Mechanical properties of materials

Size: px
Start display at page:

Download "Mechanical properties of materials"

Transcription

1 Mechanical properties of materials The behavior of material is mainly determined by various mechanical properties of the material when subjected to different loading conditions. Such properties mainly include Young s modulus, various types of strength of the material, hardness, ductility etc. and are found to be very important both for design & manufacturing viewpoint. The design engineer should also consider the manufacturing constraints during the design of a part. Three basic types of stresses which are produced when a material is subjected to various loading conditions are a) Tensile Stress b) Compressive Stress c) Shear stress Tensile properties Tensile strength is defined as the ability of a material to support axial load without rupture and is determined through the tensile test. When equal and opposite forces are applied simultaneously at both the ends that pulls the material, it tries to elongate it and the diameter reduces. The test specimen and general setup has been shown in the Figure M (a)

2 (b) Figure M1.4.1: (a) Test specimen (b) Setup for the test Due to the stretching of the specimen in tensile test, the initial test specimen length L0 is increased to L and area A0 is reduced to A. The tensile testis carried out at a constant cross head speed and extensometers of required gauge length are used to capture the elongation depending on the requirement. In this process the material first elongates, then necking occurs & the fracture is produced. The necking phenomenon is observed mostly in tensile test and it also mainly depends upon the material that isused for test. If the material is brittle there is no chance of necking. From the measured data from the tensile test, the stress- strain curve is plotted. Mainly there are two type of stress-strain curves which are described below: 1) Engineering stress-strain 2) True stress strain

3 Generally in design application the engineering stress-strain curve is used as there is no expectation of change in shape due to strain. The true stress strain curve is important in manufacturing. Engineering stress-strain Engineering stress-strain is mainly illustrated by taking original cross section and original length. The stress-strain diagram for a metal is shown in Figure M Figure M1.4.2: Engineering stress-strain diagram of an metal The engineering stress at any point on the curve is the force divided by the original area s = F A Where e= Engineering stress (MPa) F= applied force in the test, (N) Ao= Original area of the test specimen (mm 2 ) Engineering strain at any point is the ratio between change in length to the original gage length.

4 e = L L L Where e= engineering strain, mm/mm, L= length at any point during elongation, mm Lo= Original gage length, mm Further, in the stress-strain curve, two distinct regions namely elastic region and plastic region represent different material behavior of the material. In the elastic region, the relation between stress and strain is linear. The relationship between stress and strain in the elastic region is defined by Hooke s law: s = Ee Where E= Young s modulus, MPa The value of E varies form one material to other which mainly indicates the stiffness of the material. In further addition of stress, the material begins to yield which is the end point of the elastic region (shown in the Figure M1.4.2). At this point there is change in slope of the curve occurs. This point is called as yield point which could be measured by drawing a straight-line parallel to the slope of the load-extension curve of the metals like titanium, steel, low carbon steel, and molybdenum at 0.2% offset. At this yield point there is slight extension of the specimen occurs without increase in stress level. The strength of the material at this point is called as yield strength. Beyond yield point, as the load increases, elongation of the specimen proceeds at a faster rate than before. This part of stress strain curve is called hardening region.when the load reaches a maximum value, the engineering stress at this point is called the tensile strength or ultimate tensile strength of the material. In the stress- strain diagram, beyond the tensile strength, the load carrying capacity reduces and the test specimen goes through a localized elongation called necking.there will not be constant strain in this region and the elongation occurs in one small segment of the specimen. The stress measured just before failure is known as the fracture stress.

5 The amount of strain that the material sustain before failure is an important property in mechanical engineering, which is used specially in manufacturing. This property is called ductility and is measured in terms of elongation or area reduction. EL = L L L AR = A A A Where EL= elongation, in % Lf= Specimen length in mm Lo= Original specimen, mm AR= Area reduction, in % Ao= Original area, mm 2 Af=Area of cross-section at the point of facture, in mm 2 True Stress-strain In the computation of engineering stress, the original cross sectional area has been used. However, during the process of loading the area reduces. In the computation of true stress the actual or instantaneous area is used. As the length increases, the cross sectional area decreases. Hence the calculated stress value will be higher. The instantaneous load divided by instantaneous cross-sectional area is called true stress. σ = F A Where = true stress, MPa F= force, N A=Actual area resisting the load, mm 2 True Stress & strain is related to engineering stress & strain in the following way. Keeping the volume of material constant.

6 A L = A L = F A = F A A A = s L L = s L L + L L = s (1 + e) Similarly true strain offers a more accurate calculation of the instantaneous elongation per unit length of the material.the true stress is generally increased rapidly than engineering stress once the strain increases and the accordingly, the cross sectional of the specimen decreases. ϵ = dl L = ln L L = ln L L + L L = ln (1 + e) Where L= instantaneous length at any moment during elongation ϵ = true strain The true stress-strain relationship in plastic region can be represented by the following flow curve: σ = K Here the constant K=strength coefficient n= Strain hardening exponent The value of K & n varies form one metal to other & mainly depends upon metal s tendency to work harden. The behavior of nearly all type of solid material are described by three types of stress-strain relationship diagram as shown in Figure M A) Perfectly elastic The behavior of the material is absolutely defined by its stiffness. Such material directly fractures without yielding when it reaches ultimate strength material. These materials are called

