer pass segment to IP NextSeqNum = NextSeqNum + length(data) event: timer timeout retransmit not-yet-acknowledged segment with smallest sequence number start timer event: ACK received, with ACK field value of y if (y > SendBase) { SendBase = y if (there are currently not-yet-acknowledged segments) start timer } Comment: SendBase-1: last cumulatively ack ed byte Example: SendBase-1 = 71 y= 73 so rcvr wants 73+ y > SendBase, so that new data is acked } /* end of loop forever */ 33

34 TCP: retransmission scenarios Host A Host B Host A Host B timeout X loss Seq=92 timeout SendBase = time lost ACK scenario Sendbase = 100 SendBase = 120 SendBase = 120 Seq=92 timeout time premature timeout

35 TCP: retransmission scenarios Host A Host B timeout X loss SendBase = time Cumulative ACK scenario

36 TCP ACK generation (RFC 1122, RFC 2581) Event in-order segment arrival, no gaps, everything else already ACKed in-order segment arrival, no gaps, one delayed ACK pending out-of-order segment arrival higher-than-expect seq. # gap detected arrival of segment that partially or completely fills gap TCP Receiver action delayed ACK. Wait up to 500ms for next segment. If no next segment, send ACK immediately send single cumulative ACK, ACKing both in-order segments send duplicate ACK, indicating seq. # of next expected byte immediate ACK if segment starts at lower end of gap 36

37 TCP Flow Control RcvBuffer size of TCP Receive Buffer RcvWindow amount of spare room in Buffer Receiver explicitly informs sender of (dynamically changing) amount of free buffer space RcvWindow field in TCP segment Sender keeps the amount of transmitted, unacked data less than most recently received RcvWindow flow control sender won t overrun receiver s buffers by transmitting too much, too fast 37

38 Timeouts and RTT estimation

39 TCP Round Trip Time and Timeout Q: How do we set TCP timeout value? longer than RTT 39 note: RTT will vary too short premature timeout unnecessary retransmissions too long slow reaction to segment loss Q: How to estimate RTT? SampleRTT: ignore retransmissions, cumulatively ACKed segments SampleRTT will vary, we want estimated RTT smoother use several recent measurements, not just current SampleRTT

40 TCP Round Trip Time and Timeout EstimatedRTT = (1-α) EstimatedRTT + α SampleRTT Exponential weighted moving average influence of given sample decreases exponentially fast typical value α = Setting the timeout EstimatedRTT plus safety margin large variation in EstimatedRTT larger safety margin Timeout = EstimatedRTT + 4 Deviation 40 Deviation = (1-β) Deviation + β SampleRTT-EstimatedRTT

41 Example RTT estimation RTT: gaia.cs.umass.edu to fantasia.eurecom.fr RTT (milliseconds) time (seconnds) SampleRTT Estimated RTT

42 Fast Retransmit Time-out period often long long delay before resending lost packet Detect lost segments via duplicate ACKs Sender often sends many segments back-to-back If segment lost, there will be many duplicate ACKs. Hack: If sender receives 3 ACKs for the same data, it supposes that segment after ACKed data was lost: fast retransmit : resend segment before timer expires implemented as part of TCP Reno (standard today) (TCP Tahoe only relies on timeouts.) 42

43 Fast retransmit algorithm event: ACK received, with ACK field value of y if (y > SendBase) { SendBase = y dupcounter = 1 if (there are currently not-yet-acknowledged segments) start timer } else { dubcounter++ if (dupcounter == 3) { resend segment with sequence number y } a duplicate ACK for already ACKed segment fast retransmit 43

44 Congestion and Congestion Control

45 Principles of Congestion Control Different from flow control! Manifestations long delays (queuing in router buffers) lost packets (buffer overflow at routers) Example: 45 Congestion too many sources sending too much data too fast for network to handle Router with infinite buffer size can handle 1Mb per second. There are 10 connections through router with 200kb/s each. Delays are growing with time! Question: How long are delays if 10 connections have 150kb/s only? What about 100 kb/s? 90kb/s? 50kb/s? 10kb/s?!?

46 Congestion Scenario 1 (no problem) two equal senders, two receivers one router with infinite buffer space with capacity C no retransmission large delays when congested maximum achievable throughput 46

47 Congestion Scenario 2 (no problem) one router with only finite buffer sender retransmission of lost packet more work for the same throughput 47

48 Congestion: Scenario 3 (Reality) A network of routers (queues), with multihop paths. Still analytically solvable when streams and routers are Markov. But there are retransmissions, timeouts, etc. Typical behavior (thrashing): throughput gets worse with more and more input. 48

49 Approaches for congestion control Two approaches generally used End-end congestion control no explicit feedback about congestion from network congestion inferred from end-system observed loss, delay approach taken by TCP Network-assisted cong. control routers provide feedback to end systems single bit indicating congestion (used in SNA, DECbit, TCP/IP ECN, ATM) explicit rate sender should send at 49

50 End-to-End Congestion Control Challenges How to detect congestion? If the network doesn t tell you How to react in the face of congestion? Back off perhaps, but by how much? And for how long? How fast to send at the beginning? When you don t know what the situation is 52

51 Detecting congestion in TCP Long delays Queues fill up in routers TCP sees estimated RTT going up Packet losses Routers drop packets TCP sees timeouts and duplicate ACKs 53

