Reproduction of Flowering Plants

Size: px
Start display at page:

Download "Reproduction of Flowering Plants"

Transcription

1 Reproduction of Flowering Plants

2 Chapter 27 Reproduction of Flowering Plants Key Concepts 27.1 Most Angiosperms Reproduce Sexually 27.2 Hormones and Signaling Determine the Transition from the Vegetative to the Reproductive State 27.3 Angiosperms Can Reproduce Asexually

3 Chapter 27 Opening Question How did an understanding of angiosperm reproduction allow floriculturists to develop a commercially successful poinsettia?

4 Concept 27.1 Most Angiosperms Reproduce Sexually Most angiosperms reproduce sexually this strategy results in the genetic diversity that is the raw material for evolution.

5 Concept 27.1 Most Angiosperms Reproduce Sexually Differences between sexual reproduction in angiosperms and in vertebrate animals: Meiosis in plants produces spores, after which mitosis produces gametes. Most plants have alternation of generations. In plants, cells that will form gametes are determined in the adult organism.

6 Concept 27.1 Most Angiosperms Reproduce Sexually Male and female gametophytes are contained in flowers. A complete flower consists of four concentric groups of organs arising from modified leaves:

7 Concept 27.1 Most Angiosperms Reproduce Sexually Carpels female sex organs that contain the developing female gametophytes Stamens male sex organs that contain the developing male gametophytes Perfect flowers have both carpels and stamens Imperfect flowers have only male or only female organs

8 Figure 27.1 Perfect and Imperfect Flowers (Part 1)

9 Concept 27.1 Most Angiosperms Reproduce Sexually Imperfect flowers: Monoecious male and female flowers on the same plant Dioecious individual plants have only male or only female flowers

10 Figure 27.1 Perfect and Imperfect Flowers (Part 2)

11 Figure 27.1 Perfect and Imperfect Flowers (Part 3)

12 Concept 27.1 Most Angiosperms Reproduce Sexually Angiosperm gametophytes are microscopic. Female (megagametophyte), or embryo sac arises from a megaspore. Consists of 7 cells: 1 egg cell 2 synergids (attract pollen tube and receive sperm) 3 antipodal cells degenerate 1 central cell with 2 polar nuclei

13 Figure 27.2 Sexual Reproduction in Angiosperms

14 Concept 27.1 Most Angiosperms Reproduce Sexually Male (microgametophytes), or pollen grains, arise from microspores. Consist of 2 cells: Generative cell divides by mitosis to form two sperm cells that participate in fertilization. Tube cell forms pollen tube that delivers the sperm to embryo sac.

15 Concept 27.1 Most Angiosperms Reproduce Sexually Transfer of pollen from plant to plant: Wind-pollinated flowers have sticky or featherlike stigmas; produce a great number of pollen grains Animal pollination increases the probability that pollen will get to a female gametophyte of the same species.

16 Concept 27.1 Most Angiosperms Reproduce Sexually Some plants self-pollinate (e.g., Mendel s garden peas) Selfing leads to homozygosity, which can reduce reproductive fitness of offspring (inbreeding depression). Most species have evolved mechanisms to prevent self-pollination.

17 Concept 27.1 Most Angiosperms Reproduce Sexually Dioecious species: selfing is not possible. Monoecious species: physical separation of male and female flowers, or maturation at different times, prevent selfing. Some species are self-incompatible: pollen from the same plant is rejected. Controlled by a cluster of linked genes called the S locus.

18 Figure 27.3 Self-incompatibility

19 Concept 27.1 Most Angiosperms Reproduce Sexually When pollen lands on an appropriate stigma, germination begins with uptake of water. The pollen tube grows through the style to reach the ovule. Pollen tube growth may be guided by a speciesspecific chemical signal produced by the synergids.

20 Concept 27.1 Most Angiosperms Reproduce Sexually The generative cell divides once to form two haploid sperm cells. Double fertilization: One sperm cell fuses with the egg cell, to form the diploid zygote. The other sperm cell fuses with the two polar nuclei to form a triploid nucleus. This nucleus divides by mitosis to form the endosperm, which contains food for the developing embryo.

21 Figure 27.4 Double Fertilization

22 Concept 27.1 Most Angiosperms Reproduce Sexually Fertilization initiates growth and development of the embryo, endosperm, integuments, and carpel. Integuments (tissue layers surrounding megasporangium) develop into the seed coat. Carpel becomes the wall of the fruit that encloses the seed.

23 Concept 27.1 Most Angiosperms Reproduce Sexually The ovary and the seeds it contains develop into a fruit after fertilization. Functions of fruits: Protect seed from damage by animals and infection by microbial pathogens. Aid in seed dispersal. Fruits may contain other flower parts as well.

24 Figure 27.5 Angiosperm Fruits (Part 1)

25 Figure 27.5 Angiosperm Fruits (Part 2)

26 Figure 27.5 Angiosperm Fruits (Part 3)

27 Concept 27.1 Most Angiosperms Reproduce Sexually Diversity of fruit forms reflect dispersal strategies. Some fruits are carried by wind:

28 Concept 27.1 Most Angiosperms Reproduce Sexually Some fruits attach themselves to animals:

29 Concept 27.1 Most Angiosperms Reproduce Sexually Some fruits disperse by water: coconuts can float for thousands of miles. Some seeds are swallowed when animals eat the fruits, such as berries. The seeds travel through the animal s digestive tract and are deposited some distance from the parent plant.

30 Concept 27.2 Hormones and Signaling Determine the Transition from the Vegetative to the Reproductive State Flowering represents a reallocation of energy from vegetative growth to reproductive growth. Flowering may be triggered by environmental cues or as part of a predetermined developmental program.

31 Concept 27.2 Hormones and Signaling Determine the Transition from the Vegetative to the Reproductive State Annuals complete their lives within a year (many crop plants). Biennials take two years; vegetative growth only in 1 st year, reproductive growth in 2 nd year. Perennials live three or more years many wildflowers, trees, shrubs and typically flower every year.

32 Concept 27.2 Hormones and Signaling Determine the Transition from the Vegetative to the Reproductive State Shoot apical meristems continually produce leaves, axillary buds, and stem (indeterminate growth). A shoot apical meristem becomes an inflorescence meristem when it produces floral parts. A meristem that produces a single flower is a floral meristem; results in determinate growth (growth of limited extent).