7 brittle materials. Examples of brittle material are ceramics, cast iron, etc. These materials are not suitable for forming operation, where permanent plastic deformation is required to get the final product. B) Elastic and perfectly plastic For this type of material, when the stress level reaches the yield point plastic deformation begins at the same stress level. Metals behave in this mode, when they are heated to high temperatures. This type of behavior occurs mainly at higher temperature doesn t strain harden rather it recrystallize during deformation. C) Elastic and strain hardening This kind of material obeys Hooke s law in the elastic region and begins to flow at its yield point. During cold working, most of the ductile material behave in this manner. Figure M1.4.3: The stress-strain relationship diagram for a) perfectly elastic b) elastic & perfectly plastic c) elastic & strain hardening. Compression Properties Compressive test is performed to determine the compressive strength of the material. The material is applied equal and opposite compressive load. Engineering stress is defined as s = F A Where Ao= Original area of cross section, mm 2 Engineering strain is defined as

8 = h h h Where h= height of the specimen at a particular moment into the test, mm h0= starting height, mm The strain will be negative. Usually the negative sign of the strain are ignored. The stress strain diagram is shown in the Figure M The stress strain curve shown in Figure M1.4.4 for compression test is different in the plastic region of stress strain curve for tensile test for same material. The reason of this variation is compression helps in increase in the cross section. The load rises more quickly than the tensile test. In compression operation, due to friction between the surfaces there is an increase in area of the middle of the specimen than at the ends. This effect is called barreling effect in a compression test. Figure M1.4.4: Stress-strain diagram for compression test Compression operations are used mostly in metal forming than stretching operations. Generally forging, rolling etc. are the compression operation used in industry.

9 Shear properties Shear stress involves application of load parallel to the surface of material in opposite direction as shown in Figure M The shear stress is defined as τ = F A (a) (b) Figure M1.4.5: Shear (a) stress (b) strain Where τ = shear stress, MPa F= applied force, N A= area over which the force is applied, mm 2 Shear strain can be defined as γ = δ b Where γ =shear strain, mm/mm δ= the deflection of the element, mm b= the orthogonal distance over which deflection occurs, mm In case of shear stress strain curve, the relationship for elastic region is defined by

10 = Where G=the shear modulus, MPa For plastic region the relationship between the shear stress strain is similar to flow curve. Due to strain hardening the applied load increases until the fracture occurs. The relationship between shear strength (S) & Tensile strength (TS) can represented by data approximation as below: S = 0.7 (TS) Different cutting operations like blanking, punching etc. used in industry are included in shearing operation. Due to mechanism of shear deformation the material is removed in the machining process. Hardness Hardness is a measure of how resistant solid matter is to various kinds of permanent shape change when a force is applied. Vickers hardness test: It is easier to use in comparison to other hardness tests since the required calculations are independent of the size of the indenter, and the indenter can be used for all materials irrespective of hardness. The unit of hardness given by the test is known as the Vickers Pyramid Number (HV). In Vickers hardness test the surface is subjected to a standard pressure for a standard length of time by means of a pyramid-shaped diamond. The diagonal of the resulting indention is measured under a microscope and the Vickers Hardness value is read from a conversion table. The Vickers number (HV) is calculated as: HV = 1.854(F/D 2 ) Where F=the applied load,kgf D= the area of the indentation, mm 2

11 Brinell hardness test:it is widely used for testing metals and non-metals of low to medium hardness. A ball shaped indenter made of cemented carbide is used for harder material in this test. Knoop Hardness Test: It is used for generally small & thin specimen. A pyramid-shaped diamond indenter is used whose length-to-width ratio of about 7:1. Rockwell Hardness Test: It is used for variety of material like carbide, ceramic, tool steel etc. where a cone-shaped indenter, with diameter 3.2 mm is forced into the specimen using a minor load of 10 kg & then a major load of 150 kg is applied, helping the indenter to penetrate into the specimen a certain distance beyond its initial position. This extra penetration distanced is converted into a Rockwell hardness. There is a good correlation between hardness & strength for most metals as hardness is usually based on resistance to indentation, which is a form of compression. Brinell hardness (HB) shows a close correlation with the ultimate tensile strength (TS) for steel is given below: TS = 3.45 (HB)

Description of mechanical properties

Description of mechanical properties ArcelorMittal Europe Flat Products Description of mechanical properties Introduction Mechanical properties are governed by the basic concepts of elasticity, plasticity and toughness. Elasticity is the

More information

Objectives. Experimentally determine the yield strength, tensile strength, and modules of elasticity and ductility of given materials.

Objectives. Experimentally determine the yield strength, tensile strength, and modules of elasticity and ductility of given materials. Lab 3 Tension Test Objectives Concepts Background Experimental Procedure Report Requirements Discussion Objectives Experimentally determine the yield strength, tensile strength, and modules of elasticity

More information

LABORATORY EXPERIMENTS TESTING OF MATERIALS

LABORATORY EXPERIMENTS TESTING OF MATERIALS LABORATORY EXPERIMENTS TESTING OF MATERIALS 1. TENSION TEST: INTRODUCTION & THEORY The tension test is the most commonly used method to evaluate the mechanical properties of metals. Its main objective

More information

Chapter Outline. Mechanical Properties of Metals How do metals respond to external loads?

