Spatial and temporal data mining of remote sensing data
|
|
|
- Abraham Wilson
- 10 years ago
- Views:
Transcription
1 Spatial and temporal data mining of remote sensing data Applied to erosion process discovery and analysis Rémi Andreoli Bluecham SAS Nazha Selmaoui-Folcher UNC Jonathan Maura Bluecham SAS Mougel Pierre-Nicolas UNC Claire Tinel CNES Delphine Fontanaz CNES Pléiades Days 2014, April 1-3, 2014, Toulouse - France
2 Spatial and temporal data mining of remote sensing data INTRODUCTION
3 Remote sensing data mining Space at the heart of your decisions The ANR-11-Cosinus FOSTER Project To discover, identify and monitor earth processes Applied to erosion In New Caledonia: The Great South Area In Europ: Super Sauze landslide(fr) Computer scientists, geologistsand engineerin decisionsupport systems PPME (University of New Caledonia New Caledonia) LIRIS (Lyon 1 University France) icube(strasbourg University France) LISTIC (Annecy-Chambéry University) Bluecham SAS (New Caledonia)
4 FOSTERS AIMS FOSTER s aims: Exploit remotesensingdata for erosionprocessesidentification and discovery Through 2 types of Spatio-temporal data mining Pixel based Object based Integrated in a collaborative process Heterogeneous data mining Enhance models results Results Integration to decision-making systems(qëhnelö Platform)
5 Spatial and temporal data mining of remote sensing data DATABASE OVER THE GREAT SOUTH OF NEW CALEDONIA
6 FromHR to VHR remotesensingdata 35 Remotesensingdata over the Great South of New Caledonia 23 Landsat7 ETM+ data 15 m to 30 m resolution 1999 to SPOT 4 & 5 data CNES ISIS project 20 m to 2.5 m resolution 1999 to GeoEye-1 coverage GeoEye Int Nov and June cm resolution
7 ORFEO Program : N 46 FOSTER / Erosion 2 main areas : -Yaté Coastalarea (560 km²) - Populated places - Mining areas - Worldclass industrial site -MerletReef(80 km²) - Natural Reserve - UNESCO World Heritage
8 651 km² < 1% cloud cover Space at the heart of your decisions Pléiades data over the main land Pleiadesdata of the 13th of July 2012 Tri-stereoscopic Pan+XS data over the main land Pleiades data of the 28th of September 2013 Pan+XS data over the Main land Pleiades data of the 14th of December 2013 Pan+XS data over the Main land Pleiades data of the 28th of December 2013 Pan+XS data over the Main land Pléiades data acquired the 13/07/2012 CNES 2012, Distribution Astrium Services / Sot Image S.A., France, tous droits réservés. Usage commercial interdit 29 mars 2014 Bluecham Pléiades data acquired the 28/09/2013 CNES 2013, Distribution Astrium Services / Sot Image S.A., France, tous droits réservés. Usage commercial interdit Pléiades data acquired the 14/12/2013 CNES 2013, Distribution Astrium Services / Sot Image S.A., France, tous droits réservés. Usage commercial interdit Pléiades data acquired the 28/12/2013 CNES 2013, Distribution Astrium Services / Sot Image S.A., France, tous droits réservés. Usage commercial interdit
9 Erosion landforms as seen by Pléiades VHR data Bare soils Lavaka Gullies Sediments plumes Sediments fan Sediments deposits Pléiades data acquired the 13/07/2012 CNES 2012, Distribution Astrium Services / Sot Image S.A., France, tous droits réservés. Usage commercial interdit 29 mars 2014 Bluecham
10 Impact of minig activities as seen by Pléiades VHR data Bare soils Increasing of linear erosion (gullies) Mud flow and landslides Pléiades data acquired the 13/07/2012 CNES 2012, Distribution Astrium Services / Sot Image S.A., France, tous droits réservés. Usage commercial interdit VALE New Caledonia Mining site 29 mars 2014 Bluecham
11 Spatial and temporal data mining of remote sensing data METHODS AND FIRST RESULTS
12 From data to models Data preprocessing Orthorectification Radiometric calibration Radiometric indexes as inputs for data mining processes NDVI Redness Brightness Blue, Green, Red and NIR bands individually
13 Multi-strip DSM generation Compared with Arnaud Durand, Rémi Andreoli, Claire Tinel, Hervé Yésou, 2013 ; Multi-strip DSM generation with Pleiades-HR data over a coastal and mountainous mining landscape, 33 rd EARSeL Symposium, 3-6 June 2013, Matera, italy Derived from Pléiades data acquired the 13/07/2012 CNES 2012, Distribution Astrium Services / Sot Image S.A., France, tous droits réservés. Usage commercial interdit