52 TCP congestion control Probe for usable bandwidth ideally: transmit as fast as possible without loss increase rate until loss (congestion) loss: decrease rate then begin probing (increasing) again Congestion window In bytes! Keeps track of current sending rate NOT the same as the receiver window! Actual window used is minimum of the two. 54

53 How much to increase and decrease? Additive increase, multiplicative decrease Increase cautiously, back off quickly Important for stability maths hard though! Increase: Linearly, when last congestion window s worth successfully sent Decrease: Halve the congestion window when loss is detected 55

54 TCP congestion window over time Window size Loss here Window halved sawtooth 56 Time

55 TCP congestion window details TCP segments have a maximum size (MSS) Determined by lower layer protocols Increase window by MSS bytes, never decrease to < 1 MSS. w segments, each with MSS bytes sent in one RTT: throughput = w MSS RTT Bytes/sec 57

56 How to start? What s the initial congestion window? Start slowly (CWND = 1 MSS) Initial rate = MSS/RTT But additive increase is slow takes too long to get up to speed! Solution: ramp up quickly to start This is called slow start At one time, it was (relatively) slow Increase rate exponentially until first loss Double CWND for each ack ed MSS. 58

57 TCP Slow start Slow start algorithm Host A Host B initialize: CWND = 1 for (each segment ACKed) CWND++ until (lost event OR CWND > threshold) RTT exponential increase (per RTT) in window size (not so slow!) lost event: timeout and/or three duplicate ACKs time 59

58 TCP Congestion Avoidance Congestion avoidance /* slowstart is over */ /* CWND > threshold */ Repeat { w = CWND every w bytes ACKed: CWND++ } until (loss event) threshold = CWND/2 CWND = 1 Go back to slowstart 60

Transport Layer Protocols

Transport Layer Protocols Transport Layer Protocols Version. Transport layer performs two main tasks for the application layer by using the network layer. It provides end to end communication between two applications, and implements

More information

Transport Layer and Data Center TCP

Transport Layer and Data Center TCP Transport Layer and Data Center TCP Hakim Weatherspoon Assistant Professor, Dept of Computer Science CS 5413: High Performance Systems and Networking September 5, 2014 Slides used and adapted judiciously

More information

Computer Networks. Chapter 5 Transport Protocols

Computer Networks. Chapter 5 Transport Protocols Computer Networks Chapter 5 Transport Protocols Transport Protocol Provides end-to-end transport Hides the network details Transport protocol or service (TS) offers: Different types of services QoS Data

More information

Outline. TCP connection setup/data transfer. 15-441 Computer Networking. TCP Reliability. Congestion sources and collapse. Congestion control basics

Outline. TCP connection setup/data transfer. 15-441 Computer Networking. TCP Reliability. Congestion sources and collapse. Congestion control basics Outline 15-441 Computer Networking Lecture 8 TCP & Congestion Control TCP connection setup/data transfer TCP Reliability Congestion sources and collapse Congestion control basics Lecture 8: 09-23-2002

More information

TCP in Wireless Mobile Networks

TCP in Wireless Mobile Networks TCP in Wireless Mobile Networks 1 Outline Introduction to transport layer Introduction to TCP (Internet) congestion control Congestion control in wireless networks 2 Transport Layer v.s. Network Layer

More information

[Prof. Rupesh G Vaishnav] Page 1

[Prof. Rupesh G Vaishnav] Page 1 Basics The function of transport layer is to provide a reliable end-to-end communications service. It also provides data transfer service for the user layers above and shield the upper layers from the

More information

La couche transport dans l'internet (la suite TCP/IP)

La couche transport dans l'internet (la suite TCP/IP) La couche transport dans l'internet (la suite TCP/IP) C. Pham Université de Pau et des Pays de l Adour Département Informatique http://www.univ-pau.fr/~cpham Congduc.Pham@univ-pau.fr Cours de C. Pham,

More information

Chapter 5. Transport layer protocols

Chapter 5. Transport layer protocols Chapter 5. Transport layer protocols This chapter provides an overview of the most important and common protocols of the TCP/IP transport layer. These include: User Datagram Protocol (UDP) Transmission

More information

COMP 3331/9331: Computer Networks and Applications. Lab Exercise 3: TCP and UDP (Solutions)

COMP 3331/9331: Computer Networks and Applications. Lab Exercise 3: TCP and UDP (Solutions) COMP 3331/9331: Computer Networks and Applications Lab Exercise 3: TCP and UDP (Solutions) AIM To investigate the behaviour of TCP and UDP in greater detail. EXPERIMENT 1: Understanding TCP Basics Tools

More information

Names & Addresses. Names & Addresses. Hop-by-Hop Packet Forwarding. Longest-Prefix-Match Forwarding. Longest-Prefix-Match Forwarding

Names & Addresses. Names & Addresses. Hop-by-Hop Packet Forwarding. Longest-Prefix-Match Forwarding. Longest-Prefix-Match Forwarding Names & Addresses EE 122: IP Forwarding and Transport Protocols Scott Shenker http://inst.eecs.berkeley.edu/~ee122/ (Materials with thanks to Vern Paxson, Jennifer Rexford, and colleagues at UC Berkeley)

More information

Computer Networks UDP and TCP

Computer Networks UDP and TCP Computer Networks UDP and TCP Saad Mneimneh Computer Science Hunter College of CUNY New York I m a system programmer specializing in TCP/IP communication protocol on UNIX systems. How can I explain a thing

More information

CSE 473 Introduction to Computer Networks. Exam 2 Solutions. Your name: 10/31/2013