Chapter Outline. Mechanical Properties of Metals How do metals respond to external loads? Mechanical Properties of Metals How do metals respond to external loads? Stress and Strain Tension Compression Shear Torsion Elastic deformation Plastic Deformation Yield Strength Tensile Strength Ductility

More information

Stress Strain Relationships

Stress Strain Relationships Stress Strain Relationships Tensile Testing One basic ingredient in the study of the mechanics of deformable bodies is the resistive properties of materials. These properties relate the stresses to the

More information

Properties of Materials

Properties of Materials CHAPTER 1 Properties of Materials INTRODUCTION Materials are the driving force behind the technological revolutions and are the key ingredients for manufacturing. Materials are everywhere around us, and

More information

Tensile Testing Laboratory

Tensile Testing Laboratory Tensile Testing Laboratory By Stephan Favilla 0723668 ME 354 AC Date of Lab Report Submission: February 11 th 2010 Date of Lab Exercise: January 28 th 2010 1 Executive Summary Tensile tests are fundamental

More information

Solution for Homework #1

Solution for Homework #1 Solution for Homework #1 Chapter 2: Multiple Choice Questions (2.5, 2.6, 2.8, 2.11) 2.5 Which of the following bond types are classified as primary bonds (more than one)? (a) covalent bonding, (b) hydrogen

More information

Mechanical Properties of Metals Mechanical Properties refers to the behavior of material when external forces are applied

Mechanical Properties of Metals Mechanical Properties refers to the behavior of material when external forces are applied Mechanical Properties of Metals Mechanical Properties refers to the behavior of material when external forces are applied Stress and strain fracture or engineering point of view: allows to predict the

More information

METU DEPARTMENT OF METALLURGICAL AND MATERIALS ENGINEERING

METU DEPARTMENT OF METALLURGICAL AND MATERIALS ENGINEERING METU DEPARTMENT OF METALLURGICAL AND MATERIALS ENGINEERING Met E 206 MATERIALS LABORATORY EXPERIMENT 1 Prof. Dr. Rıza GÜRBÜZ Res. Assist. Gül ÇEVİK (Room: B-306) INTRODUCTION TENSION TEST Mechanical testing

More information

PROPERTIES OF MATERIALS

PROPERTIES OF MATERIALS 1 PROPERTIES OF MATERIALS 1.1 PROPERTIES OF MATERIALS Different materials possess different properties in varying degree and therefore behave in different ways under given conditions. These properties

More information

Tensile Testing of Steel

Tensile Testing of Steel C 265 Lab No. 2: Tensile Testing of Steel See web for typical report format including: TITL PAG, ABSTRACT, TABL OF CONTNTS, LIST OF TABL, LIST OF FIGURS 1.0 - INTRODUCTION See General Lab Report Format

More information

EDEXCEL NATIONAL CERTIFICATE/DIPLOMA MECHANICAL PRINCIPLES OUTCOME 2 ENGINEERING COMPONENTS TUTORIAL 1 STRUCTURAL MEMBERS

EDEXCEL NATIONAL CERTIFICATE/DIPLOMA MECHANICAL PRINCIPLES OUTCOME 2 ENGINEERING COMPONENTS TUTORIAL 1 STRUCTURAL MEMBERS ENGINEERING COMPONENTS EDEXCEL NATIONAL CERTIFICATE/DIPLOMA MECHANICAL PRINCIPLES OUTCOME ENGINEERING COMPONENTS TUTORIAL 1 STRUCTURAL MEMBERS Structural members: struts and ties; direct stress and strain,

More information

STRAIN-LIFE (e -N) APPROACH

STRAIN-LIFE (e -N) APPROACH CYCLIC DEFORMATION & STRAIN-LIFE (e -N) APPROACH MONOTONIC TENSION TEST AND STRESS-STRAIN BEHAVIOR STRAIN-CONTROLLED TEST METHODS CYCLIC DEFORMATION AND STRESS-STRAIN BEHAVIOR STRAIN-BASED APPROACH TO

More information

MECHANICAL PRINCIPLES HNC/D PRELIMINARY LEVEL TUTORIAL 1 BASIC STUDIES OF STRESS AND STRAIN

MECHANICAL PRINCIPLES HNC/D PRELIMINARY LEVEL TUTORIAL 1 BASIC STUDIES OF STRESS AND STRAIN MECHANICAL PRINCIPLES HNC/D PRELIMINARY LEVEL TUTORIAL 1 BASIC STUDIES O STRESS AND STRAIN This tutorial is essential for anyone studying the group of tutorials on beams. Essential pre-requisite knowledge

More information

ENGINEERING COUNCIL CERTIFICATE LEVEL

ENGINEERING COUNCIL CERTIFICATE LEVEL ENGINEERING COUNCIL CERTIICATE LEVEL ENGINEERING SCIENCE C103 TUTORIAL - BASIC STUDIES O STRESS AND STRAIN You should judge your progress by completing the self assessment exercises. These may be sent

More information

Sheet metal operations - Bending and related processes

Sheet metal operations - Bending and related processes Sheet metal operations - Bending and related processes R. Chandramouli Associate Dean-Research SASTRA University, Thanjavur-613 401 Table of Contents 1.Quiz-Key... Error! Bookmark not defined. 1.Bending

More information

TENSILE TESTING PRACTICAL

TENSILE TESTING PRACTICAL TENSILE TESTING PRACTICAL MTK 2B- Science Of Materials Ts epo Mputsoe 215024596 Summary Material have different properties all varying form mechanical to chemical properties. Taking special interest in