14 Spatio-temporal patterns Region based approaches Weighted path in directed attributed graphs Condensed attributed tree Cohesive Co-Evolution Patterns Pixel based approach SFG Patterns historical soils degadation Appliedon time series (more than2 images) Julea A., Méger N., Rigotti C., Trouvé E., Jolivet R., Bolon P., Efficient Spatiotemporal Mining of Satellite Image Time Series for Agricultural Monitoring. In journal: Transactions on Machine Learning and Data Mining, Volume 5, Number 1, pp 23-44, July 2012, ISSN Méger N., Rigotti C., Gueguen L., Lodge F., Pothier C., Andréoli R., Datcu M., Normalized Mutual Information-based Ranking of Spatio-temporal Maps, In Proc. of the 8th Conf. on Image Information Mining: Knowledge Discovery from Earth Observation Data (ESA-EUSC 2012), German Aerospace Centre (DLR), Oberpfaffenhofen, Germany, October 2012, 4 pages, CD-ROM. Derived and contains Landsat 7 ETM+ data acquired between 1999 and 2010 USGS mars 2014 Bluecham
15 Erosion forms identification and classification Needof VHR remotesensingdata (< 2 m resolution) Automatic discovery of Lavaka Image analysis(index and Sobelfiltering) combinedwithdata mining Edge detection + Clustering Preliminary results are very promising Pléiades data acquired the 13/07/2012 CNES 2012, Distribution Astrium Services / Sot Image S.A., France, tous droits réservés. Usage commercial interdit
16 Inputs in existing models Hybrid Erosion model(bluecham SAS with UNC and Landcare Research- NZ) RUSLE modified for New Caledonia Including physical paramters Soils type and landforms ( t/ha/year) Vegetation cover(in %) DEM parameters(slopes, morphometric index, streams) All these parameters can be derived from Pléiades tristereo multispectral data 29 mars 2014 From Pléiades data acquired the 13/07/2012 CNES 2012, Distribution Astrium Services / Sot Image S.A., France, tous droits réservés. Usage commercial interdit Bluecham
17 Spatial and temporal data mining of remote sensing data RESULTS
18 Data Space at the heart of your decisions Integration of processes and results for decision-makers Inside the Qëhnelö core Web processing Web mapping Results Inside dedicated datastores FOSTER project Universities datastores Analysis tools Active Learning (icube/ Strasbourg University) Contains Pléiades data acquired the 13/07/2012 CNES 2012, Distribution Astrium Services / Sot Image S.A., France, tous droits réservés. Usage commercial interdit
19 Case story: heavyrainsof 03rd of July 2013 Heavyrainsbetweenthe 2 nd and the 3 rd of July 2013 Exceptionnal rains over Yaté 714 mm in 24 hoursin Yaté Event return period estimated to 40 years. Main impact : sedimentsplumes withinthe bays Coral bleeching Dead fishes Wherethe sedimentsare comingfrom? Sediment production and transport estimates DSM from Pléiades tristereo data (13/07/2012) Landuse Pléiades tristereo data (13/07/2012) Bluecham erosion model Presentation Spatio-temporal data mining for erosion monitoring
20 Space at the heart of your decisions Case story: heavyrainsof 03rd of July 2013
21 Space at the heart of your decisions Case story: heavyrainsof 03rd of July 2013
22 July 2013 heavy rains Decision-makers Support to negociation between industries, Province and the town council Mining activities impact Rehabilitation areas Revegetation program Information to population Contains Pléiades data acquired the 13/07/2012 CNES 2012, Distribution Astrium Services / Sot Image S.A., France, tous droits réservés. Usage commercial interdit
23 Spatial and temporal data mining of remote sensing data CONCLUSION
24 Conclusion Pléiades VHR tristereo data Incredible inputs for existing erosion models Verypromisingresultsfor gulliesand lavakaidentification and mapping Direct users appropriation Integration of data and processes into a decision-making system Qëhnelö Platform Data as well as remote sensing time series processing Further works Data miningof VHR remotesensingdata exploitingthe 2013 Pléiades acquisition Explore the possibilites of tristereo DSM/DEM to characterize gullies and lavaka
25 ThankYou! MERCI Bluecham SAS 101 Promenade Roger Laroque BPA Nouméa CEDEX Nouvelle-Calédonie
Mangroves monitoring using VHR Pléiades data
Mangroves monitoring using VHR Pléiades data Under mining constraints Rémi Andreoli Bluecham SAS Cyril Marchand IRD Audrey Léopold UNC/IRD Claire Tinel CNES Delphine Fontanaz CNES Pléiades Days 2014, April
