Welding of Aluminium Alloys

Size: px
Start display at page:

Download "Welding of Aluminium Alloys"

Transcription

1 7. Welding of Aluminium Alloys

2 7. Welding of Aluminium Alloys 84 Property Al Fe Atomic weight [g/mol] Specific weight [g/cm³] Lattice fcc bcc E-module [N/mm²] 71*10³ 210*10³ R PO,2 [N/mm²] ca. 10 ca. po,2 Rm [N/mm²] ca. 50 ca. spec. Heat capacity [J/(g* C)] Melting point [ C] Heat conductivity [W/(cm*K)] Spec. el. Resistance [n m] Expansion coeff. [1/ C] 24* *10-6 FeO Oxydes Al 2 O 3 Fe 3 O 4 Fe 2 O 3 1 Melting point of oxydes [ C] Figure 7.1 compares basic physical properties of steel and aluminium. Side by side with different mechanical behaviour, the following differences are important for aluminium welding: - considerably lower melting point compared with steel - three times higher heat conductivity - considerably lower electrical resistance - double expansion coefficient - melting point of Al considerably higher than that of Al; metal and iron oxide melt approximately at the same temperature. (1455) br-er08-01.cdr Basic Properties of Al and Fe Figure 7.1 Figure 7.2 compares some mechanical properties of steel with properties of some light metals. The important advantages of light metals compared with steel are especially shown in the right part of the figure. If a comparison should be based on an identical stiffness, then the aluminium supporting beam has a 1.44 times larger cross-section than the steel beam, however only about 50% of its weight. Figure 7.3 compares qualitatively the stress-strain diagram of Aluminium and steel. In contrast to steel, aluminium has a fcc (face centred cubic)-lattice at room temperature. This is why there is no distinct yield point as being the case in a bcc (body centred cubic)- lattice. Aluminium is not subject to a lattice trans- Figure 7.2 br-er cdr Deflexions and Weights of Cantilever Beams Under Load

3 7. Welding of Aluminium Alloys 85 formation during cooling, thus there is no structure transformation and consequently no danger of hardening in the heat affected zone as with steel. 4 cm 2 low carbon steel 600 C Steel -4 Stress 8 cm 6 4 aluminium C Al-alloy Elongation cm 6 br-er08-03.cdr br-er08-04.cdr Comparison of Stress-Elongation Diagrams of Al and Steel Isothermal Curves of Steel and Al Figure 7.3 Figure 7.4 Figure 7.4 illustrates the effect of the considerably higher heat conductivity on the welding process compared with steel. With aluminium, the temperature gradient around the welding point is considerably smaller than with steel. Although the peak temperature during Al welding is about 900 C below steel, the isothermal curves around the welding point have a clearly larger extension. This is due to the considerably higher heat conductivity of aluminium compared with steel. This special characteristic of Al requires a input heat volume during welding equivalent to steel. Figure 7.5 lists the most important alloy elements and their combinations for industrial use. Due to their behaviour during heat treatment can Al-alloys be divided into the groups hardenable and non-hardenable (naturally hard) alloys.

4 7. Welding of Aluminium Alloys 86 Figure 7.6 shows typical applications of some Al alloys together with preferably used welding consumables. Aluminium alloys are often welded with consumable of the same type, however, quite often over-alloyed consumables are used to compensate burn-off losses (especially with Mg and Zn because of their low boiling point) and to improve the mechanical properties of the seam. The classification of Al alloys into two groups is based on the characteristic that the group of the non-hardenable alloys cannot increase the strength through heat treatment, in contrast to hardenable alloys which have such a potential. The important hardening mechanism for this second group is explained by the figures 7.7 und 7.8. Example: If an alloy containing about 4.2% Cu, which is stable at room temperature, is heat treated at 500 C, then, after a sufficiently long time, there will be only a single phase structure present. All alloy elements were dissolved, Figure 7.8 between point P and Q. Al br-er08-05.cdr Figure 7.5 Al - alloys Typical use W elding consumable Al99,5 SG-Al 99,5Ti; electrical engineering SG-Al 99,5 AlCuMg1 mechanical engineering, food industries SG-AlMg4,5Mn AlMgSi0,5 architecture, electrical engineering, anodizing quality SG-AlMg5; SG-AlMg4,5Mn; SG-AlSi5 AlSi5 architecture, anodizing quality SG-AlSi5 AlMg3 architecture, apparatus-, vehicle-, SG-AlMg3; shipbuilding engineering, furniture SG-AlMg4,5Mn industry AlMg2Mn0,8 apparatus-, vehicle-, shipbuilding engineering SG-AlMg5; SG-AlMg3; SG-AlMg4,5Mn AlMn1 apparatus-, vehicle-engineering, food industry SG-AlMn1;SG-Al99,5T base material - aluminium percentage of alloy elements without factor br-er cdr Figure 7.6 Use and Welding Consumables of Aluminium Alloys Cu Mg Zn Si Mn Al Cu Mg Al Mg Si Al Zn Mg Al Zn Mg Cu Al Si Cu Al Si Al Mg Al Mg Mn Al Mn Classification of Aluminium Alloys non-hardenable alloys hardenable alloys When quenched to room temperature in this condition, no precipitation will take place. The alloy elements are forced to remain dissolved, the crystal is out of equilibrium. If such a structure is subjected to an age hardening at room or elevated temperature, a precipitation of a second phase takes place in ac-

5 7. Welding of Aluminium Alloys 87 cordance with the binary system, the crystal tries to get back into thermodynamical equilibrium. stable condition solution heat treatment repeated hardening Depending on the level of solidification of alloy elements in solid solution hardening temperature, the regeneration cold ageing (RT ageing) quenching oversaturated solid solution, metastable condition ageing at slightly increased temperature warm ageing precipitation takes place in three possible forms: co- coherent precipitations, cold aged condition temperature rise coherent and partly coherent precipitations, transition conditions cold ageing -- warm ageing temperature rise partly coherent precipitations, warm aged condition longer warm ageing herent particles (i.e. particles deviating from the br-er cdr partly coherent and incoherent precipitations, softening longer warm ageing stable incoherent equilibrium phase stable condition matrix in their chemical composition but having the same lattice structure), partly coherent particles Ageing Mechanism (i.e. the lattice structure of Figure 7.7 the matrix is partly retained), and incoherent particles (lattice structure completely different from the matrix), Figure 7.7. Coherent particles formed at room temperature can be transformed into incoherent particles by increase of temperature (i.e. enabling diffusion). The precipitations cause a restriction to the 700 dislocation movement in the matrix lattice, thus liquid leading to an increase in strength. The finer the precipitations, the stronger the effect liquid and solid Q copper containing aluminium solid solution P At an increased temperature (heat ageing, Figure 7.7) a maximum of second phase has precipitated after elapse of a certain time. Temperature aluminium solid solution and copper aluminide (Al2Cu) Consequently a prolonged stop at this tem- perature does not lead to an increased copper content of AlCuMg strength, but to coarsening of particles due to diffusion processes and to a decrease in mass-% 7 Copper strength (less bigger particles in an extended br-er08-08.cdr space). Phase Diagram Al-Cu Figure 7.8