More information

ME 354, MECHANICS OF MATERIALS LABORATORY

ME 354, MECHANICS OF MATERIALS LABORATORY ME 354, MECHANICS OF MATERIALS LABORATORY 01 Januarly 2000 / mgj MECHANICAL PROPERTIES AND PERFORMANCE OF MATERIALS: HARDNESS TESTING* PURPOSE The purpose of this exercise is to obtain a number of experimental

More information

Impact testing ACTIVITY BRIEF

Impact testing ACTIVITY BRIEF ACTIVITY BRIEF Impact testing The science at work Impact testing is of enormous importance. A collision between two objects can often result in damage to one or both of them. The damage might be a scratch,

More information

15. MODULUS OF ELASTICITY

15. MODULUS OF ELASTICITY Chapter 5 Modulus of Elasticity 5. MODULUS OF ELASTICITY The modulus of elasticity (= Young s modulus) E is a material property, that describes its stiffness and is therefore one of the most important

More information

Types of Strain. Engineering Strain: e = l l o. Shear Strain: γ = a b

Types of Strain. Engineering Strain: e = l l o. Shear Strain: γ = a b Types of Strain l a g Engineering Strain: l o l o l b e = l l o l o (a) (b) (c) Shear Strain: FIGURE 2.1 Types of strain. (a) Tensile. (b) Compressive. (c) Shear. All deformation processes in manufacturing

More information

The measuring of the hardness

The measuring of the hardness The measuring of the hardness In the field of mechanics one often meets with the notion of "hardness", and in fact the hardness is a fundamental characteristic to determine whether a certain material is

More information

EDEXCEL NATIONAL CERTIFICATE/DIPLOMA MECHANICAL PRINCIPLES AND APPLICATIONS NQF LEVEL 3 OUTCOME 1 - LOADING SYSTEMS TUTORIAL 3 LOADED COMPONENTS

EDEXCEL NATIONAL CERTIFICATE/DIPLOMA MECHANICAL PRINCIPLES AND APPLICATIONS NQF LEVEL 3 OUTCOME 1 - LOADING SYSTEMS TUTORIAL 3 LOADED COMPONENTS EDEXCEL NATIONAL CERTIICATE/DIPLOMA MECHANICAL PRINCIPLES AND APPLICATIONS NQ LEVEL 3 OUTCOME 1 - LOADING SYSTEMS TUTORIAL 3 LOADED COMPONENTS 1. Be able to determine the effects of loading in static engineering

More information

CORRELATION BETWEEN HARDNESS AND TENSILE PROPERTIES IN ULTRA-HIGH STRENGTH DUAL PHASE STEELS SHORT COMMUNICATION

CORRELATION BETWEEN HARDNESS AND TENSILE PROPERTIES IN ULTRA-HIGH STRENGTH DUAL PHASE STEELS SHORT COMMUNICATION 155 CORRELATION BETWEEN HARDNESS AND TENSILE PROPERTIES IN ULTRA-HIGH STRENGTH DUAL PHASE STEELS SHORT COMMUNICATION Martin Gaško 1,*, Gejza Rosenberg 1 1 Institute of materials research, Slovak Academy

More information

Hardened Concrete. Lecture No. 14

Hardened Concrete. Lecture No. 14 Hardened Concrete Lecture No. 14 Strength of Concrete Strength of concrete is commonly considered its most valuable property, although in many practical cases, other characteristics, such as durability

More information

CH 6: Fatigue Failure Resulting from Variable Loading

CH 6: Fatigue Failure Resulting from Variable Loading CH 6: Fatigue Failure Resulting from Variable Loading Some machine elements are subjected to static loads and for such elements static failure theories are used to predict failure (yielding or fracture).

More information

FATIGUE CONSIDERATION IN DESIGN

FATIGUE CONSIDERATION IN DESIGN FATIGUE CONSIDERATION IN DESIGN OBJECTIVES AND SCOPE In this module we will be discussing on design aspects related to fatigue failure, an important mode of failure in engineering components. Fatigue failure

More information

Torsion Tests. Subjects of interest

Torsion Tests. Subjects of interest Chapter 10 Torsion Tests Subjects of interest Introduction/Objectives Mechanical properties in torsion Torsional stresses for large plastic strains Type of torsion failures Torsion test vs.tension test

More information

Penetration Testing for Material Hardness

Penetration Testing for Material Hardness Penetration Testing for Material Hardness Purpose The hardness of various materials, ranging from metals to plastics to rubber, can be an important design property. Consider, for instance, a camshaft in

More information

Uniaxial Tension and Compression Testing of Materials. Nikita Khlystov Daniel Lizardo Keisuke Matsushita Jennie Zheng

Uniaxial Tension and Compression Testing of Materials. Nikita Khlystov Daniel Lizardo Keisuke Matsushita Jennie Zheng Uniaxial Tension and Compression Testing of Materials Nikita Khlystov Daniel Lizardo Keisuke Matsushita Jennie Zheng 3.032 Lab Report September 25, 2013 I. Introduction Understanding material mechanics

More information

There are as many reasons to test metals as there are metals:

There are as many reasons to test metals as there are metals: Testing Their Mettle Metals testing procedures ensure quality in raw materials and finished products BY BILL O NEIL, ADRIAN RIDDICK, FRANK LIO, PAUL KING, CHRIS WILSON, AND PATTY HARTZELL There are as

