Remote sensing is the collection of data without directly measuring the object it relies on the

Size: px
Start display at page:

Download "Remote sensing is the collection of data without directly measuring the object it relies on the"

Transcription

1 Chapter 8 Remote Sensing Chapter Overview Remote sensing is the collection of data without directly measuring the object it relies on the reflectance of natural or emitted electromagnetic radiation (EMR). EMR can be emitted by the sun and sensed by photographic film, or it can be sent by a transmitter, e.g., radar and the returned energy sensed. Remote sensing has become a key means of data collection for a number of reasons. Mainly though, it allows for systematic and accurate collection of geographic information. Remote sensing is defined very broadly in this chapter: A measurement of an object s characteristics from a distance using reflected or emitted electro-magnetic energy. This definition means remote sensing includes all kinds of photography, aerial imagery, satellite sensors, and any kind of laser. Remote sensing involves different types of sensor technologies ranging from photographic emulsions to digital chips. It also involves a vast array of storage media including everything from photographic film to computer files. As you can imagine, the broad definition means remote sensing overlaps with a number of other fields. This is indeed true and important. For example, the discipline of surveying has changed enormously with the introduction of laserbased distance finding technology. 1

2 The reason for defining remote sensing so broadly is that it is a very important geographic information technology. Remote sensing, in general, offers three advantages over other forms of data collection and geographic information. First, it makes it much easier to systematically recognize things and events over a large area. Second, it makes it easier and less costly to revise most maps. Third, digital remote sensing images can be used directly by other applications. There are some caveats to these advantages that you will find out about in this chapter. This chapter is purely introductory in nature and will skim over many of the crucial details and physics, but you should end up with a solid understanding of what remote sensing involves and what some of key issues and applications for remote sensing are. 2

3 Figure 1 Different sensor types. Passive sensors use only reflected EMR. Active sensor use emitted EMR Principles Electromagnetic radiation Following the definition for this chapter, any understanding of remote sensing, regardless of the sensor technology, storage media, or application starts with understanding electromagnetic radiation. First off, remote sensing s detection of EMR has three characteristics. 3

4 1. It only detects EMR from the surface of an object, although some sensors allow for penetration 2. There is no contact between the sensor and the object. 3. All remote sensing measurements use reflected energy (usually from the sun) or emitted energy (from a radar station or plants) for example Figure 2 Emitted and reflected electormagnetic energy The EMR detected by remote sensing technologies varies. It depends on the desired application 4

5 as well as on the cost of different remote sensing data collections. Figure 3 The electromagnet spectrum showing common examples (Based on: Spectral Signature The EMR emitted or reflected by a thing or event varies. These differences are the basis for distinguishing things and events. The reflections and emissions of a particular thing or event can be associated with a particular spectral signature that is used to identify where these things and events are located in a remote sensing image. 5

6 Figure 4 Examples of spectral signatures. Note that a micrometer is 10-6 meter (based on image from It also varies by time of day, season, weather conditions, moisture levels in the soil, wind, and a number of other factors. The physics involved in addressing these differences are critical to the success of remote sensing. They are also very complex, but you need to be aware of the differences and a common-place solution. This solution is called ground-truthing and involves having some people in the field before, during, or after data collection who may take similar sensor measurements or observations. These measurements and observations can be used later to verify the remote sensing image or data and possibly define correction parameters for adjusting the remotely sensed data to correspond to ground observations. Needless to say, this is highly complex and requires very well trained specialists to assess these factors and detect patterns in the remote sensing data. 6

7 Bands The detection of patterns is helped by the use of different ranges or bands of EMR in sensing technology. Each band, as they are called commonly, refers to a particular range of wavelength for that sensor. The bands available for a particular sensor depend greatly on the purpose of the sensor and technical characteristics of the sensor. Some sensors have only a few bands in a narrow range of the total EMR, others are much broader. For example, Landsat 7 has seven bands: Band µm Blue-Green Band µm Green Band µm Red Band µm Near IR Band µm Mid-IR Band µm Thermal IR Band µm Mid-IR The following figure (xx) shows the different bands and how they can be combined for an application. 7

8 8 Figure 5 Illustration of different bandwidths used by Landsat 7 (Source:

9 Another widely used satellite, SPOT 5, offers a different set of bandwidths. [insert table ch8-table1-spot bands.doc] [insert table ch8-table2-landsat bands.doc] Resolution Resolution of remote sensing distinguishes between spatial and temporal. Spatial is the size of the unit recognized by the sensor, temporal is the frequency that a satellite visits the same place. Spatial resolution is usually given in a distance measurement. For example, most SPOT sensors have a resolution of 10 meters; some have a higher resolution of 2.5 meters. The resolution does not mean that an object of that size can be consistently detected and identified. Various atmospheric and situational characteristics play into this, and you might rather want to think of this as simply the measure of side of one of raster cells detected by the remote sensing technology. A raster cell is often also referred to as a pixel. 9

10 Figure 6 Comparison of spatial resolutions (Source: Temporal resolution depends greatly on the spatial resolution of the sensing technology. High spatial resolutions will record a great amount of data for a small area, requiring much longer to return to a place than low spatial resolution sensors. For example, Landsat with 30 m spatial resolution revisits a place only once every 16 days. The Advanced Very High-Resolution Radiometer (AVHRR) has a spatial resolution of 1.1 km and revisits a place once every day. 10

11 Types of Sensors The discussion of principles focused on satellite based remote sensing technology. This is only part of available remote sensing technologies. The same technologies used for satellites, or adaptions thereof are often used for remote sensing technologies used by airplanes, helicopters, and in some case hand-held formats. Photography Photography is the most common remote sensing technology because it is very commonplace. In fact, some of the first military remote sensing satellites used cameras with film in the 1960s. The film was dropped out of the satellite in a special heat-resistance re-entry container with a parachute and picked up out of the air by an airplane. Satellites still use cameras, but most of the images are now captured and stored digitally. Satellite sensor technologies detecting EMR in this range are often called panchromatic. The resolutions of photographic images are very high, and the main issue related to determining spatial and temporal resolution is the cost. Of course, many governments and companies use aerial photography as a means of data collection. Collected using ground reference points and calculations to remove subtle changes in the airplanes movements, two aerial photographs made simultaneously can be used to make a stereoscopic image. They are a very useful type of remote sensing because when viewed with some additional equipment, it is possible for most people to distinguish heights and elevation changes. A single photographic image which also has the effects of elevation change removed (called planimetric) is called an orthophoto and is georeferenced to a coordinate system. 11