6 7. Welding of Aluminium Alloys 88 Temperature Q 500 P C 0 solution heat treatment quenching heat ageing age hardening h 14 Time After a very long heat ageing a stable condition is reached again with relatively large precipitations of the second phase in the matrix. In Figure 7.7 is this stable final condition identical with the starting condition. A deterioration of mechanical properties only happens during hot ageing, if the ageing time is excessively long. The complete process of hardening at room temperature is metallographic also called age hardening, at elevated temperature heat ageing. A decrease in strength at too long ageing time is called over-ageing. br-er08-09.cdr Figure 7.9 Temperature - Time Distribution During Ageing Figure 7.9 shows a schematic representation of time-temperature curves during hardening with age hardening and heat ageing. Figure 7.10 shows the strength increase of AlZnMg 1 in dependence of time. The difference between age hardening and heat ageing is here very clear. Due to improved diffusion conditions is the strength increase in the case of heat ageing much faster than in the case of age hardening. The strength maximum is also 0.2% yield stress 0.2 in N/mm² br-er cdr Figure 7.10 quenched water quenching (~900 C/min) air cooling (~30 C/min) ² 10³ Ageing time in h Increase of Yield Stress During Ageing of AlZnMg1 reached considerably earlier. The curve of hot ageing shows clearly the begin of strength loss when held at a too long stoppage time. This figure shows another specialty of the process of ageing. During ageing, a 120 C RT

7 7. Welding of Aluminium Alloys 89 second phase is precipitated from a single-phase structure. To initiate this process, the structure must contain nuclei of the second phase. However, a certain time is required to develop such nuclei. Only after formation of nuclei can the increase in strength start. The period up to this point is called incubation time. Figure 7.11 shows the effect of the height of ageing temperature level on both, mechanical properties of a hardenable Al-alloy and on incubation time. The lower the ageing temperature, the higher the resulting values of yield stress and tensile strength. If a low ageing temperature is selected, the ageing time as well as the incubation time become extremely long. Figure 7.11 shows that a the maximum yield stress is reached after a period of about one year under a temperature of 110 C. An increase of the ageing temperature shortens the duration of the complete precipitation process by a certain value raised by 1 to a power. On the other hand, such an acceleration of ageing leads to a lowering of the maximum strength. Tensile strength R m N/mm² AlMg5 AlMg3 Al99,5 Tensile strength B Fracture elongation 2 0.2% yield stress 0.2 br-er08-11.cdr 500 N/mm² N/mm² 30 % Figure min day 260 C C week 110 C 1 1 month year h 10 4 Ageing time Influence of Ageing Temperature and -Time on Ageing As the lower part of the figure shows, the fracture elongation is counterproportional to the strength values, i.e. the strength increase caused by ageing is accompanied by an embrittlement of the material. br-er cdr % 70 Strain Age Hardening of Al Alloys Figure 7.12

8 7. Welding of Aluminium Alloys 90 Figure 7.12 shows a method of how to increase the strength of non-hardenable alloys. As no precipitations are present to reduce the movement of dislocations, such alloys can only be strengthened by cold working. R m or R p0,2 N/mm² br-er08-13.cdr HV mm Distance from Seam Centre Non-Hardenable Al Alloy 0,7 0,6 0,5 0,4 0,3 0,2 R p0,2 /R m Figure 7.12 illustrates two essential mechanisms of strength increase of such alloys. On one hand, tensile strength increases with increasing content of alloy elements (solid solution strengthening), on the other hand, this increase is caused by a stronger deformation of the lattice. Figure 7.13 shows the effect of the welding process on mechanical properties of a coldworked alloy. Due to the heat input during welding, the blocked dislocations are released (recovery), in addition, a grain coarsening will start in the HAZ. This is followed by a strong drop in yield point and tensile strength. This strength loss cannot be overcome in the case of a welding process. Figure 7.13 Figure 7.14 illustrates the mechanisms in the case of a hardenable aluminium alloy. As a consequence of the welding heat, the precipitations are solution heat treated and the strength values decrease in the weld area. Due to the age hardening, a restrengthening of the alloys takes place with increasing time. Stress N/mm² days RT 21 days RT 1 day RT 21 days RT Hardenable Al Alloy 90 days RT 1 day RT 4 mm plates of: AlZnMg1F32 start values: R p0,2=263n/mm² R m=363 N/mm² welding method: WIG, both sides, simultaneously welding consumable: S-AlMg5 specimens with machined weld bead mm 140 Distance from seam centre br-er cdr Figure 7.14 R m R p0,2

9 7. Welding of Aluminium Alloys 91 br-er cdr Hot Cracks in a Al Weld Figure 7.15 shows another problematic nature of Alwelding. Due to the high thermal expansion of aluminium, high tensions develop during solidification of the weld pool in the course of the welding cycle. If the welded alloy indicates a high melting interval, cracks may easily develop in the weld. Figure 7.15 A relief can be afforded by preheating of the material, Figure With an increasing preheat temperature, the amount of fractured welds decreases. The different behaviour of the three displayed alloys can be explained using the right part of the figure. One can see that the manganese content influences significantly the hot crack susceptibility. The maximum of this hot crack susceptibility is likely with about 1% Mg content (corresponds with alloy 1). With increasing MG content, hot Weld cracking tendency % X X 3 20 X X 0 C 500 Preheat temperature 1: AlMgMn 2: AlMg 2,5 3: AlMg 3,5 br-er cdr Cracking susceptibility Si Mg % 4 Alloy content crack susceptibility decreases strongly (see also Influence of Preheat Temperature and Magnesium Content alloy 2 and 3, left part). Figure 7.16 To avoid hot cracking, partly very different preheat temperatures are recommended for the alloys. Zschötge proposed a calculation method which compares the heat conductivity conditions of the Al alloy with those of a carbon steel with 0.2% C. The formula is shown in Figure