More information

ME 612 Metal Forming and Theory of Plasticity. 3. Work Hardening Models

ME 612 Metal Forming and Theory of Plasticity. 3. Work Hardening Models Metal Forming and Theory of Plasticity Yrd.Doç. e mail: azsenalp@gyte.edu.tr Makine Mühendisliği Bölümü Gebze Yüksek Teknoloji Enstitüsü In this section work hardening models that are applicable to different

More information

Introduction to Mechanical Behavior of Biological Materials

Introduction to Mechanical Behavior of Biological Materials Introduction to Mechanical Behavior of Biological Materials Ozkaya and Nordin Chapter 7, pages 127-151 Chapter 8, pages 173-194 Outline Modes of loading Internal forces and moments Stiffness of a structure

More information

σ y ( ε f, σ f ) ( ε f

σ y ( ε f, σ f ) ( ε f Typical stress-strain curves for mild steel and aluminum alloy from tensile tests L L( 1 + ε) A = --- A u u 0 1 E l mild steel fracture u ( ε f, f ) ( ε f, f ) ε 0 ε 0.2 = 0.002 aluminum alloy fracture

More information

5. MECHANICAL PROPERTIES AND PERFORMANCE OF MATERIALS

5. MECHANICAL PROPERTIES AND PERFORMANCE OF MATERIALS 5. MECHANICAL PROPERTIES AND PERFORMANCE OF MATERIALS Samples of engineering materials are subjected to a wide variety of mechanical tests to measure their strength, elastic constants, and other material

More information

Fatigue Performance Evaluation of Forged Steel versus Ductile Cast Iron Crankshaft: A Comparative Study (EXECUTIVE SUMMARY)

Fatigue Performance Evaluation of Forged Steel versus Ductile Cast Iron Crankshaft: A Comparative Study (EXECUTIVE SUMMARY) Fatigue Performance Evaluation of Forged Steel versus Ductile Cast Iron Crankshaft: A Comparative Study (EXECUTIVE SUMMARY) Ali Fatemi, Jonathan Williams and Farzin Montazersadgh Professor and Graduate

More information

The mechanical properties of metal affected by heat treatment are:

The mechanical properties of metal affected by heat treatment are: Training Objective After watching this video and reviewing the printed material, the student/trainee will learn the basic concepts of the heat treating processes as they pertain to carbon and alloy steels.

More information

CHAPTER 7 DISLOCATIONS AND STRENGTHENING MECHANISMS PROBLEM SOLUTIONS

CHAPTER 7 DISLOCATIONS AND STRENGTHENING MECHANISMS PROBLEM SOLUTIONS 7-1 CHAPTER 7 DISLOCATIONS AND STRENGTHENING MECHANISMS PROBLEM SOLUTIONS Basic Concepts of Dislocations Characteristics of Dislocations 7.1 The dislocation density is just the total dislocation length

More information

ANALYTICAL AND EXPERIMENTAL EVALUATION OF SPRING BACK EFFECTS IN A TYPICAL COLD ROLLED SHEET

ANALYTICAL AND EXPERIMENTAL EVALUATION OF SPRING BACK EFFECTS IN A TYPICAL COLD ROLLED SHEET International Journal of Mechanical Engineering and Technology (IJMET) Volume 7, Issue 1, Jan-Feb 2016, pp. 119-130, Article ID: IJMET_07_01_013 Available online at http://www.iaeme.com/ijmet/issues.asp?jtype=ijmet&vtype=7&itype=1

More information

B.TECH. (AEROSPACE ENGINEERING) PROGRAMME (BTAE) Term-End Examination December, 2011 BAS-010 : MACHINE DESIGN

B.TECH. (AEROSPACE ENGINEERING) PROGRAMME (BTAE) Term-End Examination December, 2011 BAS-010 : MACHINE DESIGN No. of Printed Pages : 7 BAS-01.0 B.TECH. (AEROSPACE ENGINEERING) PROGRAMME (BTAE) CV CA CV C:) O Term-End Examination December, 2011 BAS-010 : MACHINE DESIGN Time : 3 hours Maximum Marks : 70 Note : (1)

More information

Experiment: Heat Treatment - Quenching & Tempering

Experiment: Heat Treatment - Quenching & Tempering Experiment: Heat Treatment - Quenching & Tempering Objectives 1) To investigate the conventional heat treatment procedures, such as quenching and annealing, used to alter the properties of steels. SAE

More information

Hardness Testing at Elevated Temperatures. SJ Shaffer, Ph.D. Bruker-TMT Steven.shaffer@bruker-nano.com

Hardness Testing at Elevated Temperatures. SJ Shaffer, Ph.D. Bruker-TMT Steven.shaffer@bruker-nano.com Hardness Testing at Elevated Temperatures SJ Shaffer, Ph.D. Bruker-TMT Steven.shaffer@bruker-nano.com Outline What is Hardness? How is Hardness Measured? Overview of Hardness Test Methods Hardness Testing

More information

Lecture slides on rolling By: Dr H N Dhakal Lecturer in Mechanical and Marine Engineering, School of Engineering, University of Plymouth

Lecture slides on rolling By: Dr H N Dhakal Lecturer in Mechanical and Marine Engineering, School of Engineering, University of Plymouth Lecture slides on rolling By: Dr H N Dhakal Lecturer in Mechanical and Marine Engineering, School of Engineering, University of Plymouth Bulk deformation forming (rolling) Rolling is the process of reducing