12 Infrared Usually when we refer to photographic remote sensing we mean recording EMR in the visible wavelength spectrum, but this can be broadened to include infrared. This can be done with the chemical applied to photographic film (called an emulsion) or by using digital devices built and calibrated to detect this EMR spectrum. Multispectrum The data collected and images made with Landsat, SPOT, and similar sensing technologies are known as multispectrum because of the different bands. The variability of multispectrum remote sensors opens up a vast number of application possibilities. Hyperspectral This type of sensor technology collects more than 16 bands simultaneously. For example the Hyperion satellite collects 220 bands from blue to short wave infrared in equal steps (from 0.4 to 2.5 µm) with a 30 meter spatial resolution. Flying in formation with Landsat 7, images from Hyperion can be used easily with Landsat 7 images and data. Radar Radar is an important remote sensing sensor type. It s ability to penetrate through cloud cover and into the ground make it very useful for applications in areas with frequent cloud-cover and 12

13 for geological work. Laser (LiDAR) Not used on satellites, but on planes, helicopters, and from the ground, LIght Detection And Ranging (LiDAR) uses laser generate light pulses in the same way radar uses radio waves. LiDAR is a highly accurate and cost-effective means of collecting elevation data. Because of its speed, hand-held units are now being introduced to quickly scan an area, e.g., a crime or accident scene. Applications Images acquired by satellites have been used to produce local, regional, national, and global composite multispectral mosaics. They have been used in countless applications including monitoring timber losses in the U.S. Pacific Northwest, establishing urban growth, and measuring forest cover. Remote sensing images have also been used in military operations, locate mineral deposits, monitor strip mining, and assess natural changes due to fires and insect infestations. Data collection in general Thinking about remote sensing in a most general sense, we can easily distinguish types of data collection by the platform and by sensor technology. If the remote sensing is based on satellite images or data, in most cases we are likely to have multispectral, hyperspectral, or radar images or data. If it is airplane based, then we are more likely to have aerial photography, multispectral, 13

14 or LiDAR images or data. If it is ground based, then we are most likely to find photography, multispectral, or LiDAR images and data. These rules of thumb have exceptions of course, and will change as certain types of sensor technology and remote sensing systems become cheaper. They are simply helpful in seeing the relationship between costs, types of data, and application types. Applications in smaller areas tend to use airplane based or ground based sensor technologies; larger areas tend towards satellite based remote sensing. Coastal monitoring An important application area is coastal monitoring. Because of the key role of dynamic processes in coastal erosion coastal monitoring applications tend to use remote sensing sources that can repeat their observations often. Aerial and LiDAR photography and data may be suitable for smaller areas if the area is generally cloud-free; multispectral satellite images and data may be useful for larger areas, and radar may be used for large areas, or areas with frequent cloud cover. 14

15 Figure 7 Multispectral sensors produce data and imagery to help monitor and model complex coastal changes (Source: Global change With an increase in average temperatures world-wide, the study of changes to glaciers and artic and Antarctic ice fields has benefited greatly from the use of remote sensing images and data. The frequency of observations helps scientists keep track of changes to ice fields and even ice bergs in the water. Detailed observations, combined with measurements on the ground, help researchers monitor minute changes in ice fields. Made available online to other researchers, these measurements, images, and data have become a crucial part of a key area of global change research. 15

16 Figure 8 Atmospheric monitoring is a crucial part of global change research, which sensors on the TIMED spacecraft are especially designed to observe (Source: RST 16

17 Figure 9 A composite of different multispectral data to produce a 'picture-like' image of the world (Source: Urban Dynamics Because of the frequency of observation, satellite based remote sensing images and data have 17

18 proven to be very useful in documenting and assessing the growth of large cities around the world and distinguishing changes and processes. Urban dynamics are complex, but individual changes in a single area can be compared to assess the impacts of various policies and urban planning programs. This data and models developed to understand past growth can also be used to make predictions of future growth and assess alternative policy and planning proposals Figure 10 Aerial imagery (here from a digitized aerial photograph) can show a great amount of detail (Source: USGS) Precision Farming Detailed remote sensing images and data, from a variety of platforms, are used by farmers to reduce and become more efficient in the application of fertilizers and pesticides. Agricultural factors including plant health, plant cover and soil moisture can be monitored with remote sensing data. By combining the remote sensing images and data from different sources, 18

19 deficiencies of one remote sensing system can be made up. For instance, Landsat provides multispectral data on average only once every 16 days for any place in the continental US and is impaired by cloud coverage, even partially cloudy weather. By using radar data, scientists have been able to help farmers keep track of changing soil and plant conditions more frequently that is especially critical during particular phases of plant growth, e.g., pollination. 19

20 Figure 11 Center pivot irrigation systems create red circles of healthy vegetation in this image of croplands near Garden City, Kansas (Source: 20

21 Chapter 8 Web Resources One of the most consumer-friendly remote sensing-based web applications (registration required for full access) Information about LandSat 7 NASA provides many fascinating images at this web site Documentation of wetland destruction using animations This website offers in depth discussion of everything related to remote sensing with an emphasis on Landsat, but covering other sensor technologies in great detail For information about SPOT satellites 21

22 Another source for information about Landsat satellites An excellent interactive tutorial and various aspects of remote sensing A tutorial introduction to LiDAR 22

23 Review Questions 1. What does the term LiDAR stand for? 2. What does the term panchromatic stand for? 3. What often prevents the wider use of remote sensing? 4. What is the oldest commercial satellite system that is still in use? 5. What are some general characteristics of using remote sensing data? 6. How are surveying and remote sensing growing together? 7. What were some of the first applications for radar-based remote sensing? 8. What is the highest panchromatic remote sensing now available? 9. When was remote sensing first used? 10. How is remote sensing data usually stored? Chapter 8 Chapter Readings Gibson, Paul J. Introductory remote sensing: principles and concepts. London, New York, Routledge,

24 Sabins, Floyd F. Remote sensing: principles and interpretation. 3rd ed. New York, W. H. Freeman and Co., c1997. Lillesand, Thomas M., Ralph W. Kiefer, and Jonathan W. Chipman. Remote sensing and image interpretation. 5th ed. New York, Wiley, c2004. Conway, Eric D. An introduction to satellite image interpretation. Baltimore, Johns Hopkins University Press, c1997. Chapter Glossary Note: These entries are largely based on the glossary from NASA s Remote Sensing Tutorial (RST) Landsat -a series of US satellites that acquire multispectral images. 24