ANALYSIS OF FOREST CHANGE IN FIRE DAMAGE AREA USING SATELLITE IMAGES
ANALYSIS OF FOREST CHANGE IN FIRE DAMAGE AREA USING SATELLITE IMAGES Joon Mook Kang, Professor Joon Kyu Park, Ph.D Min Gyu Kim, Ph.D._Candidate Dept of Civil Engineering, Chungnam National University 220
Review for Introduction to Remote Sensing: Science Concepts and Technology
Review for Introduction to Remote Sensing: Science Concepts and Technology Ann Johnson Associate Director [email protected] Funded by National Science Foundation Advanced Technological Education program [DUE
Spectral Response for DigitalGlobe Earth Imaging Instruments
Spectral Response for DigitalGlobe Earth Imaging Instruments IKONOS The IKONOS satellite carries a high resolution panchromatic band covering most of the silicon response and four lower resolution spectral
Big data and Earth observation New challenges in remote sensing images interpretation
Big data and Earth observation New challenges in remote sensing images interpretation Pierre Gançarski ICube CNRS - Université de Strasbourg 2014 Pierre Gançarski Big data and Earth observation 1/58 1
SAMPLE MIDTERM QUESTIONS
Geography 309 Sample MidTerm Questions Page 1 SAMPLE MIDTERM QUESTIONS Textbook Questions Chapter 1 Questions 4, 5, 6, Chapter 2 Questions 4, 7, 10 Chapter 4 Questions 8, 9 Chapter 10 Questions 1, 4, 7
Landsat Monitoring our Earth s Condition for over 40 years
Landsat Monitoring our Earth s Condition for over 40 years Thomas Cecere Land Remote Sensing Program USGS ISPRS:Earth Observing Data and Tools for Health Studies Arlington, VA August 28, 2013 U.S. Department
APPLICATION OF MULTITEMPORAL LANDSAT DATA TO MAP AND MONITOR LAND COVER AND LAND USE CHANGE IN THE CHESAPEAKE BAY WATERSHED
APPLICATION OF MULTITEMPORAL LANDSAT DATA TO MAP AND MONITOR LAND COVER AND LAND USE CHANGE IN THE CHESAPEAKE BAY WATERSHED S. J. GOETZ Woods Hole Research Center Woods Hole, Massachusetts 054-096 USA
Remote sensing and GIS applications in coastal zone monitoring
Remote sensing and GIS applications in coastal zone monitoring T. Alexandridis, C. Topaloglou, S. Monachou, G.Tsakoumis, A. Dimitrakos, D. Stavridou Lab of Remote Sensing and GIS School of Agriculture
2.3 Spatial Resolution, Pixel Size, and Scale
Section 2.3 Spatial Resolution, Pixel Size, and Scale Page 39 2.3 Spatial Resolution, Pixel Size, and Scale For some remote sensing instruments, the distance between the target being imaged and the platform,
Using Remote Sensing Imagery to Evaluate Post-Wildfire Damage in Southern California
Graham Emde GEOG 3230 Advanced Remote Sensing February 22, 2013 Lab #1 Using Remote Sensing Imagery to Evaluate Post-Wildfire Damage in Southern California Introduction Wildfires are a common disturbance
LANDSAT 7 - GROUND SEGMENT ACTIVITIES AT THE GERMAN REMOTE SENSING DATA CENTER. Deutsches Fernerkundungsdatenzentrum (DFD) DLR (*)
LANDSAT 7 - GROUND SEGMENT ACTIVITIES AT THE GERMAN REMOTE SENSING DATA CENTER Günter Strunz (*), Hans-Dietrich Bettac (**), Jörg Gredel (*), Klaus-Dieter Reiniger (*) & Gunter Schreier (*) Deutsches Fernerkundungsdatenzentrum
WATER BODY EXTRACTION FROM MULTI SPECTRAL IMAGE BY SPECTRAL PATTERN ANALYSIS
WATER BODY EXTRACTION FROM MULTI SPECTRAL IMAGE BY SPECTRAL PATTERN ANALYSIS Nguyen Dinh Duong Department of Environmental Information Study and Analysis, Institute of Geography, 18 Hoang Quoc Viet Rd.,
Geospatial Software Solutions for the Environment and Natural Resources
Geospatial Software Solutions for the Environment and Natural Resources Manage and Preserve the Environment and its Natural Resources Our environment and the natural resources it provides play a growing
Land Use/Land Cover Map of the Central Facility of ARM in the Southern Great Plains Site Using DOE s Multi-Spectral Thermal Imager Satellite Images
Land Use/Land Cover Map of the Central Facility of ARM in the Southern Great Plains Site Using DOE s Multi-Spectral Thermal Imager Satellite Images S. E. Báez Cazull Pre-Service Teacher Program University
Big Data Challenge: Mining Heterogeneous Data. Prof. Mihai Datcu. German Aerospace Center (DLR) Munich Aerospace Faculty
Big Data Challenge: Mining Heterogeneous Data Prof. Mihai Datcu German Aerospace Center (DLR) Munich Aerospace Faculty Sensing & Big Data Big Data: - Computer hardware and the Cloud - Storage Challenges