CSE 473 Introduction to Computer Networks. Exam 2 Solutions. Your name: 10/31/2013 CSE 473 Introduction to Computer Networks Jon Turner Exam Solutions Your name: 0/3/03. (0 points). Consider a circular DHT with 7 nodes numbered 0,,...,6, where the nodes cache key-values pairs for 60

More information

ICOM 5026-090: Computer Networks Chapter 6: The Transport Layer. By Dr Yi Qian Department of Electronic and Computer Engineering Fall 2006 UPRM

ICOM 5026-090: Computer Networks Chapter 6: The Transport Layer. By Dr Yi Qian Department of Electronic and Computer Engineering Fall 2006 UPRM ICOM 5026-090: Computer Networks Chapter 6: The Transport Layer By Dr Yi Qian Department of Electronic and Computer Engineering Fall 2006 Outline The transport service Elements of transport protocols A

More information

La couche transport dans l'internet (la suite TCP/IP)

La couche transport dans l'internet (la suite TCP/IP) La couche transport dans l'internet (la suite TCP/IP) C. Pham RESO-LIP/INRIA Université Lyon 1 http://www.ens-lyon.fr/~cpham Basé sur les transparent de Shivkumar Kalyanaraman La couche transport dans

More information

TCP over Multi-hop Wireless Networks * Overview of Transmission Control Protocol / Internet Protocol (TCP/IP) Internet Protocol (IP)

TCP over Multi-hop Wireless Networks * Overview of Transmission Control Protocol / Internet Protocol (TCP/IP) Internet Protocol (IP) TCP over Multi-hop Wireless Networks * Overview of Transmission Control Protocol / Internet Protocol (TCP/IP) *Slides adapted from a talk given by Nitin Vaidya. Wireless Computing and Network Systems Page

More information

Improving the Performance of TCP Using Window Adjustment Procedure and Bandwidth Estimation

Improving the Performance of TCP Using Window Adjustment Procedure and Bandwidth Estimation Improving the Performance of TCP Using Window Adjustment Procedure and Bandwidth Estimation R.Navaneethakrishnan Assistant Professor (SG) Bharathiyar College of Engineering and Technology, Karaikal, India.

More information

B-2 Analyzing TCP/IP Networks with Wireshark. Ray Tompkins Founder of Gearbit www.gearbit.com

B-2 Analyzing TCP/IP Networks with Wireshark. Ray Tompkins Founder of Gearbit www.gearbit.com B-2 Analyzing TCP/IP Networks with Wireshark June 15, 2010 Ray Tompkins Founder of Gearbit www.gearbit.com SHARKFEST 10 Stanford University June 14-17, 2010 TCP In this session we will examine the details

More information

This sequence diagram was generated with EventStudio System Designer (http://www.eventhelix.com/eventstudio).

This sequence diagram was generated with EventStudio System Designer (http://www.eventhelix.com/eventstudio). Client App Network Server App 25-May-13 15:32 (Page 1) This sequence diagram was generated with EventStudio System Designer (http://www.eventhelix.com/eventstudio). TCP is an end to end protocol which

More information

Final for ECE374 05/06/13 Solution!!

Final for ECE374 05/06/13 Solution!! 1 Final for ECE374 05/06/13 Solution!! Instructions: Put your name and student number on each sheet of paper! The exam is closed book. You have 90 minutes to complete the exam. Be a smart exam taker -

More information

Prefix AggregaNon. Company X and Company Y connect to the same ISP, and they are assigned the prefixes:

Prefix AggregaNon. Company X and Company Y connect to the same ISP, and they are assigned the prefixes: Data Transfer Consider transferring an enormous file of L bytes from Host A to B using a MSS of 1460 bytes and a 66 byte header. What is the maximum value of L such that TCP sequence numbers are not exhausted?

More information

First Midterm for ECE374 03/09/12 Solution!!

First Midterm for ECE374 03/09/12 Solution!! 1 First Midterm for ECE374 03/09/12 Solution!! Instructions: Put your name and student number on each sheet of paper! The exam is closed book. You have 90 minutes to complete the exam. Be a smart exam

More information

Computer Networks - CS132/EECS148 - Spring 2013 ------------------------------------------------------------------------------

Computer Networks - CS132/EECS148 - Spring 2013 ------------------------------------------------------------------------------ Computer Networks - CS132/EECS148 - Spring 2013 Instructor: Karim El Defrawy Assignment 3 - Solutions Deadline : May 9 th 9:30pm (hard and soft copies required) ------------------------------------------------------------------------------

More information

TCP/IP Optimization for Wide Area Storage Networks. Dr. Joseph L White Juniper Networks

TCP/IP Optimization for Wide Area Storage Networks. Dr. Joseph L White Juniper Networks TCP/IP Optimization for Wide Area Storage Networks Dr. Joseph L White Juniper Networks SNIA Legal Notice The material contained in this tutorial is copyrighted by the SNIA. Member companies and individuals

More information

TCP Performance Management for Dummies

TCP Performance Management for Dummies TCP Performance Management for Dummies Nalini Elkins Inside Products, Inc. Monday, August 8, 2011 Session Number 9285 Our SHARE Sessions Orlando 9285: TCP/IP Performance Management for Dummies Monday,