33 Figure 27.6 The Transition to Flowering (Part 1)

34 Figure 27.6 The Transition to Flowering (Part 2)

35 Figure 27.6 The Transition to Flowering (Part 3)

36 Concept 27.2 Hormones and Signaling Determine the Transition from the Vegetative to the Reproductive State Genes that determine the transition to floral meristems have been studied in Arabidopsis. Meristem identity genes LEAFY and APETALA1 initiate a cascade of gene expression. Floral organ identity genes: homeotic genes; products are transcription factors that determine whether cells in the floral meristem will be sepals, petals, stamens, or carpels.

37 Concept 27.2 Hormones and Signaling Determine the Transition from the Vegetative to the Reproductive State External cues that initiate gene expression for flowering: 1. Photoperiod (day length) Some species flower only when days reach a specific length. Short-day plants (SDPs) flower only when the day is shorter than a critical maximum. Long-day plants (LDPs) flower only when the day is longer than a critical minimum.

38 Figure 27.7 Photoperiod and Flowering

39 Concept 27.2 Hormones and Signaling Determine the Transition from the Vegetative to the Reproductive State Photoperiodic control of flowering synchronizes flowering of plants of the same species in a local population. This promotes cross-pollination and successful reproduction. Floriculturists can vary light exposures in greenhouses to produce flowers at any time of year.

40 Concept 27.2 Hormones and Signaling Determine the Transition from the Vegetative to the Reproductive State Length of night is actually the critical factor that induces flowering. Length of dark period is critical, even if amount of daylight varies between dark periods. The inductive dark period can be interrupted by red light, but the effect is reversed by far-red light, indicating that phytochrome is the photoreceptor.

41 Figure 27.8 Night Length and Flowering

42 Concept 27.2 Hormones and Signaling Determine the Transition from the Vegetative to the Reproductive State Plants sense night length by measuring the ratio of P fr to P r. Day more red light than far-red; by end of day most phytochrome is P fr. At night P fr is gradually converted back to P r. The longer the night, the more P r there is at dawn. A SDP flowers when ratio of P fr to P r is low at the end of the night; a LDP flowers when this ratio is high.

43 Concept 27.2 Hormones and Signaling Determine the Transition from the Vegetative to the Reproductive State Phytochrome is located in the leaf. The signal for flowering must be a diffusible chemical that travels from the leaf to the shoot apical meristem. The diffusible chemical is the protein florigen.

44 Figure 27.9 The Flowering Signal Moves from Leaf to Bud (Part 1)

45 Figure 27.9 The Flowering Signal Moves from Leaf to Bud (Part 2)

46 Concept 27.2 Hormones and Signaling Determine the Transition from the Vegetative to the Reproductive State Florigen (FT) is made in phloem companion cells and travels in the sieve tube elements. It goes to the shoot apical meristem and combines with another protein to stimulate transcription of genes that initiate flowering.

47 Figure Molecular Biology of Flowering (Part 1)

48 Figure Molecular Biology of Flowering (Part 2)

49 Concept 27.2 Hormones and Signaling Determine the Transition from the Vegetative to the Reproductive State The genes involved in flowering: FT (FLOWERING LOCUS T) codes for florigen. CO (CONSTANS) codes for a transcription factor that activates synthesis of FT; expressed in phloem companion cells. FD (FLOWERING LOCUS D) codes for a transcription factor that binds to FT in the shoot apical meristem. The complex activates promoters for meristem identity genes, such as APETALA1.

50 Concept 27.2 Hormones and Signaling Determine the Transition from the Vegetative to the Reproductive State External cues that initiate gene expression for flowering: 2. Temperature Some plants flower after a period of cold temperatures (vernalization). Cold temperatures inhibit synthesis of FLC protein, a transcription factor that inhibits expression of FT and FD.

51 Figure Vernalization

52 Concept 27.2 Hormones and Signaling Determine the Transition from the Vegetative to the Reproductive State Gibberellins are also involved in flowering. Application of gibberellins to Arabidopsis buds results in activation of the meristem identity gene LEAFY, which in turn promotes the transition to flowering.

53 Concept 27.2 Hormones and Signaling Determine the Transition from the Vegetative to the Reproductive State Some plants do not need environmental cues for flowering. Example: In some tobacco strains, the terminal bud flowers when the stem has grown 4 phytomers long. The position of the bud determines transition to flowering.

54 Concept 27.2 Hormones and Signaling Determine the Transition from the Vegetative to the Reproductive State Position may be determined by a concentration gradient of some substance along the apical basal axis of the plant. Example: a diffusible inhibitor of flowering, produced in the roots, whose concentration diminishes with plant height. Evidence suggests that the inhibitor decreases the amount of FLC, allowing the FT FD pathway to proceed.

55 Concept 27.2 Hormones and Signaling Determine the Transition from the Vegetative to the Reproductive State A positional gradient that acts on FLC is similar to other mechanisms that converge on LEAFY and APETALA1:

56 Concept 27.3 Angiosperms Can Reproduce Asexually Asexual reproduction (vegetative reproduction) results in offspring that are genetically identical to the parent (clones). Disadvantage: doesn t generate genetic diversity among offspring

57 Concept 27.3 Angiosperms Can Reproduce Asexually Advantages: Parent can pass on allele combinations that function well, which might otherwise be separated by sexual recombination. Avoids cost of producing flowers. Avoids potentially unreliable processes of crosspollination and seed germination.

58 Concept 27.3 Angiosperms Can Reproduce Asexually Asexual reproduction often occurs by modification of vegetative organs: Strawberries produce horizontal stems (stolons or runners) from which new plants can grow. Bamboo has underground stems (rhizomes) that also produce new plants. Potato tubers are fleshy underground stems; plants grow from the eyes.

59 Concept 27.3 Angiosperms Can Reproduce Asexually Garlic bulbs are modified stems and can produce new plants. Kalanchoe produces new plants at the edges of its leaves.

60 Figure Vegetative Reproduction (Part 1)

61 Figure Vegetative Reproduction (Part 2)

62 Figure Vegetative Reproduction (Part 3)

63 Concept 27.3 Angiosperms Can Reproduce Asexually Plants that reproduce vegetatively often live in unstable environments (e.g., eroding hillsides) places where germination is unreliable. Beach grasses and other plants with stolons or rhizomes are common on sand dunes and help stabilize the shifting sands.