More information

Mechanical Behavior, Testing, and Manufacturing Properties of Materials

Mechanical Behavior, Testing, and Manufacturing Properties of Materials M2_KALP1681_6_SE_C2.QXD 1/12/9 7:46 PM Page 56 C H A P T E R 2 Mechanical Behavior, Testing, and Manufacturing Properties of Materials 2.1 Introduction 56 2.2 Tension 57 2.3 Compression 66 2.4 Torsion

More information

Appendice Caratteristiche Dettagliate dei Materiali Utilizzati

Appendice Caratteristiche Dettagliate dei Materiali Utilizzati Appendice Caratteristiche Dettagliate dei Materiali Utilizzati A.1 Materiale AISI 9840 UNI 38NiCrMo4 AISI 9840 Steel, 650 C (1200 F) temper, 25 mm (1 in.) round Material Notes: Quenched, 540 C temper,

More information

Mechanical Properties - Stresses & Strains

Mechanical Properties - Stresses & Strains Mechanical Properties - Stresses & Strains Types of Deformation : Elasic Plastic Anelastic Elastic deformation is defined as instantaneous recoverable deformation Hooke's law : For tensile loading, σ =

More information

Unit 6: EXTRUSION. Difficult to form metals like stainless steels, nickel based alloys and high temperature metals can also be extruded.

Unit 6: EXTRUSION. Difficult to form metals like stainless steels, nickel based alloys and high temperature metals can also be extruded. 1 Unit 6: EXTRUSION Introduction: Extrusion is a metal working process in which cross section of metal is reduced by forcing the metal through a die orifice under high pressure. It is used to produce cylindrical

More information

different levels, also called repeated, alternating, or fluctuating stresses.

different levels, also called repeated, alternating, or fluctuating stresses. Fatigue and Dynamic Loading 1 Fti Fatigue fil failure: 2 Static ti conditions : loads are applied gradually, to give sufficient i time for the strain to fully develop. Variable conditions : stresses vary

More information

Mechanical Properties and Fracture Analysis of Glass. David Dutt Chromaglass, Inc.

Mechanical Properties and Fracture Analysis of Glass. David Dutt Chromaglass, Inc. Mechanical Properties and Fracture Analysis of Glass David Dutt Chromaglass, Inc. IES ALC Williamsburg 2006 2 IES ALC Williamsburg 2006 3 Outline The Ideal The Practical The Reality IES ALC Williamsburg

More information

EXPERIMENTAL AND NUMERICAL ANALYSIS OF THE COLLAR PRODUCTION ON THE PIERCED FLAT SHEET METAL USING LASER FORMING PROCESS

EXPERIMENTAL AND NUMERICAL ANALYSIS OF THE COLLAR PRODUCTION ON THE PIERCED FLAT SHEET METAL USING LASER FORMING PROCESS JOURNAL OF CURRENT RESEARCH IN SCIENCE (ISSN 2322-5009) CODEN (USA): JCRSDJ 2014, Vol. 2, No. 2, pp:277-284 Available at www.jcrs010.com ORIGINAL ARTICLE EXPERIMENTAL AND NUMERICAL ANALYSIS OF THE COLLAR

More information

Master of Simulation Techniques. Lecture No.5. Blanking. Blanking. Fine

Master of Simulation Techniques. Lecture No.5. Blanking. Blanking. Fine Master of Simulation Techniques Lecture No.5 Fine Blanking Prof. Dr.-Ing. F. Klocke Structure of the lecture Blanking Sheared surface and force Wear Blanking processes and blanking tools Errors on sheared

More information

CHAPTER 6 WEAR TESTING MEASUREMENT

CHAPTER 6 WEAR TESTING MEASUREMENT 84 CHAPTER 6 WEAR TESTING MEASUREMENT Wear is a process of removal of material from one or both of two solid surfaces in solid state contact. As the wear is a surface removal phenomenon and occurs mostly

More information

Cylinder Head Gasket Contact Pressure Simulation for a Hermetic Compressor

Cylinder Head Gasket Contact Pressure Simulation for a Hermetic Compressor Purdue University Purdue e-pubs International Compressor Engineering Conference School of Mechanical Engineering 2006 Cylinder Head Gasket Contact Pressure Simulation for a Hermetic Compressor Pavan P.

More information

Fatigue. 3. Final fracture (rough zone) 1. Fatigue origin. 2. Beach marks (velvety zone)

Fatigue. 3. Final fracture (rough zone) 1. Fatigue origin. 2. Beach marks (velvety zone) Fatigue Term fatigue introduced by Poncelet (France) 1839 progressive fracture is more descriptive 1. Minute crack at critical area of high local stress (geometric stress raiser, flaws, preexisting cracks)

More information

Solid Mechanics. Stress. What you ll learn: Motivation

Solid Mechanics. Stress. What you ll learn: Motivation Solid Mechanics Stress What you ll learn: What is stress? Why stress is important? What are normal and shear stresses? What is strain? Hooke s law (relationship between stress and strain) Stress strain

More information

MENG 302L Lab 1: Hardness Testing

MENG 302L Lab 1: Hardness Testing Introduction: A MENG 302L Lab 1: Hardness Testing Hardness Testing Hardness is measured in a variety of ways. The simplest is scratch testing, in which one material scratches or is scratched by another.

More information

International Journal of Engineering Research-Online A Peer Reviewed International Journal Articles available online http://www.ijoer.