10 7. Welding of Aluminium Alloys 92 TS in C temperature of melt start (solidus temperature) Tvorw. in C preheat temperature in J/cm*s*K heat conductivity Al-Leg. Recommended preheat temperature C T Vorw. br-er cdr 745 TS ; Al Leg. melting point pure aluminium Al 99,98R Al99,9 Al99,8 Al 99,7 Al 99,5 Al 99 Al R Mg0,5 Al Mg Si 0,5 Al Mg Si 0,8 Al Mg Si 1 E Al Mg Si 1 Al Mg 1 Increasing better weldability Al Si 5 Al Cu Mg 1 Al Cu Mg 0,5 Al R Mg 2 Al Mn Al Mg 2 Al Cu Mg 2 Al Mg 3 Al Mg 3 Si Al Mg Mn Recommendations for Preheating Welding possible without preheating: AlMg5, AlMg7, AlMg4.5Mn, AlZnMg3, AlZnMg1 Al Zn Mg Cu 0,5 Al Zn Mg Cu 1,5 mild steel (0.2%C) without preheating 7.17, together with the related calculation result. These results are only to be regarded as approximate, the individual application is subject to the information of the manufacturer. Figure 7.17 Another major problem during Al welding is the strong porosity of the welded joint. It is based on the interplay of several characteristics and hard to suppress. Pores in Al are mostly formed by hydrogen, which is driven out of the weld br-er cdr Excessive Porosity in a Al Weld Figure 7.18 poor current transition feuchte Luft pores Poren solid weld metal festes Schweißgut base material irregular wire electrode feed humid air H 2 Grundwerkstoff too thick and water containing oxyde layer by too long or open storage in non air-conditioned rooms humid air (nitrogen, oxygen, water) nozzle deposits and too steep inclination of the torch cause turbulences H 2 V S too thick oxyde layer (condensed water) dirt film (oil, grease) pool during solidification. Solubility of hydrogen in aluminium changes abruptly on the phase transition melt-crystal, i.e. the melt dissolves many times more of the hydrogen than the just forming crystal at the same temperature. br-er cdr Ingress of Hydrogen Into the Weld Figure 7.19

11 7. Welding of Aluminium Alloys 93 This leads to a surplus of hydrogen in the melt due to the crystallisation during solidification. This surplus precipitates in form of a gas bubble at the solidifying front. As the melting point of Al is very low and Al has a very high heat conductivity, the solidification speed of Al is relatively high. As a result, in the melt ousted gas bubbles have often no chance to rise all the way to the surface. Instead, they are passed by the solidifying front and remain in the weld metal as pores, Figure Figure 7.20 To suppress such pore formation it is therefore necessary to minimise the hydrogen content in the melt. Figure 7.19 shows possible sources of hydrogen during MIG welding of Al. Figure 7.20 and 7.21 show the effect of pure thermal expansion during Al welding. The large thermal expansion of the aluminium along with the relatively large heat affected zones cause in combination with a parallel gap adjustment a strong distortion of the welded parts. To minimise this distortion, the workpieces must be set at a suitable angle before welding, Figure wedge flame br-er08-21.cdr Examples to Minimise Distortion Figure 7.21

Problems in Welding of High Strength Aluminium Alloys

Problems in Welding of High Strength Aluminium Alloys Singapore Welding Society Newsletter, September 1999 Problems in Welding of High Strength Aluminium Alloys Wei Zhou Nanyang Technological University, Singapore E-mail: WZhou@Cantab.Net Pure aluminium has

More information

Autogenous Laser Welding of Aluminum

Autogenous Laser Welding of Aluminum Hans Leidich OEM Laser Specialist Laser Technology Center TRUMPF Inc. Why Autogenous Simpler Less hardware Easier process Faster speed Should be first approach (if doesn t work, then go to the next step)

More information

The mechanical properties of metal affected by heat treatment are:

The mechanical properties of metal affected by heat treatment are: Training Objective After watching this video and reviewing the printed material, the student/trainee will learn the basic concepts of the heat treating processes as they pertain to carbon and alloy steels.

More information

North American Stainless

North American Stainless North American Stainless Long Products Stainless Steel Grade Sheet 2205 UNS S2205 EN 1.4462 2304 UNS S2304 EN 1.4362 INTRODUCTION Types 2205 and 2304 are duplex stainless steel grades with a microstructure,

More information

Weld Cracking. An Excerpt from The Fabricators' and Erectors' Guide to Welded Steel Construction. The James F. Lincoln Arc Welding Foundation

Weld Cracking. An Excerpt from The Fabricators' and Erectors' Guide to Welded Steel Construction. The James F. Lincoln Arc Welding Foundation Weld Cracking An Excerpt from The Fabricators' and Erectors' Guide to Welded Steel Construction The James F. Lincoln Arc Welding Foundation Weld Cracking Several types of discontinuities may occur in welds

More information

The atomic packing factor is defined as the ratio of sphere volume to the total unit cell volume, or APF = V S V C. = 2(sphere volume) = 2 = V C = 4R

The atomic packing factor is defined as the ratio of sphere volume to the total unit cell volume, or APF = V S V C. = 2(sphere volume) = 2 = V C = 4R 3.5 Show that the atomic packing factor for BCC is 0.68. The atomic packing factor is defined as the ratio of sphere volume to the total unit cell volume, or APF = V S V C Since there are two spheres associated

More information

MSE 528 - PRECIPITATION HARDENING IN 7075 ALUMINUM ALLOY

MSE 528 - PRECIPITATION HARDENING IN 7075 ALUMINUM ALLOY MSE 528 - PRECIPITATION HARDENING IN 7075 ALUMINUM ALLOY Objective To study the time and temperature variations in the hardness and electrical conductivity of Al-Zn-Mg-Cu high strength alloy on isothermal

More information

8. Technical Heat Treatment

8. Technical Heat Treatment 8. Technical Heat Treatment 8. Technical Heat Treatment 95 6 cm 4 2 0-2 -4 C 400 C C -6-14 -12-10 -8-6 -4-2 0 2 cm 6 723 C temperature C 1750 750 250 When welding a workpiece, not only the weld itself,

More information

Chapter Outline Dislocations and Strengthening Mechanisms

Chapter Outline Dislocations and Strengthening Mechanisms Chapter Outline Dislocations and Strengthening Mechanisms What is happening in material during plastic deformation? Dislocations and Plastic Deformation Motion of dislocations in response to stress Slip