64 Concept 27.3 Angiosperms Can Reproduce Asexually Apomixis asexual production of seeds (dandelions, blackberries, some citrus, etc.) Two mechanisms: Megasporocyte does not undergo meiosis, resulting in a diploid egg cell that becomes an embryo and seed. Diploid cells from the integument form a diploid embryo sac, which becomes an embryo and seed. Apomixis results in clones.

65 Concept 27.3 Angiosperms Can Reproduce Asexually Some crops such as corn are grown as hybrids because the progeny are superior to either parent (hybrid vigor). The hybrids are sterile, and populations of the parent strains must be maintained and crossed every year. An intensive search is on for apomixis genes that could be introduced into crops and allow them to be propagated indefinitely.

66 Figure The Advantage of Asexual Reproduction by Apomixis

67 Concept 27.3 Angiosperms Can Reproduce Asexually Making stem cuttings and allowing them to root in soil or water is a very old method of reproducing plants vegetatively. Rooting can be encouraged by treating the cuttings with auxin.

68 Concept 27.3 Angiosperms Can Reproduce Asexually Grafting attaching a bud or piece of stem from one plant to a root-bearing stem of another plant. Used for woody plants. The stock is the root-bearing part; the part grafted on is the scion. The vascular cambia grow together to form a continuous cambium. Most fruit trees and wine grapes are grafted.

69 Figure Grafting

70 Concept 27.3 Angiosperms Can Reproduce Asexually Meristem culture pieces of shoot apical meristem are cultured on growth media. The plantlets are then planted in the field. Used for strawberries and potatoes to produce virus-free plants. Used in forestry to produce uniform seedlings.

71 Answer to Opening Question Poinsettias are short-day plants. They are grown in greenhouses where photoperiod is carefully regulated. Wild relatives grow very tall; a shorter, branching variety was propagated asexually by grafting. Short, compact growth was found to be caused by a bacterium, which probably acts by changing cytokinin levels in the plants.

72 Figure A Wild Relative of Poinsettia

Plant Reproduction. 2. Evolutionarily, floral parts are modified A. stems B. leaves C. roots D. stolons E. suberins

Plant Reproduction. 2. Evolutionarily, floral parts are modified A. stems B. leaves C. roots D. stolons E. suberins Plant Reproduction 1. Angiosperms use temporary reproductive structures that are not present in any other group of plants. These structures are called A. cones B. carpels C. receptacles D. flowers E. seeds

More information

Chapter 38: Angiosperm Reproduction and Biotechnology

Chapter 38: Angiosperm Reproduction and Biotechnology Name Period Concept 38.1 Flowers, double fertilization, and fruits are unique features of the angiosperm life cycle This may be a good time for you to go back to Chapter 29 and review alternation of generation

More information

Biology 213 Angiosperms. Introduction

Biology 213 Angiosperms. Introduction Biology 213 Angiosperms Introduction The flowering plants, the angiosperms, are the most recent plants to evolve and quickly became the dominant plant life on this planet. They are also the most diverse

More information

Section 24 1 Reproduction With Cones and Flowers (pages 609 616)

Section 24 1 Reproduction With Cones and Flowers (pages 609 616) Chapter 24 Reproduction of Seed Plants Section 24 1 Reproduction With Cones and Flowers (pages 609 616) This section describes the reproductive structures of gymnosperms and angiosperms. It also explains

More information

Section 24 1 Reproduction With Cones and Flowers (pages 609 616)

Section 24 1 Reproduction With Cones and Flowers (pages 609 616) Chapter 24 Reproduction of Seed Plants Section 24 1 Reproduction With Cones and Flowers (pages 609 616) Key Concepts What are the reproductive structures of gymnosperms and angiosperms? How does pollination

More information

Chapter 3. Biology of Flowering Plants: Reproduction. Gametophytes, Fruits, Seeds, and Embryos

Chapter 3. Biology of Flowering Plants: Reproduction. Gametophytes, Fruits, Seeds, and Embryos BOT 3015L (Sherdan/Outlaw/Aghoram); Page 1 of 13 Chapter 3 Biology of Flowering Plants: Reproduction Gametophytes, Fruits, Seeds, and Embryos Objectives Angiosperms. Understand alternation of generations.

More information

Vascular Plants Bryophytes. Seedless Plants

Vascular Plants Bryophytes. Seedless Plants plant reproduction The Plants Vascular Plants Bryophytes Liverworts, Hornworts, Mosses lack roots and specialized tissues grow in moist, shady areas All have sieve cells and tracheids Seedless Plants Ferns

More information

Plant Growth & Development. Growth Stages. Differences in the Developmental Mechanisms of Plants and Animals. Development

Plant Growth & Development. Growth Stages. Differences in the Developmental Mechanisms of Plants and Animals. Development Plant Growth & Development Plant body is unable to move. To survive and grow, plants must be able to alter its growth, development and physiology. Plants are able to produce complex, yet variable forms

More information

Biology 172L General Biology Lab II Lab 03: Plant Life Cycles and Adaptations II: Gymnosperms and Angiosperms

Biology 172L General Biology Lab II Lab 03: Plant Life Cycles and Adaptations II: Gymnosperms and Angiosperms Biology 172L General Biology Lab II Lab 03: Plant Life Cycles and Adaptations II: Gymnosperms and Angiosperms Introduction Vascular seed-bearing plants, such as gymnosperms (cone-bearing plants) and angiosperms

More information

8. Study the cladogram underline the derived characteristics and circle the organisms that developed from them.

8. Study the cladogram underline the derived characteristics and circle the organisms that developed from them. Seed Plants: Gymnosperms and Angiosperms Answer the questions as you go through the power point, there are also paragraphs to read where you will need to hi-lite or underline as you read. 1. What are the

More information

Expt. How do flowering plants do it without flagella? The journey to find an egg. What causes pollen grain germination and tube growth?