A remote sensing instrument collects information about an object or phenomenon within the
Satellite Remote Sensing GE 4150- Natural Hazards Some slides taken from Ann Maclean: Introduction to Digital Image Processing Remote Sensing the art, science, and technology of obtaining reliable information
Resolutions of Remote Sensing
Resolutions of Remote Sensing 1. Spatial (what area and how detailed) 2. Spectral (what colors bands) 3. Temporal (time of day/season/year) 4. Radiometric (color depth) Spatial Resolution describes how
Nigerian Satellite Systems, and her Remote Sensing Data
Nigerian Satellite Systems, and her Remote Sensing Data S. O. Mohammed, PhD (Director-General/Chief Executive) National Space Research & Development Agency (NASRDA) A Presentation at the 2010 International
MODIS IMAGES RESTORATION FOR VNIR BANDS ON FIRE SMOKE AFFECTED AREA
MODIS IMAGES RESTORATION FOR VNIR BANDS ON FIRE SMOKE AFFECTED AREA Li-Yu Chang and Chi-Farn Chen Center for Space and Remote Sensing Research, National Central University, No. 300, Zhongda Rd., Zhongli
Mapping coastal landscapes in Sri Lanka - Report -
Mapping coastal landscapes in Sri Lanka - Report - contact : Jil Bournazel [email protected] November 2013 (reviewed April 2014) Table of Content List of Figures...ii List of Tables...ii Acronyms...ii
Selecting the appropriate band combination for an RGB image using Landsat imagery
Selecting the appropriate band combination for an RGB image using Landsat imagery Ned Horning Version: 1.0 Creation Date: 2004-01-01 Revision Date: 2004-01-01 License: This document is licensed under a
Preface. Ko Ko Lwin Division of Spatial Information Science University of Tsukuba 2008
1 Preface Remote Sensing data is one of the primary data sources in GIS analysis. The objective of this material is to provide fundamentals of Remote Sensing technology and its applications in Geographical
River Flood Damage Assessment using IKONOS images, Segmentation Algorithms & Flood Simulation Models
River Flood Damage Assessment using IKONOS images, Segmentation Algorithms & Flood Simulation Models Steven M. de Jong & Raymond Sluiter Utrecht University Corné van der Sande Netherlands Earth Observation
Operational Space- Based Crop Mapping Protocols at AAFC A. Davidson, H. McNairn and T. Fisette.
Operational Space- Based Crop Mapping Protocols at AAFC A. Davidson, H. McNairn and T. Fisette. Science & Technology Branch. Agriculture and Agri-Food Canada. 1. Introduction Space-Based Crop Mapping at
Remote Sensing Method in Implementing REDD+
Remote Sensing Method in Implementing REDD+ FRIM-FFPRI Research on Development of Carbon Monitoring Methodology for REDD+ in Malaysia Remote Sensing Component Mohd Azahari Faidi, Hamdan Omar, Khali Aziz
The USGS Landsat Big Data Challenge
The USGS Landsat Big Data Challenge Brian Sauer Engineering and Development USGS EROS [email protected] U.S. Department of the Interior U.S. Geological Survey USGS EROS and Landsat 2 Data Utility and Exploitation
High Resolution Digital Surface Models and Orthoimages for Telecom Network Planning
Renouard, Lehmann 241 High Resolution Digital Surface Models and Orthoimages for Telecom Network Planning LAURENT RENOUARD, S ophia Antipolis FRANK LEHMANN, Berlin ABSTRACT DLR of Germany and ISTAR of
RESOLUTION MERGE OF 1:35.000 SCALE AERIAL PHOTOGRAPHS WITH LANDSAT 7 ETM IMAGERY
RESOLUTION MERGE OF 1:35.000 SCALE AERIAL PHOTOGRAPHS WITH LANDSAT 7 ETM IMAGERY M. Erdogan, H.H. Maras, A. Yilmaz, Ö.T. Özerbil General Command of Mapping 06100 Dikimevi, Ankara, TURKEY - (mustafa.erdogan;
Comparison of ALOS-PALSAR and TerraSAR-X Data in terms of Detecting Settlements First Results
ALOS 2008 Symposium, 3-7 November Rhodes, Greece Comparison of ALOS-PALSAR and TerraSAR-X Data in terms of Detecting Settlements First Results Thomas Esch*, Achim Roth*, Michael Thiel, Michael Schmidt*,
Lake Monitoring in Wisconsin using Satellite Remote Sensing
Lake Monitoring in Wisconsin using Satellite Remote Sensing D. Gurlin and S. Greb Wisconsin Department of Natural Resources 2015 Wisconsin Lakes Partnership Convention April 23 25, 2105 Holiday Inn Convention
High Resolution Information from Seven Years of ASTER Data
High Resolution Information from Seven Years of ASTER Data Anna Colvin Michigan Technological University Department of Geological and Mining Engineering and Sciences Outline Part I ASTER mission Terra