More information

Chapter Outline Dislocations and Strengthening Mechanisms

Chapter Outline Dislocations and Strengthening Mechanisms Chapter Outline Dislocations and Strengthening Mechanisms What is happening in material during plastic deformation? Dislocations and Plastic Deformation Motion of dislocations in response to stress Slip

More information

% Si Fe Cu Mn Mg Cr Zn Ti Others Others. Europe USA Spain France Germany G.B. Italy Sweden Switzerland Japan. ALMgSi1 3.3215 H30

% Si Fe Cu Mn Mg Cr Zn Ti Others Others. Europe USA Spain France Germany G.B. Italy Sweden Switzerland Japan. ALMgSi1 3.3215 H30 ALUMINIUMS Alloys Aluminium - Magnesium - Silicon 6082 % Si Fe Cu Mn Mg Cr Zn Ti Others Others Minimum 0,70 0,40 0,60 Each Total Maximum 1,30 0,50 0,10 1,00 1,20 0,25 0,20 0,10 0,05 0,10 Europe USA Spain

More information

Heat Treatment of Aluminum Foundry Alloys. Fred Major Rio Tinto Alcan

Heat Treatment of Aluminum Foundry Alloys. Fred Major Rio Tinto Alcan Heat Treatment of Aluminum Foundry Alloys Fred Major Rio Tinto Alcan OUTLINE Basics of Heat Treatment (What is happening to the metal at each step). Atomic Structure of Aluminum Deformation Mechanisms

More information

Wear-resistant steels. Technical terms of delivery for heavy plates. voestalpine Grobblech GmbH www.voestalpine.com/grobblech

Wear-resistant steels. Technical terms of delivery for heavy plates. voestalpine Grobblech GmbH www.voestalpine.com/grobblech Wear-resistant steels Technical terms of delivery for heavy plates voestalpine Grobblech GmbH www.voestalpine.com/grobblech Wear-resistant steels durostat durostat 400 durostat 450 durostat 500 durostat

More information

Defects Introduction. Bonding + Structure + Defects. Properties

Defects Introduction. Bonding + Structure + Defects. Properties Defects Introduction Bonding + Structure + Defects Properties The processing determines the defects Composition Bonding type Structure of Crystalline Processing factors Defects Microstructure Types of

More information

Chapter 5 - Aircraft Welding

Chapter 5 - Aircraft Welding Chapter 5 - Aircraft Welding Chapter 5 Section A Study Aid Questions Fill in the Blanks 1. There are 3 types of welding:, and, welding. 2. The oxy acetylene flame, with a temperature of Fahrenheit is produced

More information

WJM Technologies excellence in material joining

WJM Technologies excellence in material joining Girish P. Kelkar, Ph.D. (562) 743-7576 girish@welding-consultant.com www.welding-consultant.com Weld Cracks An Engineer s Worst Nightmare There are a variety of physical defects such as undercut, insufficient

More information

Solution for Homework #1

Solution for Homework #1 Solution for Homework #1 Chapter 2: Multiple Choice Questions (2.5, 2.6, 2.8, 2.11) 2.5 Which of the following bond types are classified as primary bonds (more than one)? (a) covalent bonding, (b) hydrogen

More information

HEAT TREATMENT OF STEEL

HEAT TREATMENT OF STEEL HEAT TREATMENT OF STEEL Heat Treatment of Steel Most heat treating operations begin with heating the alloy into the austenitic phase field to dissolve the carbide in the iron. Steel heat treating practice

More information

ME 612 Metal Forming and Theory of Plasticity. 1. Introduction

ME 612 Metal Forming and Theory of Plasticity. 1. Introduction Metal Forming and Theory of Plasticity Yrd.Doç. e mail: azsenalp@gyte.edu.tr Makine Mühendisliği Bölümü Gebze Yüksek Teknoloji Enstitüsü In general, it is possible to evaluate metal forming operations

More information

Mechanical Properties of Metals Mechanical Properties refers to the behavior of material when external forces are applied

Mechanical Properties of Metals Mechanical Properties refers to the behavior of material when external forces are applied Mechanical Properties of Metals Mechanical Properties refers to the behavior of material when external forces are applied Stress and strain fracture or engineering point of view: allows to predict the

More information

Lecture 19: Eutectoid Transformation in Steels: a typical case of Cellular

Lecture 19: Eutectoid Transformation in Steels: a typical case of Cellular Lecture 19: Eutectoid Transformation in Steels: a typical case of Cellular Precipitation Today s topics Understanding of Cellular transformation (or precipitation): when applied to phase transformation

More information

Chapter Outline: Phase Transformations in Metals

Chapter Outline: Phase Transformations in Metals Chapter Outline: Phase Transformations in Metals Heat Treatment (time and temperature) Microstructure Mechanical Properties Kinetics of phase transformations Multiphase Transformations Phase transformations

More information

LASER CUTTING OF STAINLESS STEEL

LASER CUTTING OF STAINLESS STEEL LASER CUTTING OF STAINLESS STEEL Laser inert gas cutting is the most applicable process type used for cutting of stainless steel. Laser oxygen cutting is also applied in cases where the cut face oxidation

More information

Ch. 4: Imperfections in Solids Part 1. Dr. Feras Fraige

Ch. 4: Imperfections in Solids Part 1. Dr. Feras Fraige Ch. 4: Imperfections in Solids Part 1 Dr. Feras Fraige Outline Defects in Solids 0D, Point defects vacancies Interstitials impurities, weight and atomic composition 1D, Dislocations edge screw 2D, Grain

More information

North American Stainless

North American Stainless Introduction: North American Stainless Flat Products Stainless Steel Grade Sheet 309S (S30908)/ EN1.4833 SS309 is a highly alloyed austenitic stainless steel used for its excellent oxidation resistance,

More information

Copper. Consumables. Copper and Copper Alloys. Welding Processes

Copper. Consumables. Copper and Copper Alloys. Welding Processes Consumables and Alloys is a metal with some very important properties, the main ones being its high electrical conductivity, its high thermal conductivity, its excellent resistance to corrosion, and its

More information

Lecture: 33. Solidification of Weld Metal

Lecture: 33. Solidification of Weld Metal Lecture: 33 Solidification of Weld Metal This chapter presents common solidification mechanisms observed in weld metal and different modes of solidification. Influence of welding speed and heat input on