Expt. How do flowering plants do it without flagella? The journey to find an egg. What causes pollen grain germination and tube growth? 1 Expt. How do flowering plants do it without flagella? The journey to find an egg. What causes pollen grain germination and tube growth? File: F12-07_pollen Modified from E. Moctezuma & others for BSCI

More information

PLANT EVOLUTION DISPLAY Handout

PLANT EVOLUTION DISPLAY Handout PLANT EVOLUTION DISPLAY Handout Name: TA and Section time Welcome to UCSC Greenhouses. This sheet explains a few botanical facts about plant reproduction that will help you through the display and handout.

More information

10B Plant Systems Guided Practice

10B Plant Systems Guided Practice 10B Plant Systems Guided Practice Reproduction Station 1 1. Observe Plant A. Locate the following parts of the flower: stamen, stigma, style, ovary. 2. Draw and label the parts of a flower (listed above)

More information

Double Fertilization and Post - Fertilization Events: Measuring

Double Fertilization and Post - Fertilization Events: Measuring WFP062298 Double Fertilization and Post - Fertilization Events: Measuring Concepts In plants fertilization is the event in sexual reproduction which follows pollination. In higher plants, two sperm are

More information

Angiosperm Reproduction: Flowers, Fruits, and Seeds Overview Objectives bold Part I Floral Anatomy . calyx sepals corolla, petals, stamens, filament

Angiosperm Reproduction: Flowers, Fruits, and Seeds Overview Objectives bold Part I Floral Anatomy . calyx sepals corolla, petals, stamens, filament Angiosperm Reproduction: Flowers, Fruits, and Seeds Overview In this lab you will observe assorted flowers, fruits, and seeds to better understand the unique adaptations of and the life cycle of angiosperms.

More information

Dissect a Flower. Huntington Library, Art Collections, and Botanical Gardens

Dissect a Flower. Huntington Library, Art Collections, and Botanical Gardens Huntington Library, Art Collections, and Botanical Gardens Dissect a Flower Overview Students dissect an Alstroemeria or similar flower to familiarize themselves with the basic parts of a flower. They

More information

II. Vegetative Propagation. Use of Apomictic Seeds Use of Specialized Vegetative Structures Adventitious Root Induction (Cuttings) Layering Grafting

II. Vegetative Propagation. Use of Apomictic Seeds Use of Specialized Vegetative Structures Adventitious Root Induction (Cuttings) Layering Grafting II. Vegetative Propagation Use of Apomictic Seeds Use of Specialized Vegetative Structures Adventitious Root Induction (Cuttings) Layering Grafting a. Use of Apomictic Seeds Apomixis = Development of seeds

More information

Unit 10- Plants /Study Guide KEY

Unit 10- Plants /Study Guide KEY Plant Diversity Unit 10- Plants /Study Guide KEY Answer Key SECTION 20.1. ORIGINS OF PLANT LIFE 1. eukaryotic, photosynthetic, same types of chlorophyll, starch as storage product, cellulose in cell walls

More information

Science 10-Biology Activity 14 Worksheet on Sexual Reproduction

Science 10-Biology Activity 14 Worksheet on Sexual Reproduction Science 10-Biology Activity 14 Worksheet on Sexual Reproduction 10 Name Due Date Show Me NOTE: This worksheet is based on material from pages 367-372 in Science Probe. 1. Sexual reproduction requires parents,

More information

Introduction to Plant Propagation. Glenn T. Sako Assistant County Extension Agent CTAHR, UHM

Introduction to Plant Propagation. Glenn T. Sako Assistant County Extension Agent CTAHR, UHM Introduction to Plant Propagation Glenn T. Sako Assistant County Extension Agent CTAHR, UHM Purposes for Plant Propagation Multiply the number of a species Perpetuate a species Maintain the youthfulness

More information

Flowers; Seeds enclosed in fruit

Flowers; Seeds enclosed in fruit Name Class Date Chapter 22 Plant Diversity Section Review 22-1 Reviewing Key Concepts Short Answer On the lines provided, answer the following questions. 1. Describe the main characteristics of plants.

More information

Fungi and plants practice

Fungi and plants practice Name: Period: Date: Fungi and plants practice Multiple Choice Identify the choice that best completes the statement or answers the question. Indicate your answer choice with an UPPER CASE letter in the

More information

IGCSE and GCSE Biology. Answers to questions. Section 2. Flowering Plants. Chapters 6-9. Chapter 6 Plant structure and function

IGCSE and GCSE Biology. Answers to questions. Section 2. Flowering Plants. Chapters 6-9. Chapter 6 Plant structure and function 1 IGCSE and GCSE Biology. Answers to questions Section 2. Flowering Plants. Chapters 6-9 Chapter 6 Plant structure and function Page 54 1. a Epidermis. Helps maintain shape, reduces evaporation, resists

More information

4th GRADE MINIMUM CONTENTS-NATURAL SCIENCE UNIT 11: PLANTS

4th GRADE MINIMUM CONTENTS-NATURAL SCIENCE UNIT 11: PLANTS PLANT BITS 4th GRADE MINIMUM CONTENTS-NATURAL SCIENCE UNIT 11: PLANTS There are four main parts to a plant. They are the root, stem, leaf and flower. Each part has an important task to do in the life of

More information

Plant Classification, Structure, Growth and Hormones

Plant Classification, Structure, Growth and Hormones Biology SAT II Review Sheet Plants Plant Classification, Structure, Growth and Hormones Multicellular autotrophs (organisms that use the energy of inorganic materials to produce organic materials) Utilize

More information

And the Green Grass Grew All Around and Around, the Green Grass Grew All. Evolution of Plants

And the Green Grass Grew All Around and Around, the Green Grass Grew All. Evolution of Plants And the Green Grass Grew All Around and Around, the Green Grass Grew All Around Evolution of Plants Adapting to Terrestrial Living Plants are complex multicellular organisms that are autotrophs they feed

More information

Kingdom Plantae Plant Diversity II

Kingdom Plantae Plant Diversity II Kingdom Plantae Plant Diversity II Professor Andrea Garrison Biology 3A Illustrations 2014 Cengage Learning unless otherwise noted Text 2014 Andrea Garrison Plant Diversity II 2 Plant Classification Bryophytes

More information

DID YOU KNOW that the plants most important to

DID YOU KNOW that the plants most important to Flower Anatomy DID YOU KNOW that the plants most important to agriculture all produce flowers? Every major food crop is a flowering plant. We do not think about the flowers of wheat, rice, corn, and soybeans.