The RapidEye optical satellite family for high resolution imagery
'Photogrammetric Week 01' D. Fritsch & R. Spiller, Eds. Wichmann Verlag, Heidelberg 2001. Scherer, Krischke 139 The RapidEye optical satellite family for high resolution imagery STEFAN SCHERER and MANFRED
Remote Sensing and GIS Application In Change Detection Study In Urban Zone Using Multi Temporal Satellite
Remote Sensing and GIS Application In Change Detection Study In Urban Zone Using Multi Temporal Satellite R.Manonmani, G.Mary Divya Suganya Institute of Remote Sensing, Anna University, Chennai 600 025
How To Make A Remote Sensing Image Realtime Processing For Disaster Emergency Response
Remote sensing image real-time processing for rapid disaster emergency response Dr.Haigang Sui LIESMARS, Wuhan University Oct 23, 2013 Outline 1 Major requirements in disaster emergency response 2 Main
APPLICATION OF TERRA/ASTER DATA ON AGRICULTURE LAND MAPPING. Genya SAITO*, Naoki ISHITSUKA*, Yoneharu MATANO**, and Masatane KATO***
APPLICATION OF TERRA/ASTER DATA ON AGRICULTURE LAND MAPPING Genya SAITO*, Naoki ISHITSUKA*, Yoneharu MATANO**, and Masatane KATO*** *National Institute for Agro-Environmental Sciences 3-1-3 Kannondai Tsukuba
ENVI Classic Tutorial: Atmospherically Correcting Multispectral Data Using FLAASH 2
ENVI Classic Tutorial: Atmospherically Correcting Multispectral Data Using FLAASH Atmospherically Correcting Multispectral Data Using FLAASH 2 Files Used in this Tutorial 2 Opening the Raw Landsat Image
Digital image processing
746A27 Remote Sensing and GIS Lecture 4 Digital image processing Chandan Roy Guest Lecturer Department of Computer and Information Science Linköping University Digital Image Processing Most of the common
HIGH RESOLUTION REMOTE SENSING AND GIS FOR URBAN ANALYSIS: CASE STUDY BURITIS DISTRICT, BELO HORIZONTE, MINAS GERAIS
HIGH RESOLUTION REMOTE SENSING AND GIS FOR URBAN ANALYSIS: CASE STUDY BURITIS DISTRICT, BELO HORIZONTE, MINAS GERAIS Hermann Johann Heinrich Kux Senior Researcher III INPE, Remote Sensing Division DAAD
An Assessment of the Effectiveness of Segmentation Methods on Classification Performance
An Assessment of the Effectiveness of Segmentation Methods on Classification Performance Merve Yildiz 1, Taskin Kavzoglu 2, Ismail Colkesen 3, Emrehan K. Sahin Gebze Institute of Technology, Department
MULTIPURPOSE USE OF ORTHOPHOTO MAPS FORMING BASIS TO DIGITAL CADASTRE DATA AND THE VISION OF THE GENERAL DIRECTORATE OF LAND REGISTRY AND CADASTRE
MULTIPURPOSE USE OF ORTHOPHOTO MAPS FORMING BASIS TO DIGITAL CADASTRE DATA AND THE VISION OF THE GENERAL DIRECTORATE OF LAND REGISTRY AND CADASTRE E.ÖZER, H.TUNA, F.Ç.ACAR, B.ERKEK, S.BAKICI General Directorate
Remote Sensing in Natural Resources Mapping
Remote Sensing in Natural Resources Mapping NRS 516, Spring 2016 Overview of Remote Sensing in Natural Resources Mapping What is remote sensing? Why remote sensing? Examples of remote sensing in natural
ASSESSMENT OF FOREST RECOVERY AFTER FIRE USING LANDSAT TM IMAGES AND GIS TECHNIQUES: A CASE STUDY OF MAE WONG NATIONAL PARK, THAILAND
ASSESSMENT OF FOREST RECOVERY AFTER FIRE USING LANDSAT TM IMAGES AND GIS TECHNIQUES: A CASE STUDY OF MAE WONG NATIONAL PARK, THAILAND Sunee Sriboonpong 1 Yousif Ali Hussin 2 Alfred de Gier 2 1 Forest Resource
Nature Values Screening Using Object-Based Image Analysis of Very High Resolution Remote Sensing Data
Nature Values Screening Using Object-Based Image Analysis of Very High Resolution Remote Sensing Data Aleksi Räsänen*, Anssi Lensu, Markku Kuitunen Environmental Science and Technology Dept. of Biological
Data Processing Flow Chart
Legend Start V1 V2 V3 Completed Version 2 Completion date Data Processing Flow Chart Data: Download a) AVHRR: 1981-1999 b) MODIS:2000-2010 c) SPOT : 1998-2002 No Progressing Started Did not start 03/12/12
Tennessee Watershed Modeling Tools. Southern Region Watershed Meeting, July 2005. Forbes Walker University of Tennessee Extension
Tennessee Watershed Modeling Tools Southern Region Watershed Meeting, July 2005 Forbes Walker University of Tennessee Extension Outline Land Use and Water Quality in Tennessee Watershed models Watershed
ENVI THE PREMIER SOFTWARE FOR EXTRACTING INFORMATION FROM GEOSPATIAL IMAGERY.