International Journal of Engineering Research-Online A Peer Reviewed International Journal Articles available online http://www.ijoer. RESEARCH ARTICLE ISSN: 2321-7758 DESIGN AND DEVELOPMENT OF A DYNAMOMETER FOR MEASURING THRUST AND TORQUE IN DRILLING APPLICATION SREEJITH C 1,MANU RAJ K R 2 1 PG Scholar, M.Tech Machine Design, Nehru College

More information

Introduction to Hardness Testing

Introduction to Hardness Testing 1 Introduction to Hardness Testing Hardness has a variety of meanings. To the metals industry, it may be thought of as resistance to permanent deformation. To the metallurgist, it means resistance to penetration.

More information

University of Portland School of Engineering LABORATORY OUTLINE: TENSILE TESTING OF STEEL & ALUMINUM ALLOYS (ASTM E8)

University of Portland School of Engineering LABORATORY OUTLINE: TENSILE TESTING OF STEEL & ALUMINUM ALLOYS (ASTM E8) TENSILE TESTING OF STEEL & ALUMINUM ALLOYS (ASTM E8) To carry out a standard tensile test on specimens of a hot rolled steel (AISI 1045), Type 2024- T351 aluminum, polymers (UHMW-PE, acrylic) and, from

More information

Material property tests of Smooth-on Vytaflex60 liquid rubber

Material property tests of Smooth-on Vytaflex60 liquid rubber Material property tests of Smooth-on Vytaflex60 liquid rubber Sanjay R. Arwade March 16, 2006 During the fall semester of the 2005-2006 academic year, I decided to try to produce some scale models of structural

More information

AN EXPLANATION OF JOINT DIAGRAMS

AN EXPLANATION OF JOINT DIAGRAMS AN EXPLANATION OF JOINT DIAGRAMS When bolted joints are subjected to external tensile loads, what forces and elastic deformation really exist? The majority of engineers in both the fastener manufacturing

More information

HEAT TREATMENT OF STEEL

HEAT TREATMENT OF STEEL HEAT TREATMENT OF STEEL Heat Treatment of Steel Most heat treating operations begin with heating the alloy into the austenitic phase field to dissolve the carbide in the iron. Steel heat treating practice

More information

STRAIN IN THE UPSETTING PROCESS

STRAIN IN THE UPSETTING PROCESS METALLURGY AND FOUNDRY ENGINEERING Vol. 33, 2007, No. 1 Jerzy Kajtoch * STRAIN IN THE UPSETTING PROCESS 1. INTRODUCTION Upsetting is an technological operation of open die forging, which is performed in

More information

1.054/1.541 Mechanics and Design of Concrete Structures (3-0-9) Outline 1 Introduction / Design Criteria for Reinforced Concrete Structures

1.054/1.541 Mechanics and Design of Concrete Structures (3-0-9) Outline 1 Introduction / Design Criteria for Reinforced Concrete Structures Prof. Oral Buyukozturk Massachusetts Institute of Technology Outline 1 1.054/1.541 Mechanics and Design of Concrete Structures (3-0-9) Outline 1 Introduction / Design Criteria for Reinforced Concrete Structures

More information

SHORE A DUROMETER AND ENGINEERING PROPERTIES

SHORE A DUROMETER AND ENGINEERING PROPERTIES SHORE A DUROMETER AND ENGINEERING PROPERTIES Written by D.L. Hertz, Jr. and A.C. Farinella Presented at the Fall Technical Meeting of The New York Rubber Group Thursday, September 4, 1998 by D.L. Hertz,

More information

Numerical Analysis of Independent Wire Strand Core (IWSC) Wire Rope

Numerical Analysis of Independent Wire Strand Core (IWSC) Wire Rope Numerical Analysis of Independent Wire Strand Core (IWSC) Wire Rope Rakesh Sidharthan 1 Gnanavel B K 2 Assistant professor Mechanical, Department Professor, Mechanical Department, Gojan engineering college,

More information

FATIGUE TESTS AND STRESS-LIFE (S-N) APPROACH

FATIGUE TESTS AND STRESS-LIFE (S-N) APPROACH FATIGUE TESTS AND STRESS-LIFE (S-N) APPROACH FATIGUE TESTING LOADING TEST MACHINES SPECIMENS STANDARDS STRESS-LIFE APPEROACH S-N CURVES MEAN STRESS EFFECTS ON S-N BEHAVIOR FACTORS INFLUENCING S-N BEHAVIOR

More information

Manufacturing Tooling Cutting Tool Design. Elements of Machining. Chip Formation. Nageswara Rao Posinasetti

Manufacturing Tooling Cutting Tool Design. Elements of Machining. Chip Formation. Nageswara Rao Posinasetti Manufacturing Tooling Cutting Tool Design Nageswara Rao Posinasetti Elements of Machining Cutting tool Tool holding Guiding device Work piece Machine tool January 29, 2008 Nageswara Rao Posinasetti 2 Chip

More information

NEW TECHNIQUE FOR RESIDUAL STRESS MEASUREMENT NDT

NEW TECHNIQUE FOR RESIDUAL STRESS MEASUREMENT NDT NEW TECHNIQUE FOR RESIDUAL STRESS MEASUREMENT NDT E. Curto. p.i. Ennio Curto Via E. di Velo,84 36100 Vicenza Tel. 0444-511819 E-mail enniocurto@fastwebnet.it Key words: NDE Residual stress. New technique

More information

TIE-31: Mechanical and thermal properties of optical glass

TIE-31: Mechanical and thermal properties of optical glass PAGE 1/10 1 Density The density of optical glass varies from 239 for N-BK10 to 603 for SF66 In most cases glasses with higher densities also have higher refractive indices (eg SF type glasses) The density

More information

MCE380: Measurements and Instrumentation Lab. Chapter 9: Force, Torque and Strain Measurements

MCE380: Measurements and Instrumentation Lab. Chapter 9: Force, Torque and Strain Measurements MCE380: Measurements and Instrumentation Lab Chapter 9: Force, Torque and Strain Measurements Topics: Elastic Elements for Force Measurement Dynamometers and Brakes Resistance Strain Gages Holman, Ch.