More information

Seed plants are well adapted to the demands of life on land,

Seed plants are well adapted to the demands of life on land, 24 1 Reproduction With Cones and Flowers Seed plants are well adapted to the demands of life on land, especially in how they reproduce. The gametes of seedless plants, such as ferns and mosses, need water

More information

Plant Responses to Environmental Cues Tropisms, Photoperiodism, and Plant Hormones

Plant Responses to Environmental Cues Tropisms, Photoperiodism, and Plant Hormones Plant Responses to Environmental Cues Tropisms, Photoperiodism, and Plant Hormones Plant Responses to Environmental Cues Phototropism - plant growth response to light shoots bend toward light - positive

More information

Topic 26. The Angiosperms

Topic 26. The Angiosperms 1 Topic 26. The Angiosperms Domain Eukarya Kingdom Plantae The Flowering Plants (Angiosperms) Angiosperms were the last major clade of plants to appear in the geologic record, and are the most abundant

More information

Plant Structure, Growth, and Development. Chapter 35

Plant Structure, Growth, and Development. Chapter 35 Plant Structure, Growth, and Development Chapter 35 PLANTS developmental plasticity = ability of plant to alter form to respond to environment Biological heirarchy Cell basic unit of life Tissue group

More information

Page 1. 1. The production of monoploid cells by spermatogenesis occurs in (1) zygotes (3) ovaries (2) testes (4) meristems

Page 1. 1. The production of monoploid cells by spermatogenesis occurs in (1) zygotes (3) ovaries (2) testes (4) meristems 1. The production of monoploid cells by spermatogenesis occurs in (1) zygotes (3) ovaries (2) testes (4) meristems Base your answers to questions 2 and 3 on the diagram below of the female reproductive

More information

Pre-lab homework Lab 2: Reproduction in Protists, Fungi, Moss and Ferns

Pre-lab homework Lab 2: Reproduction in Protists, Fungi, Moss and Ferns Pre-lab homework Lab 2: Reproduction in Protists, Fungi, Moss and Ferns Lab Section: Name: 1. Last week in lab you looked at the reproductive cycle of the animals. This week s lab examines the cycles of

More information

The remarkable evolutionary success of flowering plants

The remarkable evolutionary success of flowering plants 42 Plant Reproduction Concept Outline 42.1 Angiosperms have been incredibly successful, in part, because of their reproductive strategies. Rise of the Flowering Plants. Animal and wind dispersal of pollen

More information

Introduction to Plants

Introduction to Plants Introduction to Plants Unity and Diversity of Life Q: What are the five main groups of plants, and how have four of these groups adapted to life on land? 22.1 What are of plants? WHAT I KNOW SAMPLE ANSWER:

More information

Chapter 39: Plant Responses to Internal and External Signals

Chapter 39: Plant Responses to Internal and External Signals Name Period Concept 39.1 Signal transduction pathways link signal reception to response This concept brings together the general ideas on cell communication from Chapter 11 with specific examples of signal

More information

Flower Model: Teacher Instructions Sepals Anther Stamens (male) Filament Stigma Pistil Style (female) Ovary Petals sepals petals stamens pistil

Flower Model: Teacher Instructions Sepals Anther Stamens (male) Filament Stigma Pistil Style (female) Ovary Petals sepals petals stamens pistil Flower Model: Teacher Instructions In order to better understand the reproductive cycle of a flower, take a look at some flowers and note the male and female parts. Most flowers are different; some have

More information

Parts of a Flower and Pollination

Parts of a Flower and Pollination Science Unit: Lesson 3: Soils, Plants, and First Nations Parts of a Flower and Pollination School year: 2007/2008 Developed for: Britannia Elementary School, Vancouver School District Developed by: Catriona

More information

most modern cladograms have Amborella and water lilies as a sister group (or groups) to the rest of the angiosperms

most modern cladograms have Amborella and water lilies as a sister group (or groups) to the rest of the angiosperms Topic 7: Angiosperms, Flowers and Pollination Syndromes Phylum Anthophyta (Chs. 30, 38) Ι. Phylum Anthophyta flowering plants (antho flower) A. also known as angiosperms (angeion vessel or enclosure; sperma

More information

Sexual Reproduction. The specialized cells that are required for sexual reproduction are known as. And come from the process of: GAMETES

Sexual Reproduction. The specialized cells that are required for sexual reproduction are known as. And come from the process of: GAMETES Sexual Reproduction Sexual Reproduction We know all about asexual reproduction 1. Only one parent required. 2. Offspring are identical to parents. 3. The cells that produce the offspring are not usually

More information

Sexual Reproduction. and Meiosis. Sexual Reproduction

Sexual Reproduction. and Meiosis. Sexual Reproduction Sexual Reproduction and Meiosis Describe the stages of meiosis and how sex cells are produced. Explain why meiosis is needed for sexual reproduction. Name the cells that are involved in fertilization.

More information

Germ cell formation / gametogenesis And Fertilisation

Germ cell formation / gametogenesis And Fertilisation Developmental Biology BY1101 P. Murphy Lecture 3 The first steps to forming a new organism Descriptive embryology I Germ cell formation / gametogenesis And Fertilisation Why bother with sex? In terms of

More information

Plant and Soil Science I

Plant and Soil Science I Plant and Soil Science I Levels: Grades 9-12 Units of Credit: 1.00 CIP Code: 02.0411 Core Code: 30-02-00-00-080 Prerequisite: None Skill Test: # 140 COURSE DESCRIPTION Students will develop knowledge and

More information

nucleus cytoplasm membrane wall A cell is the smallest unit that makes up living and nonliving things.

nucleus cytoplasm membrane wall A cell is the smallest unit that makes up living and nonliving things. 1 In nature there are living things and nonliving things. Living things depend on three basic life processes: nutrition, sensitivity and reproduction. Living things are made up of cells. 1. Match the two

More information

Lecture 7: Plant Structure and Function. I. Background

Lecture 7: Plant Structure and Function. I. Background Lecture 7: Plant Structure and Function I. Background A. Challenges for terrestrial plants 1. Habitat is divided a. Air is the source of CO2 for photosynthesis i. Sunlight cannot penetrate soil b. Soil