25 Oblique photograph - photograph acquired with a camera directed at an angle between horizontal and vertical orientations. Orthophotograph - a vertical aerial photograph from which the distortions due to varying elevation, tilt, and surface topography have been removed. Radar - acronym for radio detection and ranging. SPOT - Système Probatoire d'observation del la Terre, French remote sensing satellite system Stereoscope - binocular optical device for viewing overlapping images or diagrams. The left eye sees only the left image, and the right eye sees only the right image. When configured correctly, the viewer sees the images in three dimensions. Supervised classification - information analysis technique in which the operator provides information that the computer uses to assign pixels to categories. Unsupervised classification - information analysis technique in which the computer assigns pixels to categories with no instructions from the operator. 25

Review for Introduction to Remote Sensing: Science Concepts and Technology

Review for Introduction to Remote Sensing: Science Concepts and Technology Review for Introduction to Remote Sensing: Science Concepts and Technology Ann Johnson Associate Director ann@baremt.com Funded by National Science Foundation Advanced Technological Education program [DUE

More information

A remote sensing instrument collects information about an object or phenomenon within the

A remote sensing instrument collects information about an object or phenomenon within the Satellite Remote Sensing GE 4150- Natural Hazards Some slides taken from Ann Maclean: Introduction to Digital Image Processing Remote Sensing the art, science, and technology of obtaining reliable information

More information

How Landsat Images are Made

How Landsat Images are Made How Landsat Images are Made Presentation by: NASA s Landsat Education and Public Outreach team June 2006 1 More than just a pretty picture Landsat makes pretty weird looking maps, and it isn t always easy

More information

Resolutions of Remote Sensing

Resolutions of Remote Sensing Resolutions of Remote Sensing 1. Spatial (what area and how detailed) 2. Spectral (what colors bands) 3. Temporal (time of day/season/year) 4. Radiometric (color depth) Spatial Resolution describes how

More information

SAMPLE MIDTERM QUESTIONS

SAMPLE MIDTERM QUESTIONS Geography 309 Sample MidTerm Questions Page 1 SAMPLE MIDTERM QUESTIONS Textbook Questions Chapter 1 Questions 4, 5, 6, Chapter 2 Questions 4, 7, 10 Chapter 4 Questions 8, 9 Chapter 10 Questions 1, 4, 7

More information

Lectures Remote Sensing

Lectures Remote Sensing Lectures Remote Sensing OPTICAL REMOTE SENSING dr.ir. Jan Clevers Centre of Geo-Information Environmental Sciences Wageningen UR EM Spectrum and Windows reflection emission 0.3 0.6 1.0 5.0 10 50 100 200

More information

Active and Passive Microwave Remote Sensing

Active and Passive Microwave Remote Sensing Active and Passive Microwave Remote Sensing Passive remote sensing system record EMR that was reflected (e.g., blue, green, red, and near IR) or emitted (e.g., thermal IR) from the surface of the Earth.

More information

2.3 Spatial Resolution, Pixel Size, and Scale

2.3 Spatial Resolution, Pixel Size, and Scale Section 2.3 Spatial Resolution, Pixel Size, and Scale Page 39 2.3 Spatial Resolution, Pixel Size, and Scale For some remote sensing instruments, the distance between the target being imaged and the platform,

More information

Hyperspectral Satellite Imaging Planning a Mission

Hyperspectral Satellite Imaging Planning a Mission Hyperspectral Satellite Imaging Planning a Mission Victor Gardner University of Maryland 2007 AIAA Region 1 Mid-Atlantic Student Conference National Institute of Aerospace, Langley, VA Outline Objective

More information

INTRODUCTION REMOTE SENSING

INTRODUCTION REMOTE SENSING INTRODUCTION REMOTE SENSING dr.ir. Jan Clevers Centre for Geo-Information Dept. Environmental Sciences Wageningen UR Remote Sensing --> RS Sensor at a distance EARTH OBSERVATION EM energy Earth RS is a

More information

INVESTIGA I+D+i 2013/2014

INVESTIGA I+D+i 2013/2014 INVESTIGA I+D+i 2013/2014 SPECIFIC GUIDELINES ON AEROSPACE OBSERVATION OF EARTH Text by D. Eduardo de Miguel October, 2013 Introducction Earth observation is the use of remote sensing techniques to better

More information

Remote Sensing of Global Climate Change

Remote Sensing of Global Climate Change of Global Climate Change 2009 TECHNICAL STUFF... WHERE ON THE EARTH IS THAT??? Students should understand various geographic coordinate systems used to locate images, and how to translate these into distances

More information

GIS for Educators. Overview:

GIS for Educators. Overview: GIS for Educators Topic 5: Raster Data Objectives: Keywords: Understand what raster data is and how it can be used in a GIS. Raster, Pixel, Remote Sensing, Satellite, Image, Georeference Overview: In the

More information

Land Use/Land Cover Map of the Central Facility of ARM in the Southern Great Plains Site Using DOE s Multi-Spectral Thermal Imager Satellite Images

Land Use/Land Cover Map of the Central Facility of ARM in the Southern Great Plains Site Using DOE s Multi-Spectral Thermal Imager Satellite Images Land Use/Land Cover Map of the Central Facility of ARM in the Southern Great Plains Site Using DOE s Multi-Spectral Thermal Imager Satellite Images S. E. Báez Cazull Pre-Service Teacher Program University

More information

Mapping Earth from Space Remote sensing and satellite images. Remote sensing developments from war

Mapping Earth from Space Remote sensing and satellite images. Remote sensing developments from war Mapping Earth from Space Remote sensing and satellite images Geomatics includes all the following spatial technologies: a. Cartography "The art, science and technology of making maps" b. Geographic Information

More information

Digital Remote Sensing Data Processing Digital Remote Sensing Data Processing and Analysis: An Introduction and Analysis: An Introduction

Digital Remote Sensing Data Processing Digital Remote Sensing Data Processing and Analysis: An Introduction and Analysis: An Introduction Digital Remote Sensing Data Processing Digital Remote Sensing Data Processing and Analysis: An Introduction and Analysis: An Introduction Content Remote sensing data Spatial, spectral, radiometric and

More information

3.3 Normalised Difference Vegetation Index (NDVI) 3.3.1 NDVI: A non-technical overview

3.3 Normalised Difference Vegetation Index (NDVI) 3.3.1 NDVI: A non-technical overview Page 1 of 6 3.3 Normalised Difference Vegetation Index (NDVI) 3.3.1 NDVI: A non-technical overview The Normalised Difference Vegetation Index (NDVI) gives a measure of the vegetative cover on the land

More information

Electromagnetic Radiation (including visible light)

Electromagnetic Radiation (including visible light) An expert is a man who has made all the mistakes, which can be made in a narrow field. Neils Bohr Electromagnetic Radiation (including visible light) Behaves like a particle. light particles are called

More information

D.S. Boyd School of Earth Sciences and Geography, Kingston University, U.K.