ENVI THE PREMIER SOFTWARE FOR EXTRACTING INFORMATION FROM GEOSPATIAL IMAGERY. ENVI Imagery Becomes Knowledge ENVI software uses proven scientific methods and automated processes to help you turn geospatial
Remote Sensing and Land Use Classification: Supervised vs. Unsupervised Classification Glen Busch
Remote Sensing and Land Use Classification: Supervised vs. Unsupervised Classification Glen Busch Introduction In this time of large-scale planning and land management on public lands, managers are increasingly
Assessing Hurricane Katrina Damage to the Mississippi Gulf Coast Using IKONOS Imagery
Assessing Hurricane Katrina Damage to the Mississippi Gulf Coast Using IKONOS Imagery Joseph P. Spruce Science Systems and Applications, Inc. John C., MS 39529 Rodney McKellip NASA Project Integration
DETECTING LANDUSE/LANDCOVER CHANGES ALONG THE RING ROAD IN PESHAWAR CITY USING SATELLITE REMOTE SENSING AND GIS TECHNIQUES
------------------------------------------------------------------------------------------------------------------------------- Full length Research Paper -------------------------------------------------------------------------------------------------------------------------------
DEVELOPMENT OF A SUPERVISED SOFTWARE TOOL FOR AUTOMATED DETERMINATION OF OPTIMAL SEGMENTATION PARAMETERS FOR ECOGNITION
DEVELOPMENT OF A SUPERVISED SOFTWARE TOOL FOR AUTOMATED DETERMINATION OF OPTIMAL SEGMENTATION PARAMETERS FOR ECOGNITION Y. Zhang* a, T. Maxwell, H. Tong, V. Dey a University of New Brunswick, Geodesy &
SMEX04 Land Use Classification Data
Notice to Data Users: The documentation for this data set was provided solely by the Principal Investigator(s) and was not further developed, thoroughly reviewed, or edited by NSIDC. Thus, support for
How To Use Data From Copernicus And Big Data To Help The Environment
Copernicus and Big Data: Challenges and Opportunities Alessandro Annoni European Commission Joint Research Centre www.jrc.ec.europa.eu Serving society Stimulating innovation Supporting legislation Big
ABSTRACT INTRODUCTION PURPOSE
EVALUATION OF TSUNAMI DISASTER BY THE 2011 OFF THE PACIFIC COAST OF TOHOKU EARTHQUAKE IN JAPAN BY USING TIME SERIES SATELLITE IMAGES WITH MULTI RESOLUTION Hideki Hashiba Associate Professor Department
The DLR Multi Mission EO Ground Segment
The DLR Multi Mission EO Ground Segment Payload Ground Segment Erhard Diedrich Remote Sensing Workshop Mexico 22-24 April 2008 DLR Ground Segment for Earth Observation: Servicing GMES, national and commercial
Forest Service Southern Region Jess Clark & Kevin Megown USFS Remote Sensing Applications Center (RSAC)
Hurricane Katrina Damage Assessment on Lands Managed by the Desoto National Forest using Multi-Temporal Landsat TM Imagery and High Resolution Aerial Photography Renee Jacokes-Mancini Forest Service Southern
Generation of Cloud-free Imagery Using Landsat-8
Generation of Cloud-free Imagery Using Landsat-8 Byeonghee Kim 1, Youkyung Han 2, Yonghyun Kim 3, Yongil Kim 4 Department of Civil and Environmental Engineering, Seoul National University (SNU), Seoul,
Recent advances in Satellite Imagery for Oil and Gas Exploration and Production. DESK AND DERRICK APRIL 2016 PRESENTED BY GARY CREWS---RETIRED
Recent advances in Satellite Imagery for Oil and Gas Exploration and Production. DESK AND DERRICK APRIL 2016 PRESENTED BY GARY CREWS---RETIRED Agenda Brief review of state of the applications in 2010 Basics
TerraColor White Paper