More information

Plant Anatomy Lab 2: Flowers, Fruits and Seeds

Plant Anatomy Lab 2: Flowers, Fruits and Seeds Plant Anatomy Lab 2: Flowers, Fruits and Seeds Objectives of the Lab: 1) Explore the structure and function of flowering plant reproductive organs from flower development through fruit maturation. 2) Examine

More information

Reproductive System & Development: Practice Questions #1

Reproductive System & Development: Practice Questions #1 Reproductive System & Development: Practice Questions #1 1. Which two glands in the diagram produce gametes? A. glands A and B B. glands B and E C. glands C and F D. glands E and F 2. Base your answer

More information

The Huntington Library, Art Collections, and Botanical Gardens

The Huntington Library, Art Collections, and Botanical Gardens The Huntington Library, Art Collections, and Botanical Gardens Rooting for Mitosis Overview Students will fix, stain, and make slides of onion root tips. These slides will be examined for the presence

More information

Bio EOC Topics for Cell Reproduction: Bio EOC Questions for Cell Reproduction:

Bio EOC Topics for Cell Reproduction: Bio EOC Questions for Cell Reproduction: Bio EOC Topics for Cell Reproduction: Asexual vs. sexual reproduction Mitosis steps, diagrams, purpose o Interphase, Prophase, Metaphase, Anaphase, Telophase, Cytokinesis Meiosis steps, diagrams, purpose

More information

CCR Biology - Chapter 5 Practice Test - Summer 2012

CCR Biology - Chapter 5 Practice Test - Summer 2012 Name: Class: Date: CCR Biology - Chapter 5 Practice Test - Summer 2012 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. If a cell cannot move enough material

More information

Practice Problems 4. (a) 19. (b) 36. (c) 17

Practice Problems 4. (a) 19. (b) 36. (c) 17 Chapter 10 Practice Problems Practice Problems 4 1. The diploid chromosome number in a variety of chrysanthemum is 18. What would you call varieties with the following chromosome numbers? (a) 19 (b) 36

More information

Functional Biology of Plants

Functional Biology of Plants Brochure More information from http://www.researchandmarkets.com/reports/2252012/ Functional Biology of Plants Description: Functional Biology of Plants provides students and researchers with a clearly

More information

PLANT DIVERSITY. EVOLUTION OF LAND PLANTS KINGDOM: Plantae

PLANT DIVERSITY. EVOLUTION OF LAND PLANTS KINGDOM: Plantae PLANT DIVERSITY 1 EVOLUTION OF LAND PLANTS KINGDOM: Plantae Spores Leaf Ancestral green algae Flagellated sperm for reproduction Plenty of water Nutrients and CO 2 diffuse into tissues Holdfast Flagellated

More information

LAB 8 EUKARYOTIC CELL DIVISION: MITOSIS AND MEIOSIS

LAB 8 EUKARYOTIC CELL DIVISION: MITOSIS AND MEIOSIS LAB 8 EUKARYOTIC CELL DIVISION: MITOSIS AND MEIOSIS Los Angeles Mission College Biology 3 Name: Date: INTRODUCTION BINARY FISSION: Prokaryotic cells (bacteria) reproduce asexually by binary fission. Bacterial

More information

Chapter 13: Meiosis and Sexual Life Cycles

Chapter 13: Meiosis and Sexual Life Cycles Name Period Chapter 13: Meiosis and Sexual Life Cycles Concept 13.1 Offspring acquire genes from parents by inheriting chromosomes 1. Let s begin with a review of several terms that you may already know.

More information

Chapter 13: Meiosis and Sexual Life Cycles

Chapter 13: Meiosis and Sexual Life Cycles Name Period Concept 13.1 Offspring acquire genes from parents by inheriting chromosomes 1. Let s begin with a review of several terms that you may already know. Define: gene locus gamete male gamete female

More information

Plants have organs composed of different tissues, which in turn are composed of different cell types

Plants have organs composed of different tissues, which in turn are composed of different cell types Plant Structure, Growth, & Development Ch. 35 Plants have organs composed of different tissues, which in turn are composed of different cell types A tissue is a group of cells consisting of one or more

More information

PEACH TREE PHYSIOLOGY

PEACH TREE PHYSIOLOGY PEACH TREE PHYSIOLOGY David W. Lockwood Department of Plant Sciences & Landscape Systems University of Tennessee Knoxville, TN 37996 D. C. Coston Agricultural Experiment Station Oklahoma State University

More information

Phenology. Phenology and Growth of Grapevines. Vine Performance

Phenology. Phenology and Growth of Grapevines. Vine Performance Phenology and Growth of Grapevines Ker 2007 1 Soil Depth Texture Water and nutrient supply Climate Radiation Temperature Humidity Windspeed Rainfall Evaporation Cultural decisions Vine density Scion and

More information

www.mpiz-koeln.mpg.de Abt. Entwicklungsbiologie de Pflanzen

www.mpiz-koeln.mpg.de Abt. Entwicklungsbiologie de Pflanzen WEB ADDRESS: www.mpiz-koeln.mpg.de Forschung Abt. Entwicklungsbiologie de Pflanzen George Coupland How is the transition from vegetative growth to flowering controlled? - How is it regulated by environmental

More information

2. Fill in the blank. The of a cell is like a leader, directing and telling the different parts of the cell what to do.

2. Fill in the blank. The of a cell is like a leader, directing and telling the different parts of the cell what to do. 1. Plant and animal cells have some similarities as well as differences. What is one thing that plant and animal cells have in common? A. cell wall B. chlorophyll C. nucleus D. chloroplasts 2. Fill in

More information

Asexual Reproduction Grade Six

Asexual Reproduction Grade Six Ohio Standards Connection: Life Sciences Benchmark B Describe the characteristics of an organism in terms of a combination of inherited traits and recognize reproduction as a characteristic of living organisms

More information

1. Why is mitosis alone insufficient for the life cycle of sexually reproducing eukaryotes?

1. Why is mitosis alone insufficient for the life cycle of sexually reproducing eukaryotes? Chapter 13: Meiosis and Sexual Life Cycles 1. Why is mitosis alone insufficient for the life cycle of sexually reproducing eukaryotes? 2. Define: gamete zygote meiosis homologous chromosomes diploid haploid