D.S. Boyd School of Earth Sciences and Geography, Kingston University, U.K. PHYSICAL BASIS OF REMOTE SENSING D.S. Boyd School of Earth Sciences and Geography, Kingston University, U.K. Keywords: Remote sensing, electromagnetic radiation, wavelengths, target, atmosphere, sensor,

More information

Electromagnetic Radiation (EMR) and Remote Sensing

Electromagnetic Radiation (EMR) and Remote Sensing Electromagnetic Radiation (EMR) and Remote Sensing 1 Atmosphere Anything missing in between? Electromagnetic Radiation (EMR) is radiated by atomic particles at the source (the Sun), propagates through

More information

Selecting the appropriate band combination for an RGB image using Landsat imagery

Selecting the appropriate band combination for an RGB image using Landsat imagery Selecting the appropriate band combination for an RGB image using Landsat imagery Ned Horning Version: 1.0 Creation Date: 2004-01-01 Revision Date: 2004-01-01 License: This document is licensed under a

More information

ENVIRONMENTAL MONITORING Vol. I - Remote Sensing (Satellite) System Technologies - Michael A. Okoye and Greg T. Koeln

ENVIRONMENTAL MONITORING Vol. I - Remote Sensing (Satellite) System Technologies - Michael A. Okoye and Greg T. Koeln REMOTE SENSING (SATELLITE) SYSTEM TECHNOLOGIES Michael A. Okoye and Greg T. Earth Satellite Corporation, Rockville Maryland, USA Keywords: active microwave, advantages of satellite remote sensing, atmospheric

More information

High Resolution Information from Seven Years of ASTER Data

High Resolution Information from Seven Years of ASTER Data High Resolution Information from Seven Years of ASTER Data Anna Colvin Michigan Technological University Department of Geological and Mining Engineering and Sciences Outline Part I ASTER mission Terra

More information

REMOTE SENSING AND ENVIRONMENTAL MONITORING. P. M. Mather School of Geography, The University of Nottingham, U.K.

REMOTE SENSING AND ENVIRONMENTAL MONITORING. P. M. Mather School of Geography, The University of Nottingham, U.K. REMOTE SENSING AND ENVIRONMENTAL MONITORING P. M. Mather School of Geography, The University of Nottingham, U.K. Keywords: Earth observation, image processing, lidar, pattern recognition, radar Contents

More information

APPLICATION OF TERRA/ASTER DATA ON AGRICULTURE LAND MAPPING. Genya SAITO*, Naoki ISHITSUKA*, Yoneharu MATANO**, and Masatane KATO***

APPLICATION OF TERRA/ASTER DATA ON AGRICULTURE LAND MAPPING. Genya SAITO*, Naoki ISHITSUKA*, Yoneharu MATANO**, and Masatane KATO*** APPLICATION OF TERRA/ASTER DATA ON AGRICULTURE LAND MAPPING Genya SAITO*, Naoki ISHITSUKA*, Yoneharu MATANO**, and Masatane KATO*** *National Institute for Agro-Environmental Sciences 3-1-3 Kannondai Tsukuba

More information

The most widely used active remote sensing systems include:

The most widely used active remote sensing systems include: Active and Passive Remote Sensing Passive remote sensing systems record EMR that is reflected (e.g., blue, green, red, and near-infrared light) or emitted (e.g., thermal infrared energy) from the surface

More information

See Lab 8, Natural Resource Canada RS Tutorial web pages Tues 3/24 Supervised land cover classification See Lab 9, NR Canada RS Tutorial web pages

See Lab 8, Natural Resource Canada RS Tutorial web pages Tues 3/24 Supervised land cover classification See Lab 9, NR Canada RS Tutorial web pages SFR 406 Remote Sensing, Image Interpretation and Forest Mapping EXAM # 2 (23 April 2015) REVIEW SHEET www.umaine.edu/mial/courses/sfr406/index.htm (Lecture powerpoint & notes) TOPICS COVERED ON 2 nd EXAM:

More information

Understanding Raster Data

Understanding Raster Data Introduction The following document is intended to provide a basic understanding of raster data. Raster data layers (commonly referred to as grids) are the essential data layers used in all tools developed

More information

U.S. Geological Survey Earth Resources Operation Systems (EROS) Data Center

U.S. Geological Survey Earth Resources Operation Systems (EROS) Data Center U.S. Geological Survey Earth Resources Operation Systems (EROS) Data Center World Data Center for Remotely Sensed Land Data USGS EROS DATA CENTER Land Remote Sensing from Space: Acquisition to Applications

More information

Estimating Firn Emissivity, from 1994 to1998, at the Ski Hi Automatic Weather Station on the West Antarctic Ice Sheet Using Passive Microwave Data

Estimating Firn Emissivity, from 1994 to1998, at the Ski Hi Automatic Weather Station on the West Antarctic Ice Sheet Using Passive Microwave Data Estimating Firn Emissivity, from 1994 to1998, at the Ski Hi Automatic Weather Station on the West Antarctic Ice Sheet Using Passive Microwave Data Mentor: Dr. Malcolm LeCompte Elizabeth City State University

More information

Spectral Response for DigitalGlobe Earth Imaging Instruments

Spectral Response for DigitalGlobe Earth Imaging Instruments Spectral Response for DigitalGlobe Earth Imaging Instruments IKONOS The IKONOS satellite carries a high resolution panchromatic band covering most of the silicon response and four lower resolution spectral

More information

Imagery. 1:50,000 Basemap Generation From Satellite. 1 Introduction. 2 Input Data

Imagery. 1:50,000 Basemap Generation From Satellite. 1 Introduction. 2 Input Data 1:50,000 Basemap Generation From Satellite Imagery Lisbeth Heuse, Product Engineer, Image Applications Dave Hawkins, Product Manager, Image Applications MacDonald Dettwiler, 3751 Shell Road, Richmond B.C.