More information

Lecture 15: Congestion Control. CSE 123: Computer Networks Stefan Savage

Lecture 15: Congestion Control. CSE 123: Computer Networks Stefan Savage Lecture 15: Congestion Control CSE 123: Computer Networks Stefan Savage Overview Yesterday: TCP & UDP overview Connection setup Flow control: resource exhaustion at end node Today: Congestion control Resource

More information

Visualizations and Correlations in Troubleshooting

Visualizations and Correlations in Troubleshooting Visualizations and Correlations in Troubleshooting Kevin Burns Comcast kevin_burns@cable.comcast.com 1 Comcast Technology Groups Cable CMTS, Modem, Edge Services Backbone Transport, Routing Converged Regional

More information

q Connection establishment (if connection-oriented) q Data transfer q Connection release (if conn-oriented) q Addressing the transport user

q Connection establishment (if connection-oriented) q Data transfer q Connection release (if conn-oriented) q Addressing the transport user Transport service characterization The Transport Layer End-to-End Protocols: UDP and TCP Connection establishment (if connection-oriented) Data transfer Reliable ( TCP) Unreliable / best effort ( UDP)

More information

Ethernet. Ethernet. Network Devices

Ethernet. Ethernet. Network Devices Ethernet Babak Kia Adjunct Professor Boston University College of Engineering ENG SC757 - Advanced Microprocessor Design Ethernet Ethernet is a term used to refer to a diverse set of frame based networking

More information

Networking Overview. (as usual, thanks to Dave Wagner and Vern Paxson)

Networking Overview. (as usual, thanks to Dave Wagner and Vern Paxson) Networking Overview (as usual, thanks to Dave Wagner and Vern Paxson) Focus For This Lecture Sufficient background in networking to then explore security issues in next few lectures Networking = the Internet

More information

Data Networks Summer 2007 Homework #3

Data Networks Summer 2007 Homework #3 Data Networks Summer Homework # Assigned June 8, Due June in class Name: Email: Student ID: Problem Total Points Problem ( points) Host A is transferring a file of size L to host B using a TCP connection.

More information

TCP Flow Control. TCP Receiver Window. Sliding Window. Computer Networks. Lecture 30: Flow Control, Reliable Delivery

TCP Flow Control. TCP Receiver Window. Sliding Window. Computer Networks. Lecture 30: Flow Control, Reliable Delivery TCP Flow Control Computer Networks The receiver side of a TCP connection maintains a receiver buffer: Lecture : Flow Control, eliable elivery application process may be slow at reading from the buffer

More information

TCP and Wireless Networks Classical Approaches Optimizations TCP for 2.5G/3G Systems. Lehrstuhl für Informatik 4 Kommunikation und verteilte Systeme

TCP and Wireless Networks Classical Approaches Optimizations TCP for 2.5G/3G Systems. Lehrstuhl für Informatik 4 Kommunikation und verteilte Systeme Chapter 2 Technical Basics: Layer 1 Methods for Medium Access: Layer 2 Chapter 3 Wireless Networks: Bluetooth, WLAN, WirelessMAN, WirelessWAN Mobile Networks: GSM, GPRS, UMTS Chapter 4 Mobility on the

More information

Mobile Communications Chapter 9: Mobile Transport Layer

Mobile Communications Chapter 9: Mobile Transport Layer Mobile Communications Chapter 9: Mobile Transport Layer Motivation TCP-mechanisms Classical approaches Indirect TCP Snooping TCP Mobile TCP PEPs in general Additional optimizations Fast retransmit/recovery

More information

Midterm Exam CMPSCI 453: Computer Networks Fall 2011 Prof. Jim Kurose

Midterm Exam CMPSCI 453: Computer Networks Fall 2011 Prof. Jim Kurose Midterm Exam CMPSCI 453: Computer Networks Fall 2011 Prof. Jim Kurose Instructions: There are 4 questions on this exam. Please use two exam blue books answer questions 1, 2 in one book, and the remaining

More information

IP - The Internet Protocol

IP - The Internet Protocol Orientation IP - The Internet Protocol IP (Internet Protocol) is a Network Layer Protocol. IP s current version is Version 4 (IPv4). It is specified in RFC 891. TCP UDP Transport Layer ICMP IP IGMP Network

More information

How do I get to www.randomsite.com?

How do I get to www.randomsite.com? Networking Primer* *caveat: this is just a brief and incomplete introduction to networking to help students without a networking background learn Network Security. How do I get to www.randomsite.com? Local

More information

15-441: Computer Networks Homework 2 Solution

15-441: Computer Networks Homework 2 Solution 5-44: omputer Networks Homework 2 Solution Assigned: September 25, 2002. Due: October 7, 2002 in class. In this homework you will test your understanding of the TP concepts taught in class including flow

More information

TCP/IP Over Lossy Links - TCP SACK without Congestion Control

TCP/IP Over Lossy Links - TCP SACK without Congestion Control Wireless Random Packet Networking, Part II: TCP/IP Over Lossy Links - TCP SACK without Congestion Control Roland Kempter The University of Alberta, June 17 th, 2004 Department of Electrical And Computer

More information

Higher Layer Protocols: UDP, TCP, ATM, MPLS

Higher Layer Protocols: UDP, TCP, ATM, MPLS Higher Layer Protocols: UDP, TCP, ATM, MPLS Massachusetts Institute of Technology Slide 1 The TCP/IP Protocol Suite Transmission Control Protocol / Internet Protocol Developed by DARPA to connect Universities

More information

CS268 Exam Solutions. 1) End-to-End (20 pts)