More information

Name: Class: Date: ID: A

Name: Class: Date: ID: A Name: Class: _ Date: _ Meiosis Quiz 1. (1 point) A kidney cell is an example of which type of cell? a. sex cell b. germ cell c. somatic cell d. haploid cell 2. (1 point) How many chromosomes are in a human

More information

What's in a Flower. Ages: 8 to 12. Contributor: Susan Jaquette, Cornell Plantations volunteer

What's in a Flower. Ages: 8 to 12. Contributor: Susan Jaquette, Cornell Plantations volunteer Ages: 8 to 12 What's in a Flower Contributor: Susan Jauette, Cornell Plantations volunteer Main idea: Flowers are composed of several distinct parts, each of which plays an important role in nature. Objective:

More information

Cell Growth and Reproduction Module B, Anchor 1

Cell Growth and Reproduction Module B, Anchor 1 Cell Growth and Reproduction Module B, Anchor 1 Key Concepts: - The larger a cell becomes, the more demands the cell places on its DNA. In addition, a larger cell is less efficient in moving nutrients

More information

Tech Prep Articulation

Tech Prep Articulation Tech Prep Articulation Agriculture & Natural Resources Tech Prep Education: Tech Prep education in Missouri is an articulated two-year secondary and two or more year post-secondary education program which:

More information

Reproductive System. from the Human Body System Series. catalog # 3322. Published & Distributed by AGC/UNITED LEARNING

Reproductive System. from the Human Body System Series. catalog # 3322. Published & Distributed by AGC/UNITED LEARNING Reproductive System from the Human Body System Series catalog # 3322 Published & Distributed by AGC/UNITED LEARNING 1560 Sherman Avenue Suite 100 Evanston, IL 60201 1-800-323-9084 24-Hour Fax No. 847-328-6706

More information

BIOL 1030 TOPIC 5 LECTURE NOTES TOPIC 5: SEEDLESS VASCULAR PLANTS (CH. 29)

BIOL 1030 TOPIC 5 LECTURE NOTES TOPIC 5: SEEDLESS VASCULAR PLANTS (CH. 29) TOPIC 5: SEEDLESS VASCULAR PLANTS (CH. 29) I. Vascular Plants (overview) plants with xylem and phloem 7 or 9 living phyla, depending on who you talk to able to dominate most terrestrial habitats because

More information

2 nd Grade Science Unit B: Life Sciences Chapter 3: Plants and Animals in Their Environment Lesson 1: How are plants and animals like their parents?

2 nd Grade Science Unit B: Life Sciences Chapter 3: Plants and Animals in Their Environment Lesson 1: How are plants and animals like their parents? 2 nd Grade Science Unit B: Life Sciences Chapter 3: Plants and Animals in Their Environment Lesson 1: How are plants and animals like their parents? offspring Offspring are young plants and animals. Offspring

More information

CHROMOSOME STRUCTURE CHROMOSOME NUMBERS

CHROMOSOME STRUCTURE CHROMOSOME NUMBERS CHROMOSOME STRUCTURE 1. During nuclear division, the DNA (as chromatin) in a Eukaryotic cell's nucleus is coiled into very tight compact structures called chromosomes. These are rod-shaped structures made

More information

Germination is the process in which a

Germination is the process in which a The Germination Of a Bean Photographs and article By Lily C. Gerhardt LCG1603@rit.edu Germination is the process in which a seed, spore, or fungi sprouts, or begins growth. Seed germination can occur after

More information

Meiosis is a special form of cell division.

Meiosis is a special form of cell division. Page 1 of 6 KEY CONCEPT Meiosis is a special form of cell division. BEFORE, you learned Mitosis produces two genetically identical cells In sexual reproduction, offspring inherit traits from both parents

More information

(1) Hybrid Cucumber Seed Production. Samuel Contreras Departamento de Ciencias Vegetales Pontificia Universidad Católica de Chile Santiago, Chile

(1) Hybrid Cucumber Seed Production. Samuel Contreras Departamento de Ciencias Vegetales Pontificia Universidad Católica de Chile Santiago, Chile (1) Hybrid Cucumber Seed Production Samuel Contreras Departamento de Ciencias Vegetales Pontificia Universidad Católica de Chile Santiago, Chile (2) Introduction Cucurbitaceae family The Cucurbitaceae

More information

B2 5 Inheritrance Genetic Crosses

B2 5 Inheritrance Genetic Crosses B2 5 Inheritrance Genetic Crosses 65 minutes 65 marks Page of 55 Q. A woman gives birth to triplets. Two of the triplets are boys and the third is a girl. The triplets developed from two egg cells released

More information

A trait is a variation of a particular character (e.g. color, height). Traits are passed from parents to offspring through genes.

A trait is a variation of a particular character (e.g. color, height). Traits are passed from parents to offspring through genes. 1 Biology Chapter 10 Study Guide Trait A trait is a variation of a particular character (e.g. color, height). Traits are passed from parents to offspring through genes. Genes Genes are located on chromosomes

More information

Respiration occurs in the mitochondria in cells.

Respiration occurs in the mitochondria in cells. B3 Question Which process occurs in the mitochondria in cells? Why do the liver and muscle cells have large number of mitochondria? What is the function of the ribosomes? Answer Respiration occurs in the

More information

12.1 The Role of DNA in Heredity

12.1 The Role of DNA in Heredity 12.1 The Role of DNA in Heredity Only in the last 50 years have scientists understood the role of DNA in heredity. That understanding began with the discovery of DNA s structure. In 1952, Rosalind Franklin

More information

Biology 1406 - Notes for exam 5 - Population genetics Ch 13, 14, 15

Biology 1406 - Notes for exam 5 - Population genetics Ch 13, 14, 15 Biology 1406 - Notes for exam 5 - Population genetics Ch 13, 14, 15 Species - group of individuals that are capable of interbreeding and producing fertile offspring; genetically similar 13.7, 14.2 Population

More information

Class Time: 30 minutes. Other activities in the Stem Cells in the Spotlight module can be found at: http://gslc.genetics.utah.edu/teachers/tindex/

Class Time: 30 minutes. Other activities in the Stem Cells in the Spotlight module can be found at: http://gslc.genetics.utah.edu/teachers/tindex/ Teacher Guide: Color-Label-Learn: Creating Stem Cells for Research ACTIVITY OVERVIEW Abstract: Students color and label images on a worksheet and answer questions about the on-line content featured in

More information

Endocrine System: Practice Questions #1

Endocrine System: Practice Questions #1 Endocrine System: Practice Questions #1 1. Removing part of gland D would most likely result in A. a decrease in the secretions of other glands B. a decrease in the blood calcium level C. an increase in

More information

1. When new cells are formed through the process of mitosis, the number of chromosomes in the new cells

1. When new cells are formed through the process of mitosis, the number of chromosomes in the new cells Cell Growth and Reproduction 1. When new cells are formed through the process of mitosis, the number of chromosomes in the new cells A. is half of that of the parent cell. B. remains the same as in the

More information

JAPANESE KNOTWEED. What is Japanese Knotweed?