More information

Satellite Remote Sensing - Introduction

Satellite Remote Sensing - Introduction Satellite Remote Sensing - Introduction definition for this class three essentials examples Seasat 1978 notes on human perception and display of information Seasat 1978 http://www.ucsusa.org/nuclear_weapons_and_global_security/

More information

Image Analysis CHAPTER 16 16.1 ANALYSIS PROCEDURES

Image Analysis CHAPTER 16 16.1 ANALYSIS PROCEDURES CHAPTER 16 Image Analysis 16.1 ANALYSIS PROCEDURES Studies for various disciplines require different technical approaches, but there is a generalized pattern for geology, soils, range, wetlands, archeology,

More information

Preface. Ko Ko Lwin Division of Spatial Information Science University of Tsukuba 2008

Preface. Ko Ko Lwin Division of Spatial Information Science University of Tsukuba 2008 1 Preface Remote Sensing data is one of the primary data sources in GIS analysis. The objective of this material is to provide fundamentals of Remote Sensing technology and its applications in Geographical

More information

'Developments and benefits of hydrographic surveying using multispectral imagery in the coastal zone

'Developments and benefits of hydrographic surveying using multispectral imagery in the coastal zone Abstract With the recent launch of enhanced high-resolution commercial satellites, available imagery has improved from four-bands to eight-band multispectral. Simultaneously developments in remote sensing

More information

Information Contents of High Resolution Satellite Images

Information Contents of High Resolution Satellite Images Information Contents of High Resolution Satellite Images H. Topan, G. Büyüksalih Zonguldak Karelmas University K. Jacobsen University of Hannover, Germany Keywords: satellite images, mapping, resolution,

More information

Introduction to Remote Sensing and Image Processing

Introduction to Remote Sensing and Image Processing Introduction to Remote Sensing and Image Processing Of all the various data sources used in GIS, one of the most important is undoubtedly that provided by remote sensing. Through the use of satellites,

More information

Using Remote Sensing Imagery to Evaluate Post-Wildfire Damage in Southern California

Using Remote Sensing Imagery to Evaluate Post-Wildfire Damage in Southern California Graham Emde GEOG 3230 Advanced Remote Sensing February 22, 2013 Lab #1 Using Remote Sensing Imagery to Evaluate Post-Wildfire Damage in Southern California Introduction Wildfires are a common disturbance

More information

Field Techniques Manual: GIS, GPS and Remote Sensing

Field Techniques Manual: GIS, GPS and Remote Sensing Field Techniques Manual: GIS, GPS and Remote Sensing Section A: Introduction Chapter 1: GIS, GPS, Remote Sensing and Fieldwork 1 GIS, GPS, Remote Sensing and Fieldwork The widespread use of computers

More information

Advanced Image Management using the Mosaic Dataset

Advanced Image Management using the Mosaic Dataset Esri International User Conference San Diego, California Technical Workshops July 25, 2012 Advanced Image Management using the Mosaic Dataset Vinay Viswambharan, Mike Muller Agenda ArcGIS Image Management

More information

Using Remote Sensing to Monitor Soil Carbon Sequestration

Using Remote Sensing to Monitor Soil Carbon Sequestration Using Remote Sensing to Monitor Soil Carbon Sequestration E. Raymond Hunt, Jr. USDA-ARS Hydrology and Remote Sensing Beltsville Agricultural Research Center Beltsville, Maryland Introduction and Overview

More information

Evaluation of the Effect of Upper-Level Cirrus Clouds on Satellite Retrievals of Low-Level Cloud Droplet Effective Radius

Evaluation of the Effect of Upper-Level Cirrus Clouds on Satellite Retrievals of Low-Level Cloud Droplet Effective Radius Evaluation of the Effect of Upper-Level Cirrus Clouds on Satellite Retrievals of Low-Level Cloud Droplet Effective Radius F.-L. Chang and Z. Li Earth System Science Interdisciplinary Center University

More information

The Utilization of Satellite Images to Identify Tree Endangering Transmission Lines

The Utilization of Satellite Images to Identify Tree Endangering Transmission Lines The Utilization of Satellite Images to Identify Tree Endangering Transmission Lines Y. Kobayashi M. S. Moeller G. G. Karady G. T. Heydt R. G. Olsen Project Tele-Seminar March 18, 2008 3/10/2008 1 Introduction

More information

CLIENT GUIDE TO DIGITAL ORTHO- PHOTOGRAPHY

CLIENT GUIDE TO DIGITAL ORTHO- PHOTOGRAPHY ISSUE 2 SEPTEMBER 2014 TSA Endorsed by: CLIENT GUIDE TO DIGITAL ORTHO- PHOTOGRAPHY The Survey Association s Client Guides are primarily aimed at other professionals such as engineers, architects, planners

More information

The premier software for extracting information from geospatial imagery.

The premier software for extracting information from geospatial imagery. Imagery Becomes Knowledge ENVI The premier software for extracting information from geospatial imagery. ENVI Imagery Becomes Knowledge Geospatial imagery is used more and more across industries because

More information

Overview. What is EMR? Electromagnetic Radiation (EMR) LA502 Special Studies Remote Sensing

Overview. What is EMR? Electromagnetic Radiation (EMR) LA502 Special Studies Remote Sensing LA502 Special Studies Remote Sensing Electromagnetic Radiation (EMR) Dr. Ragab Khalil Department of Landscape Architecture Faculty of Environmental Design King AbdulAziz University Room 103 Overview What

More information

Geography 403 Lecture 7 Scanners, Thermal, and Microwave

Geography 403 Lecture 7 Scanners, Thermal, and Microwave Geography 403 Lecture 7 Scanners, Thermal, and Microwave Needs: Lect_403_7.ppt A. Basics of Passive Electric Sensors 1. Sensors absorb EMR and produce some sort of response, such as voltages differences

More information

ENVI THE PREMIER SOFTWARE FOR EXTRACTING INFORMATION FROM GEOSPATIAL IMAGERY.

ENVI THE PREMIER SOFTWARE FOR EXTRACTING INFORMATION FROM GEOSPATIAL IMAGERY. ENVI THE PREMIER SOFTWARE FOR EXTRACTING INFORMATION FROM GEOSPATIAL IMAGERY. ENVI Imagery Becomes Knowledge ENVI software uses proven scientific methods and automated processes to help you turn geospatial

More information

AQUATIC VEGETATION SURVEYS USING HIGH-RESOLUTION IKONOS IMAGERY INTRODUCTION

AQUATIC VEGETATION SURVEYS USING HIGH-RESOLUTION IKONOS IMAGERY INTRODUCTION AQUATIC VEGETATION SURVEYS USING HIGH-RESOLUTION IKONOS IMAGERY Leif G. Olmanson, Marvin E. Bauer, and Patrick L. Brezonik Water Resources Center & Remote Sensing and Geospatial Analysis Laboratory University

More information

Finding and Downloading Landsat Data from the U.S. Geological Survey s Global Visualization Viewer Website

Finding and Downloading Landsat Data from the U.S. Geological Survey s Global Visualization Viewer Website January 1, 2013 Finding and Downloading Landsat Data from the U.S. Geological Survey s Global Visualization Viewer Website All Landsat data are available to the public at no cost from U.S. Geological Survey

More information

Some elements of photo. interpretation

Some elements of photo. interpretation Some elements of photo Shape Size Pattern Color (tone, hue) Texture Shadows Site Association interpretation Olson, C. E., Jr. 1960. Elements of photographic interpretation common to several sensors. Photogrammetric