More information

CHAPTER 7 DISLOCATIONS AND STRENGTHENING MECHANISMS PROBLEM SOLUTIONS

CHAPTER 7 DISLOCATIONS AND STRENGTHENING MECHANISMS PROBLEM SOLUTIONS 7-1 CHAPTER 7 DISLOCATIONS AND STRENGTHENING MECHANISMS PROBLEM SOLUTIONS Basic Concepts of Dislocations Characteristics of Dislocations 7.1 The dislocation density is just the total dislocation length

More information

Heat Treatment of Steels : Spheroidize annealing. Heat Treatment of Steels : Normalizing

Heat Treatment of Steels : Spheroidize annealing. Heat Treatment of Steels : Normalizing Heat Treatment of Steels :Recrystallization annealing The carbon and alloy steels were treated at a temperature of about 700 C, which is about 20 C below the eutectoid temperature. The holding time should

More information

North American Stainless

North American Stainless North American Stainless Flat Products Stainless Steel Grade Sheet 310S (S31008)/ EN 1.4845 Introduction: SS310 is a highly alloyed austenitic stainless steel designed for elevated-temperature service.

More information

FLAME CuTTIng te la P is utting B c

FLAME CuTTIng te la P is utting B c FLAME CUTTING Both Oxy-LPG and Oxy-acetylene processes are acceptable for sectioning all thicknesses of BISPLATE. With these processes, the following techniques are recommended: Gas pressure to be the

More information

Der Einfluss thermophysikalischer Daten auf die numerische Simulation von Gießprozessen

Der Einfluss thermophysikalischer Daten auf die numerische Simulation von Gießprozessen Der Einfluss thermophysikalischer Daten auf die numerische Simulation von Gießprozessen Tagung des Arbeitskreises Thermophysik, 4. 5.3.2010 Karlsruhe, Deutschland E. Kaschnitz Österreichisches Gießerei-Institut

More information

ALLOY 2205 DATA SHEET

ALLOY 2205 DATA SHEET ALLOY 2205 DATA SHEET UNS S32205, EN 1.4462 / UNS S31803 GENERAL PROPERTIES ////////////////////////////////////////////////////// //// 2205 (UNS designations S32205 / S31803) is a 22 % chromium, 3 % molybdenum,

More information

North American Stainless

North American Stainless North American Stainless Flat Products Stainless Steel Sheet T409 INTRODUCTION NAS 409 is an 11% chromium, stabilized ferritic stainless steel. It is not as resistant to corrosion or high-temperature oxidation

More information

Objectives/Introduction Extraction of zinc Physical properties of zinc Zinc casting alloys Wrought zinc alloys Engineering design with zinc alloys

Objectives/Introduction Extraction of zinc Physical properties of zinc Zinc casting alloys Wrought zinc alloys Engineering design with zinc alloys Lecture 7 Zinc and its alloys Subjects of interest Objectives/Introduction Extraction of zinc Physical properties of zinc Zinc casting alloys Wrought zinc alloys Engineering design with zinc alloys Objectives

More information

Welding. ArcelorMittal Europe Flat Products. Definitions of welding and weldability. Consequences of welding

Welding. ArcelorMittal Europe Flat Products. Definitions of welding and weldability. Consequences of welding ArcelorMittal Europe Flat Products Welding Definitions of welding and weldability Welding of metal parts is a joining process designed to ensure metallic continuity across the joint. This continuity is

More information

Chapter Outline. Diffusion - how do atoms move through solids?

Chapter Outline. Diffusion - how do atoms move through solids? Chapter Outline iffusion - how do atoms move through solids? iffusion mechanisms Vacancy diffusion Interstitial diffusion Impurities The mathematics of diffusion Steady-state diffusion (Fick s first law)

More information

CENTRIFUGAL CASTING. Email: amitjoshi@iitb.ac.in amitjoshi1000@yahoo.ca

CENTRIFUGAL CASTING. Email: amitjoshi@iitb.ac.in amitjoshi1000@yahoo.ca CENTRIFUGAL CASTING Amit M Joshi (B.Engg. Mechanical, A.M.I.Prod.E, A.I.E) Dept. of Metallurgical Engg. & Material Science, Indian Institute of Technology Bombay, India. Email: amitjoshi@iitb.ac.in amitjoshi1000@yahoo.ca

More information

Module 34. Heat Treatment of steel IV. Lecture 34. Heat Treatment of steel IV

Module 34. Heat Treatment of steel IV. Lecture 34. Heat Treatment of steel IV Module 34 Heat reatment of steel IV Lecture 34 Heat reatment of steel IV 1 Keywords : Austenitization of hypo & hyper eutectoid steel, austenization temperature, effect of heat treatment on structure &

More information

Chapter 12 - Liquids and Solids

Chapter 12 - Liquids and Solids Chapter 12 - Liquids and Solids 12-1 Liquids I. Properties of Liquids and the Kinetic Molecular Theory A. Fluids 1. Substances that can flow and therefore take the shape of their container B. Relative

More information

Lösungen Übung Verformung

Lösungen Übung Verformung Lösungen Übung Verformung 1. (a) What is the meaning of T G? (b) To which materials does it apply? (c) What effect does it have on the toughness and on the stress- strain diagram? 2. Name the four main

More information

Instructions Answer all questions in the spaces provided. Do all rough work in this book. Cross through any work you do not want to be marked.

Instructions Answer all questions in the spaces provided. Do all rough work in this book. Cross through any work you do not want to be marked. GCSE CHEMISTRY Higher Tier Chemistry 1H H Specimen 2018 Time allowed: 1 hour 45 minutes Materials For this paper you must have: a ruler a calculator the periodic table (enclosed). Instructions Answer all

More information

Chapter 8. Phase Diagrams

Chapter 8. Phase Diagrams Phase Diagrams A phase in a material is a region that differ in its microstructure and or composition from another region Al Al 2 CuMg H 2 O(solid, ice) in H 2 O (liquid) 2 phases homogeneous in crystal

More information

North American Stainless

North American Stainless North American Stainless Long Products Stainless Steel Grade Sheet AISI 304 UNS S30400 EN 1.4301 AISI 304L UNS S30430 EN 1.4307 INTRODUCTION: Types 304 and 304L are the most versatile and widely used of

More information

Evaluation of the Susceptibility of Simulated Welds In HSLA-100 and HY-100 Steels to Hydrogen Induced Cracking

Evaluation of the Susceptibility of Simulated Welds In HSLA-100 and HY-100 Steels to Hydrogen Induced Cracking Evaluation of the Susceptibility of Simulated Welds In HSLA-100 and HY-100 Steels to Hydrogen Induced Cracking R. E. Ricker, M. R. Stoudt, and D. J. Pitchure Materials Performance Group Metallurgy Division