CS268 Exam Solutions. 1) End-to-End (20 pts) CS268 Exam Solutions General comments: ) If you would like a re-grade, submit in email a complete explanation of why your solution should be re-graded. Quote parts of your solution if necessary. In person

More information

Access Control: Firewalls (1)

Access Control: Firewalls (1) Access Control: Firewalls (1) World is divided in good and bad guys ---> access control (security checks) at a single point of entry/exit: in medieval castles: drawbridge in corporate buildings: security/reception

More information

TCP/IP Networking for Wireless Systems. Integrated Communication Systems Group Ilmenau University of Technology

TCP/IP Networking for Wireless Systems. Integrated Communication Systems Group Ilmenau University of Technology TCP/IP Networking for Wireless Systems Integrated Communication Systems Group Ilmenau University of Technology Content Internet Protocol Suite Link Layer: Ethernet, PPP, ARP, MAC Addressing Network Layer:

More information

IP Network Layer. Datagram ID FLAG Fragment Offset. IP Datagrams. IP Addresses. IP Addresses. CSCE 515: Computer Network Programming TCP/IP

IP Network Layer. Datagram ID FLAG Fragment Offset. IP Datagrams. IP Addresses. IP Addresses. CSCE 515: Computer Network Programming TCP/IP CSCE 515: Computer Network Programming TCP/IP IP Network Layer Wenyuan Xu Department of Computer Science and Engineering University of South Carolina IP Datagrams IP is the network layer packet delivery

More information

2 TCP-like Design. Answer

2 TCP-like Design. Answer Homework 3 1 DNS Suppose you have a Host C, a local name server L, and authoritative name servers A root, A com, and A google.com, where the naming convention A x means that the name server knows about

More information

CSE331: Introduction to Networks and Security. Lecture 9 Fall 2006

CSE331: Introduction to Networks and Security. Lecture 9 Fall 2006 CSE33: Introduction to Networks and Security Lecture 9 Fall 2006 Announcements Project Due TODAY HW Due on Friday Midterm I will be held next Friday, Oct. 6th. Will cover all course material up to next

More information

Congestion Control Review. 15-441 Computer Networking. Resource Management Approaches. Traffic and Resource Management. What is congestion control?

Congestion Control Review. 15-441 Computer Networking. Resource Management Approaches. Traffic and Resource Management. What is congestion control? Congestion Control Review What is congestion control? 15-441 Computer Networking What is the principle of TCP? Lecture 22 Queue Management and QoS 2 Traffic and Resource Management Resource Management

More information

A Survey on Congestion Control Mechanisms for Performance Improvement of TCP

A Survey on Congestion Control Mechanisms for Performance Improvement of TCP A Survey on Congestion Control Mechanisms for Performance Improvement of TCP Shital N. Karande Department of Computer Science Engineering, VIT, Pune, Maharashtra, India Sanjesh S. Pawale Department of

More information

Transport Layer. Chapter 3.4. Think about

Transport Layer. Chapter 3.4. Think about Chapter 3.4 La 4 Transport La 1 Think about 2 How do MAC addresses differ from that of the network la? What is flat and what is hierarchical addressing? Who defines the IP Address of a device? What is

More information

1. The subnet must prevent additional packets from entering the congested region until those already present can be processed.

1. The subnet must prevent additional packets from entering the congested region until those already present can be processed. Congestion Control When one part of the subnet (e.g. one or more routers in an area) becomes overloaded, congestion results. Because routers are receiving packets faster than they can forward them, one

More information

TCP over Wireless Networks

TCP over Wireless Networks TCP over Wireless Networks Raj Jain Professor of Computer Science and Engineering Washington University in Saint Louis Saint Louis, MO 63130 Audio/Video recordings of this lecture are available at: http://www.cse.wustl.edu/~jain/cse574-10/

More information

Congestions and Control Mechanisms n Wired and Wireless Networks

Congestions and Control Mechanisms n Wired and Wireless Networks International OPEN ACCESS Journal ISSN: 2249-6645 Of Modern Engineering Research (IJMER) Congestions and Control Mechanisms n Wired and Wireless Networks MD Gulzar 1, B Mahender 2, Mr.B.Buchibabu 3 1 (Asst

More information

Multipath TCP in Practice (Work in Progress) Mark Handley Damon Wischik Costin Raiciu Alan Ford

Multipath TCP in Practice (Work in Progress) Mark Handley Damon Wischik Costin Raiciu Alan Ford Multipath TCP in Practice (Work in Progress) Mark Handley Damon Wischik Costin Raiciu Alan Ford The difference between theory and practice is in theory somewhat smaller than in practice. In theory, this

More information

Lecture Objectives. Lecture 07 Mobile Networks: TCP in Wireless Networks. Agenda. TCP Flow Control. Flow Control Can Limit Throughput (1)

Lecture Objectives. Lecture 07 Mobile Networks: TCP in Wireless Networks. Agenda. TCP Flow Control. Flow Control Can Limit Throughput (1) Lecture Objectives Wireless and Mobile Systems Design Lecture 07 Mobile Networks: TCP in Wireless Networks Describe TCP s flow control mechanism Describe operation of TCP Reno and TCP Vegas, including

More information

Architecture and Performance of the Internet

Architecture and Performance of the Internet SC250 Computer Networking I Architecture and Performance of the Internet Prof. Matthias Grossglauser School of Computer and Communication Sciences EPFL http://lcawww.epfl.ch 1 Today's Objectives Understanding

More information

First Midterm for ECE374 03/24/11 Solution!!