More information

Remote Sensing Satellite Information Sheets Geophysical Institute University of Alaska Fairbanks

Remote Sensing Satellite Information Sheets Geophysical Institute University of Alaska Fairbanks Remote Sensing Satellite Information Sheets Geophysical Institute University of Alaska Fairbanks ASTER Advanced Spaceborne Thermal Emission and Reflection Radiometer AVHRR Advanced Very High Resolution

More information

Chapter Contents Page No

Chapter Contents Page No Chapter Contents Page No Preface Acknowledgement 1 Basics of Remote Sensing 1 1.1. Introduction 1 1.2. Definition of Remote Sensing 1 1.3. Principles of Remote Sensing 1 1.4. Various Stages in Remote Sensing

More information

Remote Sensing an Introduction

Remote Sensing an Introduction Remote Sensing an Introduction Seminar: Space is the Place Referenten: Anica Huck & Michael Schlund Remote Sensing means the observation of, or gathering information about, a target by a device separated

More information

Introduction to Spectral Reflectance (passive sensors) Overview. Electromagnetic Radiation (light) 4/4/2014

Introduction to Spectral Reflectance (passive sensors) Overview. Electromagnetic Radiation (light) 4/4/2014 Introduction to Spectral Reflectance (passive sensors) Kelly R. Thorp Research Agricultural Engineer USDA-ARS Arid-Land Agricultural Research Center Overview Electromagnetic Radiation (light) Solar Energy

More information

RESULTS FROM A SIMPLE INFRARED CLOUD DETECTOR

RESULTS FROM A SIMPLE INFRARED CLOUD DETECTOR RESULTS FROM A SIMPLE INFRARED CLOUD DETECTOR A. Maghrabi 1 and R. Clay 2 1 Institute of Astronomical and Geophysical Research, King Abdulaziz City For Science and Technology, P.O. Box 6086 Riyadh 11442,

More information

Introduction. Stefano Ferrari. Università degli Studi di Milano stefano.ferrari@unimi.it. Elaborazione delle immagini (Image processing I)

Introduction. Stefano Ferrari. Università degli Studi di Milano stefano.ferrari@unimi.it. Elaborazione delle immagini (Image processing I) Introduction Stefano Ferrari Università degli Studi di Milano stefano.ferrari@unimi.it Elaborazione delle immagini (Image processing I) academic year 2011 2012 Image processing Computer science concerns

More information

16 th IOCCG Committee annual meeting. Plymouth, UK 15 17 February 2011. mission: Present status and near future

16 th IOCCG Committee annual meeting. Plymouth, UK 15 17 February 2011. mission: Present status and near future 16 th IOCCG Committee annual meeting Plymouth, UK 15 17 February 2011 The Meteor 3M Mt satellite mission: Present status and near future plans MISSION AIMS Satellites of the series METEOR M M are purposed

More information

TerraColor White Paper

TerraColor White Paper TerraColor White Paper TerraColor is a simulated true color digital earth imagery product developed by Earthstar Geographics LLC. This product was built from imagery captured by the US Landsat 7 (ETM+)

More information

3D VISUALIZATION OF GEOTHERMAL WELLS DIRECTIONAL SURVEYS AND INTEGRATION WITH DIGITAL ELEVATION MODEL (DEM)

3D VISUALIZATION OF GEOTHERMAL WELLS DIRECTIONAL SURVEYS AND INTEGRATION WITH DIGITAL ELEVATION MODEL (DEM) Presented at Short Course VII on Exploration for Geothermal Resources, organized by UNU-GTP, GDC and KenGen, at Lake Bogoria and Lake Naivasha, Kenya, Oct. 27 Nov. 18, 2012. GEOTHERMAL TRAINING PROGRAMME

More information

SESSION 8: GEOGRAPHIC INFORMATION SYSTEMS AND MAP PROJECTIONS

SESSION 8: GEOGRAPHIC INFORMATION SYSTEMS AND MAP PROJECTIONS SESSION 8: GEOGRAPHIC INFORMATION SYSTEMS AND MAP PROJECTIONS KEY CONCEPTS: In this session we will look at: Geographic information systems and Map projections. Content that needs to be covered for examination

More information

Big data and Earth observation New challenges in remote sensing images interpretation

Big data and Earth observation New challenges in remote sensing images interpretation Big data and Earth observation New challenges in remote sensing images interpretation Pierre Gançarski ICube CNRS - Université de Strasbourg 2014 Pierre Gançarski Big data and Earth observation 1/58 1

More information

Joint Polar Satellite System (JPSS)

Joint Polar Satellite System (JPSS) Joint Polar Satellite System (JPSS) John Furgerson, User Liaison Joint Polar Satellite System National Environmental Satellite, Data, and Information Service National Oceanic and Atmospheric Administration

More information

Remote Sensing and Land Use Classification: Supervised vs. Unsupervised Classification Glen Busch

Remote Sensing and Land Use Classification: Supervised vs. Unsupervised Classification Glen Busch Remote Sensing and Land Use Classification: Supervised vs. Unsupervised Classification Glen Busch Introduction In this time of large-scale planning and land management on public lands, managers are increasingly

More information

GIS and Remote Sensing in Diachronic Study of Agriculture in Greece

GIS and Remote Sensing in Diachronic Study of Agriculture in Greece GIS and Remote Sensing in Diachronic Study of Agriculture in Greece Maria Androulidaki a, Michail Salampasis b, Vagis Samathrakis c, Christos Batzios d a Alexander Technology Educational Institute of Thessaloniki,

More information

Remote Sensing Image Processing

Remote Sensing Image Processing Remote Sensing Image Processing -Pre-processing -Geometric Correction -Atmospheric correction -Image enhancement -Image classification Division of Spatial Information Science Graduate School Life and Environment

More information

INTRODUCTION TO REMOTE SENSING

INTRODUCTION TO REMOTE SENSING INTRODUCTION TO REMOTE SENSING Dr Robert Sanderson New Mexico State University Satellite picture of Las Cruces, NM Table of Contents Introduction...1 Electromagnetic energy...1 Reflection and absorption...2

More information

Coastal Engineering Indices to Inform Regional Management

Coastal Engineering Indices to Inform Regional Management Coastal Engineering Indices to Inform Regional Management Lauren Dunkin FSBPA 14 February 2013 Outline Program overview Standard products Coastal Engineering Index Conclusion and future work US Army Corps

More information

High Resolution RF Analysis: The Benefits of Lidar Terrain & Clutter Datasets

High Resolution RF Analysis: The Benefits of Lidar Terrain & Clutter Datasets 0 High Resolution RF Analysis: The Benefits of Lidar Terrain & Clutter Datasets January 15, 2014 Martin Rais 1 High Resolution Terrain & Clutter Datasets: Why Lidar? There are myriad methods, techniques