TerraColor White Paper TerraColor is a simulated true color digital earth imagery product developed by Earthstar Geographics LLC. This product was built from imagery captured by the US Landsat 7 (ETM+)
Analysis of Landsat ETM+ Image Enhancement for Lithological Classification Improvement in Eagle Plain Area, Northern Yukon
Analysis of Landsat ETM+ Image Enhancement for Lithological Classification Improvement in Eagle Plain Area, Northern Yukon Shihua Zhao, Department of Geology, University of Calgary, [email protected],
RULE INHERITANCE IN OBJECT-BASED IMAGE CLASSIFICATION FOR URBAN LAND COVER MAPPING INTRODUCTION
RULE INHERITANCE IN OBJECT-BASED IMAGE CLASSIFICATION FOR URBAN LAND COVER MAPPING Ejaz Hussain, Jie Shan {ehussain, jshan}@ecn.purdue.edu} Geomatics Engineering, School of Civil Engineering, Purdue University
Supervised Classification workflow in ENVI 4.8 using WorldView-2 imagery
Supervised Classification workflow in ENVI 4.8 using WorldView-2 imagery WorldView-2 is the first commercial high-resolution satellite to provide eight spectral sensors in the visible to near-infrared
Spanish Earth Observation Programme
Spanish Earth Observation Mónica LópezL Head of SEOSAT / Ingenio ESA s Department - Directorate of Aerospace s CDTI Centre for the Development of Industrial Technology 1 AGENDA 1. Spanish Earth Observation
Impact of water harvesting dam on the Wadi s morphology using digital elevation model Study case: Wadi Al-kanger, Sudan
Impact of water harvesting dam on the Wadi s morphology using digital elevation model Study case: Wadi Al-kanger, Sudan H. S. M. Hilmi 1, M.Y. Mohamed 2, E. S. Ganawa 3 1 Faculty of agriculture, Alzaiem
Silviu Panica, Marian Neagul, Daniela Zaharie and Dana Petcu (Romania)
Silviu Panica, Marian Neagul, Daniela Zaharie and Dana Petcu (Romania) Outline Introduction EO challenges; EO and classical/cloud computing; EO Services The computing platform Cluster -> Grid -> Cloud
Multinomial Logistics Regression for Digital Image Classification
Multinomial Logistics Regression for Digital Image Classification Dr. Moe Myint, Chief Scientist, Mapping and Natural Resources Information Integration (MNRII), Switzerland [email protected] KEY
Multiscale Object-Based Classification of Satellite Images Merging Multispectral Information with Panchromatic Textural Features
Remote Sensing and Geoinformation Lena Halounová, Editor not only for Scientific Cooperation EARSeL, 2011 Multiscale Object-Based Classification of Satellite Images Merging Multispectral Information with
Using Remote Sensing to Monitor Soil Carbon Sequestration
Using Remote Sensing to Monitor Soil Carbon Sequestration E. Raymond Hunt, Jr. USDA-ARS Hydrology and Remote Sensing Beltsville Agricultural Research Center Beltsville, Maryland Introduction and Overview
EcoInformatics International Inc.
1 von 10 03.08.2010 14:25 EcoInformatics International Inc. Home Services - solutions Projects Concepts Tools Links Contact EXPLORING BEAVER HABITAT AND DISTRIBUTION WITH GOOGLE EARTH: THE LONGEST BEAVER
CBP Efforts to Identify Priority Areas and Enhance Monitoring in the Bay Watershed
CBP Efforts to Identify Priority Areas and Enhance Monitoring in the Bay Watershed Scott Phillips, USGS Potomac Monitoring Forum U.S. Department of the Interior U.S. Geological Survey Outline Chesapeake
Monitoring Soil Moisture from Space. Dr. Heather McNairn Science and Technology Branch Agriculture and Agri-Food Canada [email protected].