More information

Phase. Gibbs Phase rule

Phase. Gibbs Phase rule Phase diagrams Phase A phase can be defined as a physically distinct and chemically homogeneous portion of a system that has a particular chemical composition and structure. Water in liquid or vapor state

More information

FEATURES AND BENEFITS OF DIFFERENT PLATINUM ALLOYS. Kris Vaithinathan and Richard Lanam Engelhard Corporation

FEATURES AND BENEFITS OF DIFFERENT PLATINUM ALLOYS. Kris Vaithinathan and Richard Lanam Engelhard Corporation FEATURES AND BENEFITS OF DIFFERENT PLATINUM ALLOYS Kris Vaithinathan and Richard Lanam Engelhard Corporation Introduction There has been a significant increase in the world wide use of platinum for jewelry

More information

Iron-Carbon Phase Diagram (a review) see Callister Chapter 9

Iron-Carbon Phase Diagram (a review) see Callister Chapter 9 Iron-Carbon Phase Diagram (a review) see Callister Chapter 9 University of Tennessee, Dept. of Materials Science and Engineering 1 The Iron Iron Carbide (Fe Fe 3 C) Phase Diagram In their simplest form,

More information

North American Stainless

North American Stainless North American Stainless Long Products Stainless Steel Grade Sheet AISI 316 UNS S31600 EN 1.4401 AISI 316L UNS S31630 EN 1.4404 INTRODUCTION NAS provides 316 and 316L SS, which are molybdenum-bearing austenitic

More information

Chapter 5: Diffusion. 5.1 Steady-State Diffusion

Chapter 5: Diffusion. 5.1 Steady-State Diffusion : Diffusion Diffusion: the movement of particles in a solid from an area of high concentration to an area of low concentration, resulting in the uniform distribution of the substance Diffusion is process

More information

Phase Transformations in Metals and Alloys

Phase Transformations in Metals and Alloys Phase Transformations in Metals and Alloys THIRD EDITION DAVID A. PORTER, KENNETH E. EASTERLING, and MOHAMED Y. SHERIF ( г йс) CRC Press ^ ^ ) Taylor & Francis Group Boca Raton London New York CRC Press

More information

ASTM A860/A860M-09 Standard Specification for Wrought High Strength. Ferritic Steel Butt Welding Fittings. 1. Scope :- 2. Reference Documents :-

ASTM A860/A860M-09 Standard Specification for Wrought High Strength. Ferritic Steel Butt Welding Fittings. 1. Scope :- 2. Reference Documents :- Standard Specification for Wrought High Strength Ferritic Steel Butt Welding Fittings 1. Scope :- 1.1 This specification covers wrought high strength ferritic steel butt-welding fitting of seamless and

More information

Effect of Temperature and Aging Time on 2024 Aluminum Behavior

Effect of Temperature and Aging Time on 2024 Aluminum Behavior Proceedings of the XIth International Congress and Exposition June 2-5, 2008 Orlando, Florida USA 2008 Society for Experimental Mechanics Inc. Effect of Temperature and Aging Time on 2024 Aluminum Behavior

More information

In order to solve this problem it is first necessary to use Equation 5.5: x 2 Dt. = 1 erf. = 1.30, and x = 2 mm = 2 10-3 m. Thus,

In order to solve this problem it is first necessary to use Equation 5.5: x 2 Dt. = 1 erf. = 1.30, and x = 2 mm = 2 10-3 m. Thus, 5.3 (a) Compare interstitial and vacancy atomic mechanisms for diffusion. (b) Cite two reasons why interstitial diffusion is normally more rapid than vacancy diffusion. Solution (a) With vacancy diffusion,

More information

DX2202 Duplex stainless steel

DX2202 Duplex stainless steel Stainless Europe Grade DX22 Duplex stainless steel Chemical Composition Elements C Mn Cr Ni Mo N %.25.3 23. 2.5

More information

Objective To conduct Charpy V-notch impact test and determine the ductile-brittle transition temperature of steels.

Objective To conduct Charpy V-notch impact test and determine the ductile-brittle transition temperature of steels. IMPACT TESTING Objective To conduct Charpy V-notch impact test and determine the ductile-brittle transition temperature of steels. Equipment Coolants Standard Charpy V-Notched Test specimens Impact tester

More information

Unit 6: EXTRUSION. Difficult to form metals like stainless steels, nickel based alloys and high temperature metals can also be extruded.

Unit 6: EXTRUSION. Difficult to form metals like stainless steels, nickel based alloys and high temperature metals can also be extruded. 1 Unit 6: EXTRUSION Introduction: Extrusion is a metal working process in which cross section of metal is reduced by forcing the metal through a die orifice under high pressure. It is used to produce cylindrical

More information

RAPIDLY SOLIDIFIED COPPER ALLOYS RIBBONS

RAPIDLY SOLIDIFIED COPPER ALLOYS RIBBONS Association of Metallurgical Engineers of Serbia AMES Scientific paper UDC:669.35-153.881-412.2=20 RAPIDLY SOLIDIFIED COPPER ALLOYS RIBBONS M. ŠULER 1, L. KOSEC 1, A. C. KNEISSL 2, M. BIZJAK 1, K. RAIĆ

More information

2 MATTER. 2.1 Physical and Chemical Properties and Changes

2 MATTER. 2.1 Physical and Chemical Properties and Changes 2 MATTER Matter is the material of which the universe is composed. It has two characteristics: It has mass; and It occupies space (i.e., it has a volume). Matter can be found in three generic states: Solid;

More information

North American Stainless

North American Stainless North American Stainless Flat Products Stainless Steel Grade Sheet 430 (S43000)/ EN 1.4016 Introduction: SS430 is a low-carbon plain chromium, ferritic stainless steel without any stabilization of carbon

More information

Welding. Module 19.2.1

Welding. Module 19.2.1 Welding Module 19.2.1 Hard Soldering Hard soldering is a general term for silver soldering and brazing. These are very similar thermal joining processes to soft soldering in as much that the parent metal

More information

SAND CAST CHILL CAST LM4 - TF

SAND CAST CHILL CAST LM4 - TF 1 This alloy conforms with British Standards 1490 and is similar to the obsolete specifications BS.L79 and D.T.D 424A. Castings may be in the cast (M) of fully heat treated (TF) conditions. CHEMICAL COMPOSITION