More information

Passive Remote Sensing of Clouds from Airborne Platforms

Passive Remote Sensing of Clouds from Airborne Platforms Passive Remote Sensing of Clouds from Airborne Platforms Why airborne measurements? My instrument: the Solar Spectral Flux Radiometer (SSFR) Some spectrometry/radiometry basics How can we infer cloud properties

More information

RESOLUTION MERGE OF 1:35.000 SCALE AERIAL PHOTOGRAPHS WITH LANDSAT 7 ETM IMAGERY

RESOLUTION MERGE OF 1:35.000 SCALE AERIAL PHOTOGRAPHS WITH LANDSAT 7 ETM IMAGERY RESOLUTION MERGE OF 1:35.000 SCALE AERIAL PHOTOGRAPHS WITH LANDSAT 7 ETM IMAGERY M. Erdogan, H.H. Maras, A. Yilmaz, Ö.T. Özerbil General Command of Mapping 06100 Dikimevi, Ankara, TURKEY - (mustafa.erdogan;

More information

Principles of Satellite Remote Sensing

Principles of Satellite Remote Sensing Chapter 5 Principles of Satellite Remote Sensing Goal: Give a overview on the characteristics of satellite remote sensing. Satellites have several unique characteristics which make them particularly useful

More information

NATIONAL OPEN UNIVERSITY OF NIGERIA SCHOOL OF SCIENCE AND TECHNOLOGY COURSE CODE: ESM 392

NATIONAL OPEN UNIVERSITY OF NIGERIA SCHOOL OF SCIENCE AND TECHNOLOGY COURSE CODE: ESM 392 NATIONAL OPEN UNIVERSITY OF NIGERIA SCHOOL OF SCIENCE AND TECHNOLOGY COURSE CODE: ESM 392 COURSE TITLE: REMOTE SENSING AND RADIATION PRINCIPLES MODULE 1 [INTRODUCTION TO REMOTE SENSING AND RADIATION PRINCIPLES]

More information

Lecture 1. The nature of electromagnetic radiation.

Lecture 1. The nature of electromagnetic radiation. Lecture 1. The nature of electromagnetic radiation. 1. Basic introduction to the electromagnetic field: Dual nature of electromagnetic radiation Electromagnetic spectrum. Basic radiometric quantities:

More information

Supervised Classification workflow in ENVI 4.8 using WorldView-2 imagery

Supervised Classification workflow in ENVI 4.8 using WorldView-2 imagery Supervised Classification workflow in ENVI 4.8 using WorldView-2 imagery WorldView-2 is the first commercial high-resolution satellite to provide eight spectral sensors in the visible to near-infrared

More information

IMPERVIOUS SURFACE MAPPING UTILIZING HIGH RESOLUTION IMAGERIES. Authors: B. Acharya, K. Pomper, B. Gyawali, K. Bhattarai, T.

IMPERVIOUS SURFACE MAPPING UTILIZING HIGH RESOLUTION IMAGERIES. Authors: B. Acharya, K. Pomper, B. Gyawali, K. Bhattarai, T. IMPERVIOUS SURFACE MAPPING UTILIZING HIGH RESOLUTION IMAGERIES Authors: B. Acharya, K. Pomper, B. Gyawali, K. Bhattarai, T. Tsegaye ABSTRACT Accurate mapping of artificial or natural impervious surfaces

More information

MULTIPURPOSE USE OF ORTHOPHOTO MAPS FORMING BASIS TO DIGITAL CADASTRE DATA AND THE VISION OF THE GENERAL DIRECTORATE OF LAND REGISTRY AND CADASTRE

MULTIPURPOSE USE OF ORTHOPHOTO MAPS FORMING BASIS TO DIGITAL CADASTRE DATA AND THE VISION OF THE GENERAL DIRECTORATE OF LAND REGISTRY AND CADASTRE MULTIPURPOSE USE OF ORTHOPHOTO MAPS FORMING BASIS TO DIGITAL CADASTRE DATA AND THE VISION OF THE GENERAL DIRECTORATE OF LAND REGISTRY AND CADASTRE E.ÖZER, H.TUNA, F.Ç.ACAR, B.ERKEK, S.BAKICI General Directorate

More information

Introduction to Imagery and Raster Data in ArcGIS

Introduction to Imagery and Raster Data in ArcGIS Esri International User Conference San Diego, California Technical Workshops July 25, 2012 Introduction to Imagery and Raster Data in ArcGIS Simon Woo slides Cody Benkelman - demos Overview of Presentation

More information

Opportunities for the generation of high resolution digital elevation models based on small format aerial photography

Opportunities for the generation of high resolution digital elevation models based on small format aerial photography Opportunities for the generation of high resolution digital elevation models based on small format aerial photography Boudewijn van Leeuwen 1, József Szatmári 1, Zalán Tobak 1, Csaba Németh 1, Gábor Hauberger

More information

2003 INTERNATIONAL CONFERENCE AIRPORTS: PLANNING, INFRASTRUCTURE & ENVIRONMENT

2003 INTERNATIONAL CONFERENCE AIRPORTS: PLANNING, INFRASTRUCTURE & ENVIRONMENT AIRPORTS: PLANNING, INFRASTRUCTURE & ENVIRONMENT AIRBORNE AND SPACEBORNE REMOTE SENSING TERRAIN MAPPING FOR PLANNING AND DESIGN OF TRANSPORTATION INFRASTRUCTURE ASSETS Waheed Uddin Associate Professor

More information

Detection of Selective Logging for Estimating and Monitoring Forest Degradation: methodologies and experiences in Brazil

Detection of Selective Logging for Estimating and Monitoring Forest Degradation: methodologies and experiences in Brazil Detection of Selective Logging for Estimating and Monitoring Forest Degradation: methodologies and experiences in Brazil Thelma Krug National Institute for Space Research INPE Ministry of Science and Technology

More information

SPOT Satellite Earth Observation System Presentation to the JACIE Civil Commercial Imagery Evaluation Workshop March 2007

SPOT Satellite Earth Observation System Presentation to the JACIE Civil Commercial Imagery Evaluation Workshop March 2007 SPOT Satellite Earth Observation System Presentation to the JACIE Civil Commercial Imagery Evaluation Workshop March 2007 Topics Presented Quick summary of system characteristics Formosat-2 Satellite Archive

More information

Monitoring Soil Moisture from Space. Dr. Heather McNairn Science and Technology Branch Agriculture and Agri-Food Canada heather.mcnairn@agr.gc.