First Midterm for ECE374 03/24/11 Solution!! 1 First Midterm for ECE374 03/24/11 Solution!! Note: In all written assignments, please show as much of your work as you can. Even if you get a wrong answer, you can get partial credit if you show your

More information

TCP for Wireless Networks

TCP for Wireless Networks TCP for Wireless Networks Outline Motivation TCP mechanisms Indirect TCP Snooping TCP Mobile TCP Fast retransmit/recovery Transmission freezing Selective retransmission Transaction oriented TCP Adapted

More information

Transport layer protocols for ad hoc networks

Transport layer protocols for ad hoc networks Transport layer protocols for ad hoc networks Lecturer: Dmitri A. Moltchanov E-mail: moltchan@cs.tut.fi http://www.cs.tut.fi/kurssit/tlt-2616/ Which transport layer protocol? Classification of transport

More information

Analytic Models for the Latency and Steady-State Throughput of TCP Tahoe, Reno and SACK

Analytic Models for the Latency and Steady-State Throughput of TCP Tahoe, Reno and SACK REVISION 1 1 Analytic Models for the Latency and Steady-State Throughput of TCP Tahoe, Reno and SACK B. Sikdar, S. Kalyanaraman and K. S. Vastola Dept. of ECSE, Rensselaer Polytechnic Institute Troy, NY

More information

Chapter 6 Congestion Control and Resource Allocation

Chapter 6 Congestion Control and Resource Allocation Chapter 6 Congestion Control and Resource Allocation 6.3 TCP Congestion Control Additive Increase/Multiplicative Decrease (AIMD) o Basic idea: repeatedly increase transmission rate until congestion occurs;

More information

TCP Adaptation for MPI on Long-and-Fat Networks

TCP Adaptation for MPI on Long-and-Fat Networks TCP Adaptation for MPI on Long-and-Fat Networks Motohiko Matsuda, Tomohiro Kudoh Yuetsu Kodama, Ryousei Takano Grid Technology Research Center Yutaka Ishikawa The University of Tokyo Outline Background

More information

Transport layer issues in ad hoc wireless networks Dmitrij Lagutin, dlagutin@cc.hut.fi

Transport layer issues in ad hoc wireless networks Dmitrij Lagutin, dlagutin@cc.hut.fi Transport layer issues in ad hoc wireless networks Dmitrij Lagutin, dlagutin@cc.hut.fi 1. Introduction Ad hoc wireless networks pose a big challenge for transport layer protocol and transport layer protocols

More information

TCP/IP Inside the Data Center and Beyond. Dr. Joseph L White, Juniper Networks

TCP/IP Inside the Data Center and Beyond. Dr. Joseph L White, Juniper Networks Dr. Joseph L White, Juniper Networks SNIA Legal Notice The material contained in this tutorial is copyrighted by the SNIA. Member companies and individual members may use this material in presentations

More information

8-bit Microcontroller. Application Note. AVR460: Embedded Web Server. Introduction. System Description

8-bit Microcontroller. Application Note. AVR460: Embedded Web Server. Introduction. System Description AVR460: Embedded Web Server Introduction Intelligent homes will be connected to the Internet and require a microcontroller to communicate with the other network devices. The AVR embedded web server can

More information

Improved Digital Media Delivery with Telestream HyperLaunch

Improved Digital Media Delivery with Telestream HyperLaunch WHITE PAPER Improved Digital Media Delivery with Telestream THE CHALLENGE Increasingly, Internet Protocol (IP) based networks are being used to deliver digital media. Applications include delivery of news

More information

What is a DoS attack?

What is a DoS attack? CprE 592-YG Computer and Network Forensics Log-based Signature Analysis Denial of Service Attacks - from analyst s point of view Yong Guan 3216 Coover Tel: (515) 294-8378 Email: guan@ee.iastate.edu October

More information

Networks: IP and TCP. Internet Protocol

Networks: IP and TCP. Internet Protocol Networks: IP and TCP 11/1/2010 Networks: IP and TCP 1 Internet Protocol Connectionless Each packet is transported independently from other packets Unreliable Delivery on a best effort basis No acknowledgments

More information

TCP/IP Fundamentals. OSI Seven Layer Model & Seminar Outline

TCP/IP Fundamentals. OSI Seven Layer Model & Seminar Outline OSI Seven Layer Model & Seminar Outline TCP/IP Fundamentals This seminar will present TCP/IP communications starting from Layer 2 up to Layer 4 (TCP/IP applications cover Layers 5-7) IP Addresses Data

More information

Overview. Securing TCP/IP. Introduction to TCP/IP (cont d) Introduction to TCP/IP

Overview. Securing TCP/IP. Introduction to TCP/IP (cont d) Introduction to TCP/IP Overview Securing TCP/IP Chapter 6 TCP/IP Open Systems Interconnection Model Anatomy of a Packet Internet Protocol Security (IPSec) Web Security (HTTP over TLS, Secure-HTTP) Lecturer: Pei-yih Ting 1 2

More information

Application Level Congestion Control Enhancements in High BDP Networks. Anupama Sundaresan

Application Level Congestion Control Enhancements in High BDP Networks. Anupama Sundaresan Application Level Congestion Control Enhancements in High BDP Networks Anupama Sundaresan Organization Introduction Motivation Implementation Experiments and Results Conclusions 2 Developing a Grid service