JAPANESE KNOTWEED. What is Japanese Knotweed? JAPANESE KNOTWEED What is Japanese Knotweed? Japanese Knotweed (botanical name Fallopia japonica) was introduced into Britain from Japan in the early 1800 s. It was originally grown as an ornamental plant,

More information

Plant Parts. Background Information

Plant Parts. Background Information Purpose The purpose of this lesson is for students to learn the six basic plant parts and their functions. Time Teacher Preparation: 30 minutes Student Activity: 60 minutes Materials For the teacher demonstration:

More information

MARK SCHEME for the May/June 2012 question paper for the guidance of teachers 5090 BIOLOGY. 5090/22 Paper 2 (Theory), maximum raw mark 80

MARK SCHEME for the May/June 2012 question paper for the guidance of teachers 5090 BIOLOGY. 5090/22 Paper 2 (Theory), maximum raw mark 80 www.xtremepapers.com UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS GCE Ordinary Level MARK SCHEME for the May/June 2012 question paper for the guidance of teachers 5090 BIOLOGY 5090/22 Paper 2 (Theory),

More information

MCAS Biology. Review Packet

MCAS Biology. Review Packet MCAS Biology Review Packet 1 Name Class Date 1. Define organic. THE CHEMISTRY OF LIFE 2. All living things are made up of 6 essential elements: SPONCH. Name the six elements of life. S N P C O H 3. Elements

More information

Articulated Credit. Agriculture & Natural Resources Tech Prep Education:

Articulated Credit. Agriculture & Natural Resources Tech Prep Education: Articulated Credit Agriculture & Natural Resources Tech Prep Education: Tech Prep education in Missouri is an articulated two-year secondary and two or more year post-secondary education program which:

More information

Lecture 10 Friday, March 20, 2009

Lecture 10 Friday, March 20, 2009 Lecture 10 Friday, March 20, 2009 Reproductive isolating mechanisms Prezygotic barriers: Anything that prevents mating and fertilization is a prezygotic mechanism. Habitat isolation, behavioral isolation,

More information

Organic Gardening Certificate Program Quiz Week 3 Answer Key

Organic Gardening Certificate Program Quiz Week 3 Answer Key Q uiz for week 3 readings: 1. The database on the Organic Weed management Website contains the following sections except: A. Picture B. Ecology C. Management D. Description 2. The weed quackgrass can reproduce

More information

AP BIOLOGY 2012 SCORING GUIDELINES

AP BIOLOGY 2012 SCORING GUIDELINES AP BIOLOGY 2012 SCORING GUIDELINES Question 1 Note: At least 1 point must be earned from each of parts (a), (b), (c), and (d) in order to earn a maximum score of 10. The ability to reproduce is a characteristic

More information

FOR TEACHERS ONLY. The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION LIVING ENVIRONMENT

FOR TEACHERS ONLY. The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION LIVING ENVIRONMENT FOR TEACHERS ONLY LE The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION LIVING ENVIRONMENT Tuesday, June 21, 2011 9:15 a.m. to 12:15 p.m., only SCORING KEY AND RATING GUIDE Directions

More information

Eric Zeldin 1, Jason Fishbach 2, Michael Demchik 3

Eric Zeldin 1, Jason Fishbach 2, Michael Demchik 3 The Application of Clonal Propagation to the Genetic Improvement of the American Hazelnut A Holistic Approach Presented at the 4th Annual Hazelnut Growers Conference, March 2nd, 2013, Eau Claire, WI Eric

More information

Heredity - Patterns of Inheritance

Heredity - Patterns of Inheritance Heredity - Patterns of Inheritance Genes and Alleles A. Genes 1. A sequence of nucleotides that codes for a special functional product a. Transfer RNA b. Enzyme c. Structural protein d. Pigments 2. Genes

More information

Light in the Greenhouse: How Much is Enough?

Light in the Greenhouse: How Much is Enough? Light in the Greenhouse: How Much is Enough? by: James W. Brown http://www.cropking.com/articlelghe Most of us know that green plants need light for photosynthesis, growth, and development. As important

More information

WEED MANAGEMENT LEARNING OBJECTIVES

WEED MANAGEMENT LEARNING OBJECTIVES C 6 H A P TE R WEED MANAGEMENT LEARNING OBJECTIVES After completely studying this chapter, you should: Be able to define a weed and its four stages of development. Understand the differences between annual,

More information

Plant Structure and Function Notes

Plant Structure and Function Notes For plants, when they made the transition from water to land, they had to make adaptations for obtaining water and prevent loss by desiccation (drying out) -water also needed for fertilization of eggs

More information

Unit 1 Higher Human Biology Summary Notes

Unit 1 Higher Human Biology Summary Notes Unit 1 Higher Human Biology Summary Notes a. Cells tissues organs body systems Division of labour occurs in multicellular organisms (rather than each cell carrying out every function) Most cells become

More information

GCSE BITESIZE Examinations

GCSE BITESIZE Examinations GCSE BITESIZE Examinations General Certificate of Secondary Education AQA SCIENCE A BLY1B Unit Biology B1b (Evolution and Environment) AQA BIOLOGY Unit Biology B1b (Evolution and Environment) FOUNDATION

More information

www.njctl.org PSI Biology Mitosis & Meiosis

www.njctl.org PSI Biology Mitosis & Meiosis Mitosis and Meiosis Mitosis Classwork 1. Identify two differences between meiosis and mitosis. 2. Provide an example of a type of cell in the human body that would undergo mitosis. 3. Does cell division

More information