Monitoring Soil Moisture from Space. Dr. Heather McNairn Science and Technology Branch Agriculture and Agri-Food Canada heather.mcnairn@agr.gc. Monitoring Soil Moisture from Space Dr. Heather McNairn Science and Technology Branch Agriculture and Agri-Food Canada heather.mcnairn@agr.gc.ca What is Remote Sensing? Scientists turn the raw data collected

More information

Satellite Remote Sensing of Volcanic Ash

Satellite Remote Sensing of Volcanic Ash Marco Fulle www.stromboli.net Satellite Remote Sensing of Volcanic Ash Michael Pavolonis NOAA/NESDIS/STAR SCOPE Nowcasting 1 Meeting November 19 22, 2013 1 Outline Getty Images Volcanic ash satellite remote

More information

Remote Sensing in Natural Resources Mapping

Remote Sensing in Natural Resources Mapping Remote Sensing in Natural Resources Mapping NRS 516, Spring 2016 Overview of Remote Sensing in Natural Resources Mapping What is remote sensing? Why remote sensing? Examples of remote sensing in natural

More information

Treasure Hunt. Lecture 2 How does Light Interact with the Environment? EMR Principles and Properties. EMR and Remote Sensing

Treasure Hunt. Lecture 2 How does Light Interact with the Environment? EMR Principles and Properties. EMR and Remote Sensing Lecture 2 How does Light Interact with the Environment? Treasure Hunt Find and scan all 11 QR codes Choose one to watch / read in detail Post the key points as a reaction to http://www.scoop.it/t/env202-502-w2

More information

WATER BODY EXTRACTION FROM MULTI SPECTRAL IMAGE BY SPECTRAL PATTERN ANALYSIS

WATER BODY EXTRACTION FROM MULTI SPECTRAL IMAGE BY SPECTRAL PATTERN ANALYSIS WATER BODY EXTRACTION FROM MULTI SPECTRAL IMAGE BY SPECTRAL PATTERN ANALYSIS Nguyen Dinh Duong Department of Environmental Information Study and Analysis, Institute of Geography, 18 Hoang Quoc Viet Rd.,

More information

Structure of Course. First half of course introduces remote sensing. 8 lectures Mondays 10-11am, G07 Pearson Building

Structure of Course. First half of course introduces remote sensing. 8 lectures Mondays 10-11am, G07 Pearson Building Structure of Course First half of course introduces remote sensing 8 lectures Mondays 10-11am, G07 Pearson Building Second half focuses on a practical example using remote sensing data 7 practicals Thursdays

More information

Recent advances in Satellite Imagery for Oil and Gas Exploration and Production. DESK AND DERRICK APRIL 2016 PRESENTED BY GARY CREWS---RETIRED

Recent advances in Satellite Imagery for Oil and Gas Exploration and Production. DESK AND DERRICK APRIL 2016 PRESENTED BY GARY CREWS---RETIRED Recent advances in Satellite Imagery for Oil and Gas Exploration and Production. DESK AND DERRICK APRIL 2016 PRESENTED BY GARY CREWS---RETIRED Agenda Brief review of state of the applications in 2010 Basics

More information

Working with Imagery & LiDAR in ArcGIS 10.2

Working with Imagery & LiDAR in ArcGIS 10.2 Working with Imagery & LiDAR in ArcGIS 10.2 Today s Agenda Online content Tools for working with imagery & LiDAR Data management using mosaic dataset Data dissemination ArcGIS is a Complete Geospatial

More information

"Fire Risk Management in Finland" Executive summary

Fire Risk Management in Finland Executive summary Automation D:\Eudora-liitteet\Executive-summary.doc Management of natural disasters- Fire risk management in Finland 4.12.2000 1 (8) Promotion of Space Technologies for Supporting the Management of Natural

More information

The RapidEye optical satellite family for high resolution imagery

The RapidEye optical satellite family for high resolution imagery 'Photogrammetric Week 01' D. Fritsch & R. Spiller, Eds. Wichmann Verlag, Heidelberg 2001. Scherer, Krischke 139 The RapidEye optical satellite family for high resolution imagery STEFAN SCHERER and MANFRED

More information

High Resolution Digital Surface Models and Orthoimages for Telecom Network Planning

High Resolution Digital Surface Models and Orthoimages for Telecom Network Planning Renouard, Lehmann 241 High Resolution Digital Surface Models and Orthoimages for Telecom Network Planning LAURENT RENOUARD, S ophia Antipolis FRANK LEHMANN, Berlin ABSTRACT DLR of Germany and ISTAR of

More information

Overview of the IR channels and their applications

Overview of the IR channels and their applications Ján Kaňák Slovak Hydrometeorological Institute Jan.kanak@shmu.sk Overview of the IR channels and their applications EUMeTrain, 14 June 2011 Ján Kaňák, SHMÚ 1 Basics in satellite Infrared image interpretation

More information

CHAPTER 2 Energy and Earth

CHAPTER 2 Energy and Earth CHAPTER 2 Energy and Earth This chapter is concerned with the nature of energy and how it interacts with Earth. At this stage we are looking at energy in an abstract form though relate it to how it affect

More information

Soil Moisture Estimation Using Active DTS at MOISST Site

Soil Moisture Estimation Using Active DTS at MOISST Site MOISST Workhsop, 2014 Soil Moisture Estimation Using Active DTS at MOISST Site June 4, 2014 Chadi Sayde, Daniel Moreno, John Selker Department of Biological and Ecological Engineering Oregon State University,

More information

Overview of Sensors and Detection Systems for Wildlife Hazard Management

Overview of Sensors and Detection Systems for Wildlife Hazard Management Overview of Sensors and Detection Systems for Wildlife Hazard Management Edwin E. Herricks Professor Emeritus University of Illinois Center of Excellence for Airport Technology Airport Safety Management

More information

Soil degradation monitoring by active and passive remote-sensing means: examples with two degradation processes

Soil degradation monitoring by active and passive remote-sensing means: examples with two degradation processes Soil degradation monitoring by active and passive remote-sensing means: examples with two degradation processes Naftaly Goldshleger, *Eyal Ben-Dor,* *Ido Livne,* U. Basson***, and R.Ben-Binyamin*Vladimir

More information

CBERS Program Update Jacie 2011. Frederico dos Santos Liporace AMS Kepler liporace@amskepler.com

CBERS Program Update Jacie 2011. Frederico dos Santos Liporace AMS Kepler liporace@amskepler.com CBERS Program Update Jacie 2011 Frederico dos Santos Liporace AMS Kepler liporace@amskepler.com Overview CBERS 3 and 4 characteristics Differences from previous CBERS satellites (CBERS 1/2/2B) Geometric

More information