More information

On Inferring TCP Behavior

On Inferring TCP Behavior On Inferring TCP Behavior Jitendra Padhye and Sally Floyd ATT Center for Internet Research at ICSI (ACIRI) padhye@aciri.org, floyd@aciri.org ABSTRACT Most of the traffic in today s Internet is controlled

More information

Chapter 11. User Datagram Protocol (UDP)

Chapter 11. User Datagram Protocol (UDP) Chapter 11 User Datagram Protocol (UDP) The McGraw-Hill Companies, Inc., 2000 1 CONTENTS PROCESS-TO-PROCESS COMMUNICATION USER DATAGRAM CHECKSUM UDP OPERATION USE OF UDP UDP PACKAGE The McGraw-Hill Companies,

More information

Computer Networks Practicum 2015

Computer Networks Practicum 2015 Computer Networks Practicum 2015 Vrije Universiteit Amsterdam, The Netherlands http://acropolis.cs.vu.nl/ spyros/cnp/ 1 Overview This practicum consists of two parts. The first is to build a TCP implementation

More information

The present and the future of TCP/IP

The present and the future of TCP/IP The present and the future of TCP/IP David Espina Project in Electronics dea09001@student.mdh.com Dariusz Baha Computer science dba04002@student.mdh.se ABSTRACT The Transport Control Protocol (TCP) and

More information

COMP 361 Computer Communications Networks. Fall Semester 2003. Midterm Examination

COMP 361 Computer Communications Networks. Fall Semester 2003. Midterm Examination COMP 361 Computer Communications Networks Fall Semester 2003 Midterm Examination Date: October 23, 2003, Time 18:30pm --19:50pm Name: Student ID: Email: Instructions: 1. This is a closed book exam 2. This

More information

Data Communications & Networks. Session 6 Main Theme Reliable Data Transfer. Dr. Jean-Claude Franchitti

Data Communications & Networks. Session 6 Main Theme Reliable Data Transfer. Dr. Jean-Claude Franchitti Data Communications & Networks Session 6 Main Theme Reliable Data Transfer Dr. Jean-Claude Franchitti New York University Computer Science Department Courant Institute of Mathematical Sciences Adapted

More information

Transport Protocols and Distributed Applications

Transport Protocols and Distributed Applications Transport Protocols and Distributed Applications EP1100 Data Communications and Computer Networks Illustrations in this material are collected from Behrouz A Forouzan, Data Communications and Networking,

More information

Networking part 3: the transport layer

Networking part 3: the transport layer Networking part 3: the transport layer Juliusz Chroboczek Université de Paris-Diderot (Paris 7) September 2011 Summary of the previous episodes Episode 1: switching, packet switching and the Internet.

More information

Internet Protocols. Background CHAPTER

Internet Protocols. Background CHAPTER CHAPTER 3 Internet Protocols Background The Internet protocols are the world s most popular open-system (nonproprietary) protocol suite because they can be used to communicate across any set of interconnected

More information

Lecture Computer Networks

Lecture Computer Networks Prof. Dr. H. P. Großmann mit M. Rabel sowie H. Hutschenreiter und T. Nau Sommersemester 2012 Institut für Organisation und Management von Informationssystemen Thomas Nau, kiz Lecture Computer Networks

More information

Parallel TCP Data Transfers: A Practical Model and its Application

Parallel TCP Data Transfers: A Practical Model and its Application D r a g a n a D a m j a n o v i ć Parallel TCP Data Transfers: A Practical Model and its Application s u b m i t t e d t o the Faculty of Mathematics, Computer Science and Physics, the University of Innsbruck

More information

Per-Flow Queuing Allot's Approach to Bandwidth Management

Per-Flow Queuing Allot's Approach to Bandwidth Management White Paper Per-Flow Queuing Allot's Approach to Bandwidth Management Allot Communications, July 2006. All Rights Reserved. Table of Contents Executive Overview... 3 Understanding TCP/IP... 4 What is Bandwidth

More information

Challenges of Sending Large Files Over Public Internet

Challenges of Sending Large Files Over Public Internet Challenges of Sending Large Files Over Public Internet CLICK TO EDIT MASTER TITLE STYLE JONATHAN SOLOMON SENIOR SALES & SYSTEM ENGINEER, ASPERA, INC. CLICK TO EDIT MASTER SUBTITLE STYLE OUTLINE Ø Setting

More information

Indian Institute of Technology Kharagpur. TCP/IP Part I. Prof Indranil Sengupta Computer Science and Engineering Indian Institute of Technology

Indian Institute of Technology Kharagpur. TCP/IP Part I. Prof Indranil Sengupta Computer Science and Engineering Indian Institute of Technology Indian Institute of Technology Kharagpur TCP/IP Part I Prof Indranil Sengupta Computer Science and Engineering Indian Institute of Technology Kharagpur Lecture 3: TCP/IP Part I On completion, the student

More information

CHAPTER 1 PRINCIPLES OF NETWORK MONITORING

CHAPTER 1 PRINCIPLES OF NETWORK MONITORING CHAPTER 1 PRINCIPLES OF NETWORK MONITORING Jawwad Shamsi and Monica Brocmeyer Department of Computer Science, Wayne State University 5143 Cass Avenue, 431 State Hall, Detroit, MI 48202, USA E-mail:{ jshamsi,