More information

Martensite in Steels

Martensite in Steels Materials Science & Metallurgy http://www.msm.cam.ac.uk/phase-trans/2002/martensite.html H. K. D. H. Bhadeshia Martensite in Steels The name martensite is after the German scientist Martens. It was used

More information

Aluminum Alloys. casting or a semisolid casting

Aluminum Alloys. casting or a semisolid casting Functionality & Service Requirements When determining how a component will function, the first question to ask is: what purpose will the component serve? Choosing the alloy, casting process and thermal

More information

The Periodic Table: Periodic trends

The Periodic Table: Periodic trends Unit 1 The Periodic Table: Periodic trends There are over one hundred different chemical elements. Some of these elements are familiar to you such as hydrogen, oxygen, nitrogen and carbon. Each one has

More information

GENERAL PROPERTIES //////////////////////////////////////////////////////

GENERAL PROPERTIES ////////////////////////////////////////////////////// ALLOY 625 DATA SHEET //// Alloy 625 (UNS designation N06625) is a nickel-chromium-molybdenum alloy possessing excellent resistance to oxidation and corrosion over a broad range of corrosive conditions,

More information

TIE-31: Mechanical and thermal properties of optical glass

TIE-31: Mechanical and thermal properties of optical glass PAGE 1/10 1 Density The density of optical glass varies from 239 for N-BK10 to 603 for SF66 In most cases glasses with higher densities also have higher refractive indices (eg SF type glasses) The density

More information

Aluminium alloys Extrusions and forgings

Aluminium alloys Extrusions and forgings AI Extrusions and forgings AI Extrusions and forgings Aluminium wrought alloys are the light alloys with the most balanced properties. Beside their low specific weight they may also have the following

More information

PROPERTIES OF MATERIALS

PROPERTIES OF MATERIALS 1 PROPERTIES OF MATERIALS 1.1 PROPERTIES OF MATERIALS Different materials possess different properties in varying degree and therefore behave in different ways under given conditions. These properties

More information

Metals and Non-metals. Comparison of physical properties of metals and non metals

Metals and Non-metals. Comparison of physical properties of metals and non metals Metals and Non-metals Comparison of physical properties of metals and non metals PHYSICAL PROPERTY METALS NON-METALS Physical State Metallic lustre (having a shining surface) Mostly solids (Liquid -mercury)

More information

Aluminium as Construction Material in Ammonia Refrigeration Cycles

Aluminium as Construction Material in Ammonia Refrigeration Cycles Aluminium as Construction Material in Ammonia Refrigeration Cycles Experiences With Aluminium Compared to other metals, aluminium has only a brief history as an engineering material. While, about 150 years

More information

Chapter 5 Student Reading

Chapter 5 Student Reading Chapter 5 Student Reading THE POLARITY OF THE WATER MOLECULE Wonderful water Water is an amazing substance. We drink it, cook and wash with it, swim and play in it, and use it for lots of other purposes.

More information

Name Class Date. In the space provided, write the letter of the term or phrase that best completes each statement or best answers each question.

Name Class Date. In the space provided, write the letter of the term or phrase that best completes each statement or best answers each question. Assessment Chapter Test A Chapter: States of Matter In the space provided, write the letter of the term or phrase that best completes each statement or best answers each question. 1. The kinetic-molecular

More information

AUSTENITIC STAINLESS DAMASCENE STEEL

AUSTENITIC STAINLESS DAMASCENE STEEL AUSTENITIC STAINLESS DAMASCENE STEEL Damasteel s austenitic stainless Damascene Steel is a mix between types 304L and 316L stainless steels which are variations of the 18 percent chromium 8 percent nickel

More information

Naue GmbH&Co.KG. Quality Control and. Quality Assurance. Manual. For Geomembranes

Naue GmbH&Co.KG. Quality Control and. Quality Assurance. Manual. For Geomembranes Naue GmbH&Co.KG Quality Control and Quality Assurance Manual For Geomembranes July 2004 V.O TABLE OF CONTENTS 1. Introduction 2. Quality Assurance and Control 2.1 General 2.2 Quality management acc. to

More information

INDIAN STANDARDS (BIS) ON WELDING

INDIAN STANDARDS (BIS) ON WELDING ** IS 82:957 Glossary of terms relating to welding and cutting of Sep 2008 metals 2 IS 83:986 Scheme of symbols for welding (revised) Sep 2008 3 IS 84:2004 Covered electrodes for manual metal arc welding

More information

Introduction to Materials Science, Chapter 9, Phase Diagrams. Phase Diagrams. University of Tennessee, Dept. of Materials Science and Engineering 1

Introduction to Materials Science, Chapter 9, Phase Diagrams. Phase Diagrams. University of Tennessee, Dept. of Materials Science and Engineering 1 Phase Diagrams University of Tennessee, Dept. of Materials Science and Engineering 1 Chapter Outline: Phase Diagrams Microstructure and Phase Transformations in Multicomponent Systems Definitions and basic

More information

14:635:407:02 Homework III Solutions

14:635:407:02 Homework III Solutions 14:635:407:0 Homework III Solutions 4.1 Calculate the fraction of atom sites that are vacant for lead at its melting temperature of 37 C (600 K). Assume an energy for vacancy formation of 0.55 ev/atom.

More information

Duplex Stainless Steel Fabrication. Gary M. Carinci TMR Stainless Consultant for International Molybdenum Association

Duplex Stainless Steel Fabrication. Gary M. Carinci TMR Stainless Consultant for International Molybdenum Association Duplex Stainless Steel Fabrication Gary M. Carinci TMR Stainless Consultant for International Molybdenum Association 1 Promoting molybdenum - as a material with superior properties and performance in a

More information

ALLOY C276 DATA SHEET

ALLOY C276 DATA SHEET ALLOY C276 DATA SHEET //// Alloy C276 (UNS designation N10276) is a nickel-molybdenum-chromium-iron-tungsten alloy known for its corrosion resistance in a wide range of aggressive media. It is one of the

More information

CHAPTER 3: MATTER. Active Learning Questions: 1-6, 9, 13-14; End-of-Chapter Questions: 1-18, 20, 24-32, 38-42, 44, 49-52, 55-56, 61-64

CHAPTER 3: MATTER. Active Learning Questions: 1-6, 9, 13-14; End-of-Chapter Questions: 1-18, 20, 24-32, 38-42, 44, 49-52, 55-56, 61-64 CHAPTER 3: MATTER Active Learning Questions: 1-6, 9, 13-14; End-of-Chapter Questions: 1-18, 20, 24-32, 38-42, 44, 49-52, 55-56, 61-64 3.1 MATTER Matter: Anything that has mass and occupies volume We study