Monitoring Soil Moisture from Space Dr. Heather McNairn Science and Technology Branch Agriculture and Agri-Food Canada [email protected] What is Remote Sensing? Scientists turn the raw data collected
Multisensor Data Integration in O&G Business Lutz Petrat Hélène Lemonnier Michael Hall
Multisensor Data in O&G Business Lutz Petrat Hélène Lemonnier Michael Hall ESA Oil and Gas Workshop 15/09/2010, Frascati, Italy Satellite Products and Services during a typical O&G project Project Life
INVESTIGA I+D+i 2013/2014
INVESTIGA I+D+i 2013/2014 SPECIFIC GUIDELINES ON AEROSPACE OBSERVATION OF EARTH Text by D. Eduardo de Miguel October, 2013 Introducction Earth observation is the use of remote sensing techniques to better
The Role of SPOT Satellite Images in Mapping Air Pollution Caused by Cement Factories
The Role of SPOT Satellite Images in Mapping Air Pollution Caused by Cement Factories Dr. Farrag Ali FARRAG Assistant Prof. at Civil Engineering Dept. Faculty of Engineering Assiut University Assiut, Egypt.
2. Typology of space value chain actors
Toulouse Space Show 2012 : IISL/IAA Space Law and Policy Symposium Session 1a : Towards effective sustainability for outer space activities ECONOMICAL SUSTAINABILITY OF THE SPACE VALUE CHAIN : ROLE OF
Improving global data on forest area & change Global Forest Remote Sensing Survey
Improving global data on forest area & change Global Forest Remote Sensing Survey work by FAO and partners - Adam Gerrand, E. Lindquist, R. D Annunzio, M. Wilkie, FAO, - F. Achard et al. TREES team at
Some elements of photo. interpretation
Some elements of photo Shape Size Pattern Color (tone, hue) Texture Shadows Site Association interpretation Olson, C. E., Jr. 1960. Elements of photographic interpretation common to several sensors. Photogrammetric
LEOworks - a freeware to teach Remote Sensing in Schools
LEOworks - a freeware to teach Remote Sensing in Schools Wolfgang Sulzer Institute for Geography and Regional Science University of Graz Heinrichstrasse 36, A-8010 Graz/Austria [email protected]
Benefits of local satellite tasking and real-time data downlink
Benefits of local satellite tasking and real-time data downlink Adrian Zevenbergen General Manager European Space Imaging EUSI s IKONOS Communication CONE 2,400 km radius 18 million km² covered Satellite
Pixel-based and object-oriented change detection analysis using high-resolution imagery
Pixel-based and object-oriented change detection analysis using high-resolution imagery Institute for Mine-Surveying and Geodesy TU Bergakademie Freiberg D-09599 Freiberg, Germany [email protected]
TAMARISK MAPPING & MONITORING USING HIGH RESOLUTION SATELLITE IMAGERY. Jason W. San Souci 1. John T. Doyle 2
TAMARISK MAPPING & MONITORING USING HIGH RESOLUTION SATELLITE IMAGERY Jason W. San Souci 1 John T. Doyle 2 ABSTRACT QuickBird high resolution multispectral satellite imagery (60 cm GSD, 4 spectral bands)
Imagery. 1:50,000 Basemap Generation From Satellite. 1 Introduction. 2 Input Data
1:50,000 Basemap Generation From Satellite Imagery Lisbeth Heuse, Product Engineer, Image Applications Dave Hawkins, Product Manager, Image Applications MacDonald Dettwiler, 3751 Shell Road, Richmond B.C.
Introduction to data mining. Example of remote sensing image analysis
Ocean's Big Data Mining, 2014 (Data mining in large sets of complex oceanic data: new challenges and solutions) 8-9 Sep 2014 Brest (France) Monday, September 8, 2014, 4:00 pm - 5:30 pm Introduction to
Description of Simandou Archaeological Potential Model. 13A.1 Overview
13A Description of Simandou Archaeological Potential Model 13A.1 Overview The most accurate and reliable way of establishing archaeological baseline conditions in an area is by conventional methods of
Overview of NASA Applied Remote Sensing Training Program on Water Resources and Disaster Management
Overview of NASA Applied Remote Sensing Training Program on Water Resources and Disaster Management ARSET Applied Remote SEnsing Training A project of NASA Applied Sciences Outline About ARSET ARSET Trainings
Partitioning the Conterminous United States into Mapping Zones for Landsat TM Land Cover Mapping
Partitioning the Conterminous United States into Mapping Zones for Landsat TM Land Cover Mapping Collin Homer Raytheon, EROS Data Center, Sioux Falls, South Dakota 605-594-2714 [email protected] Alisa Gallant
Remote sensing is the collection of data without directly measuring the object it relies on the
Chapter 8 Remote Sensing Chapter Overview Remote sensing is the collection of data without directly measuring the object it relies on the reflectance of natural or emitted electromagnetic radiation (EMR).
The premier software for extracting information from geospatial imagery.
Imagery Becomes Knowledge ENVI The premier software for extracting information from geospatial imagery. ENVI Imagery Becomes Knowledge Geospatial imagery is used more and more across industries because