More information

TCP Westwood for Wireless

TCP Westwood for Wireless TCP Westwood for Wireless מבוא רקע טכני בקרת עומס ב- TCP TCP על קשר אלחוטי שיפור תפוקה עם פרוטוקול TCP Westwood סיכום.1.2.3.4.5 Seminar in Computer Networks and Distributed Systems Hadassah College Spring

More information

TCP in Wireless Networks

TCP in Wireless Networks Outline Lecture 10 TCP Performance and QoS in Wireless s TCP Performance in wireless networks TCP performance in asymmetric networks WAP Kurose-Ross: Chapter 3, 6.8 On-line: TCP over Wireless Systems Problems

More information

EINDHOVEN UNIVERSITY OF TECHNOLOGY Department of Mathematics and Computer Science

EINDHOVEN UNIVERSITY OF TECHNOLOGY Department of Mathematics and Computer Science EINDHOVEN UNIVERSITY OF TECHNOLOGY Department of Mathematics and Computer Science Examination Computer Networks (2IC15) on Monday, June 22 nd 2009, 9.00h-12.00h. First read the entire examination. There

More information

Introduction to TCP/IP

Introduction to TCP/IP Introduction to TCP/IP Raj Jain The Ohio State University Columbus, OH 43210 Nayna Networks Milpitas, CA 95035 Email: Jain@ACM.Org http://www.cis.ohio-state.edu/~jain/ 1 Overview! Internetworking Protocol

More information

2.1 Introduction. 2.2 Voice over IP (VoIP)

2.1 Introduction. 2.2 Voice over IP (VoIP) 2.1 Introduction In this section can provide the necessary background on the structure of VoIP applications and on their component, and the transmission protocols generally used in VoIP. 2.2 Voice over

More information

Network Security TCP/IP Refresher

Network Security TCP/IP Refresher Network Security TCP/IP Refresher What you (at least) need to know about networking! Dr. David Barrera Network Security HS 2014 Outline Network Reference Models Local Area Networks Internet Protocol (IP)

More information

High Speed Internet Access Using Satellite-Based DVB Networks

High Speed Internet Access Using Satellite-Based DVB Networks High Speed Internet Access Using Satellite-Based DVB Networks Nihal K. G. Samaraweera and Godred Fairhurst Electronics Research Group, Department of Engineering University of Aberdeen, Aberdeen, AB24 3UE,

More information

The Fundamentals of Intrusion Prevention System Testing

The Fundamentals of Intrusion Prevention System Testing The Fundamentals of Intrusion Prevention System Testing New network-based Intrusion Prevention Systems (IPS) complement traditional security products to provide enterprises with unparalleled protection

More information

Low-rate TCP-targeted Denial of Service Attack Defense

Low-rate TCP-targeted Denial of Service Attack Defense Low-rate TCP-targeted Denial of Service Attack Defense Johnny Tsao Petros Efstathopoulos University of California, Los Angeles, Computer Science Department Los Angeles, CA E-mail: {johnny5t, pefstath}@cs.ucla.edu

More information

8.2 The Internet Protocol

8.2 The Internet Protocol TCP/IP Protocol Suite HTTP SMTP DNS RTP Distributed applications Reliable stream service TCP UDP User datagram service Best-effort connectionless packet transfer Network Interface 1 IP Network Interface

More information

Chapter 3. TCP/IP Networks. 3.1 Internet Protocol version 4 (IPv4)

Chapter 3. TCP/IP Networks. 3.1 Internet Protocol version 4 (IPv4) Chapter 3 TCP/IP Networks 3.1 Internet Protocol version 4 (IPv4) Internet Protocol version 4 is the fourth iteration of the Internet Protocol (IP) and it is the first version of the protocol to be widely

More information

IP address format: Dotted decimal notation: 10000000 00001011 00000011 00011111 128.11.3.31

IP address format: Dotted decimal notation: 10000000 00001011 00000011 00011111 128.11.3.31 IP address format: 7 24 Class A 0 Network ID Host ID 14 16 Class B 1 0 Network ID Host ID 21 8 Class C 1 1 0 Network ID Host ID 28 Class D 1 1 1 0 Multicast Address Dotted decimal notation: 10000000 00001011

More information

ECSE-6600: Internet Protocols Exam 2

ECSE-6600: Internet Protocols Exam 2 ECSE-6600: Internet Protocols Exam 2 Time: 75 min (strictly enforced) Points: 50 YOUR NAME: Be brief, but DO NOT omit necessary detail {Note: Simply copying text directly from the slides or notes will

More information

Measuring IP Performance. Geoff Huston Telstra

Measuring IP Performance. Geoff Huston Telstra Measuring IP Performance Geoff Huston Telstra What are you trying to measure? User experience Responsiveness Sustained Throughput Application performance quality Consistency Availability Network Behaviour

More information

D. SamKnows Methodology 20 Each deployed Whitebox performs the following tests: Primary measure(s)

D. SamKnows Methodology 20 Each deployed Whitebox performs the following tests: Primary measure(s) v. Test Node Selection Having a geographically diverse set of test nodes would be of little use if the Whiteboxes running the test did not have a suitable mechanism to determine which node was the best

More information

Network Layer: Network Layer and IP Protocol

Network Layer: Network Layer and IP Protocol 1 Network Layer: Network Layer and IP Protocol Required reading: Garcia 7.3.3, 8.1, 8.2.1 CSE 3213, Winter 2010 Instructor: N. Vlajic 2 1. Introduction 2. Router Architecture 3. Network Layer Protocols

More information