More information

PRECIPITATION AND SOFTENING BEHAVIOUR OF CAST, COLD ROLLED AND HOT ROLLING PRIOR TO COLD ROLLED AL-6MG ALLOY ANNEALED AT HIGH TEMPERATURE

PRECIPITATION AND SOFTENING BEHAVIOUR OF CAST, COLD ROLLED AND HOT ROLLING PRIOR TO COLD ROLLED AL-6MG ALLOY ANNEALED AT HIGH TEMPERATURE Precipitation and softening behaviour of cast, cold rolled and hot rolling prior 32 PRECIPITATION AND SOFTENING BEHAVIOUR OF CAST, COLD ROLLED AND HOT ROLLING PRIOR TO COLD ROLLED AL-MG ALLOY ANNEALED

More information

LABORATORY EXPERIMENTS TESTING OF MATERIALS

LABORATORY EXPERIMENTS TESTING OF MATERIALS LABORATORY EXPERIMENTS TESTING OF MATERIALS 1. TENSION TEST: INTRODUCTION & THEORY The tension test is the most commonly used method to evaluate the mechanical properties of metals. Its main objective

More information

North American Stainless

North American Stainless North American Stainless Flat Products Stainless Steel Grade Sheet 304 (S30400)/ EN 1.4301 304L (S30403) / EN 1.4307 304H (S30409) Introduction: Types 304, 304L and 304H are the most versatile and widely

More information

EXTRACTION OF METALS

EXTRACTION OF METALS 1 EXTRACTION OF METALS Occurrence ores of some metals are very common (iron, aluminium) others occur only in limited quantities in selected areas ores need to be purified before being reduced to the metal

More information

Field Welding Inspection Guide

Field Welding Inspection Guide Field Welding Inspection Guide Assistance in interpretation of any specification or questions concerning field welding issues can be obtained from the Office of Materials Management, Structural Welding

More information

High-strength and ultrahigh-strength. Cut sheet from hot-rolled steel strip and heavy plate. voestalpine Steel Division www.voestalpine.

High-strength and ultrahigh-strength. Cut sheet from hot-rolled steel strip and heavy plate. voestalpine Steel Division www.voestalpine. High-strength and ultrahigh-strength TM steels Cut sheet from hot-rolled steel strip and heavy plate Josef Elmer, Key account manager voestalpine Steel Division www.voestalpine.com/steel Weight savings

More information

TIG WELDING TIPS by Tom Bell

TIG WELDING TIPS by Tom Bell (This is a two-part document, with general tig welding first followed by one aluminum-specific.) TIG WELDING TIPS by Tom Bell 1. The bigger the rod, the easier it is to feed. Use larger diameter rods (3/32

More information

Question Bank Electrolysis

Question Bank Electrolysis Question Bank Electrolysis 1. (a) What do you understand by the terms (i) electrolytes (ii) non-electrolytes? (b) Arrange electrolytes and non-electrolytes from the following substances (i) sugar solution

More information

POURING THE MOLTEN METAL

POURING THE MOLTEN METAL HEATING AND POURING To perform a casting operation, the metal must be heated to a temperature somewhat above its melting point and then poured into the mold cavity to solidify. In this section, we consider

More information

x100 A o Percent cold work = %CW = A o A d Yield Stress Work Hardening Why? Cell Structures Pattern Formation

x100 A o Percent cold work = %CW = A o A d Yield Stress Work Hardening Why? Cell Structures Pattern Formation Work Hardening Dislocations interact with each other and assume configurations that restrict the movement of other dislocations. As the dislocation density increases there is an increase in the flow stress

More information

Material data sheet. EOS Aluminium AlSi10Mg_200C. Description

Material data sheet. EOS Aluminium AlSi10Mg_200C. Description EOS Aluminium AlSi10Mg_200C All information in this data sheet refers to the alloy EOS Aluminium AlSi10Mg_200C. This alloy is formed when the powder EOS Aluminium AlSi10Mg is processes at a building platform

More information

Heat Treatment of Steel

Heat Treatment of Steel Heat Treatment of Steel Steels can be heat treated to produce a great variety of microstructures and properties. Generally, heat treatment uses phase transformation during heating and cooling to change

More information

Materials Issues in Fatigue and Fracture

Materials Issues in Fatigue and Fracture Materials Issues in Fatigue and Fracture 5.1 Fundamental Concepts 5.2 Ensuring Infinite Life 5.3 Finite Life 5.4 Summary FCP 1 5.1 Fundamental Concepts Structural metals Process of fatigue A simple view

More information

21. - 22. 11. 2012, Plzeň, Czech Republic, EU

21. - 22. 11. 2012, Plzeň, Czech Republic, EU PRO-BEAM TECHNOLOGY - HEAT TREATMENT OF METALS Václav HOŠEK a, Filip VRÁBLÍK a, Uwe CLAUß b, Pavel STOLAŘ a a ECOSOND s.r.o., Čerčany, Czech Republic, EU, ecosond@ecosond.cz b pro-beam AG & Co.KgaA, Neukirchen,

More information

Aging and Mechanical Behavior of Be-Treated 7075 Aluminum Alloys

Aging and Mechanical Behavior of Be-Treated 7075 Aluminum Alloys Aging and Mechanical Behavior of Be-Treated 7075 Aluminum Alloys Mahmoud M. Tash, S. Alkahtani Abstract The present study was undertaken to investigate the effect of pre-aging and aging parameters (time

More information

Lecture 35: Atmosphere in Furnaces

Lecture 35: Atmosphere in Furnaces Lecture 35: Atmosphere in Furnaces Contents: Selection of atmosphere: Gases and their behavior: Prepared atmospheres Protective atmospheres applications Atmosphere volume requirements Atmosphere sensors

More information

RAMAX S Prehardened stainless holder steel

RAMAX S Prehardened stainless holder steel T O O L S T E E L F A C T S RAMAX S Prehardened stainless holder steel Wherever tools are made Wherever tools are used This information is based on our present state of knowledge and is intended to provide

More information

Selective Soldering Defects and How to Prevent Them

Selective Soldering Defects and How to Prevent Them Selective Soldering Defects and How to Prevent Them Gerjan Diepstraten Vitronics Soltec BV Introduction Two major issues affecting the soldering process today are the conversion to lead-free soldering

More information