More information

MECHANICS OF SOLIDS - BEAMS TUTORIAL 1 STRESSES IN BEAMS DUE TO BENDING. On completion of this tutorial you should be able to do the following.

MECHANICS OF SOLIDS - BEAMS TUTORIAL 1 STRESSES IN BEAMS DUE TO BENDING. On completion of this tutorial you should be able to do the following. MECHANICS OF SOLIDS - BEAMS TUTOIAL 1 STESSES IN BEAMS DUE TO BENDING This is the first tutorial on bending of beams designed for anyone wishing to study it at a fairly advanced level. You should judge

More information

FEM analysis of the forming process of automotive suspension springs

FEM analysis of the forming process of automotive suspension springs FEM analysis of the forming process of automotive suspension springs Berti G. and Monti M. University of Padua, DTG, Stradella San Nicola 3, I-36100 Vicenza (Italy) guido.berti@unipd.it, manuel.monti@unipd.it.

More information

Introduction to Solid Modeling Using SolidWorks 2012 SolidWorks Simulation Tutorial Page 1

Introduction to Solid Modeling Using SolidWorks 2012 SolidWorks Simulation Tutorial Page 1 Introduction to Solid Modeling Using SolidWorks 2012 SolidWorks Simulation Tutorial Page 1 In this tutorial, we will use the SolidWorks Simulation finite element analysis (FEA) program to analyze the response

More information

Concepts of Stress and Strain

Concepts of Stress and Strain CHAPTER 6 MECHANICAL PROPERTIES OF METALS PROBLEM SOLUTIONS Concepts of Stress and Strain 6.4 A cylindrical specimen of a titanium alloy having an elastic modulus of 107 GPa (15.5 10 6 psi) and an original

More information

Technical Data BLUE SHEET. Martensitic. stainless steels. Types 410, 420, 425 Mod, and 440A GENERAL PROPERTIES APPLICATIONS PRODUCT FORM

Technical Data BLUE SHEET. Martensitic. stainless steels. Types 410, 420, 425 Mod, and 440A GENERAL PROPERTIES APPLICATIONS PRODUCT FORM Technical Data BLUE SHEET Allegheny Ludlum Corporation Pittsburgh, PA Martensitic Stainless Steels Types 410, 420, 425 Mod, and 440A GENERAL PROPERTIES Allegheny Ludlum Types 410, 420, 425 Modified, and

More information

Cutting Tool Materials

Cutting Tool Materials Training Objectives After watching the video and reviewing this printed material, the viewer will gain knowledge and understanding of cutting tool metallurgy and specific tool applications for various

More information

Introduction. ε 1 θ=55 ε 2. Localized necking Because ν=0.5 in plasticity, ε 1 =-2ε 2 =-2ε 3. ε 3,ε 2

Introduction. ε 1 θ=55 ε 2. Localized necking Because ν=0.5 in plasticity, ε 1 =-2ε 2 =-2ε 3. ε 3,ε 2 SHEET METALWORKING 1. Cutting Operation 2. Bending Operation 3. Drawing 4. Other Sheet-metal Forming 5. Dies and Presses 6. Sheet-metal Operation 7. Bending of Tube Stock 1 Introduction Cutting and forming

More information

Massachusetts Institute of Technology Department of Mechanical Engineering Cambridge, MA 02139

Massachusetts Institute of Technology Department of Mechanical Engineering Cambridge, MA 02139 Massachusetts Institute of Technology Department of Mechanical Engineering Cambridge, MA 02139 2.002 Mechanics and Materials II Spring 2004 Laboratory Module No. 5 Heat Treatment of Plain Carbon and Low

More information

Long term performance of polymers

Long term performance of polymers 1.0 Introduction Long term performance of polymers Polymer materials exhibit time dependent behavior. The stress and strain induced when a load is applied are a function of time. In the most general form

More information

A Study of Durability Analysis Methodology for Engine Valve Considering Head Thermal Deformation and Dynamic Behavior

A Study of Durability Analysis Methodology for Engine Valve Considering Head Thermal Deformation and Dynamic Behavior A Study of Durability Analysis Methodology for Engine Valve Considering Head Thermal Deformation and Dynamic Behavior Kum-Chul, Oh 1, Sang-Woo Cha 1 and Ji-Ho Kim 1 1 R&D Center, Hyundai Motor Company

More information

Chapter Outline Dislocations and Strengthening Mechanisms

Chapter Outline Dislocations and Strengthening Mechanisms Chapter Outline Dislocations and Strengthening Mechanisms What is happening in material during plastic deformation? Dislocations and Plastic Deformation Motion of dislocations in response to stress Slip

More information

Chapter Outline Dislocations and Strengthening Mechanisms

Chapter Outline Dislocations and Strengthening Mechanisms Chapter Outline Dislocations and Strengthening Mechanisms What is happening in material during plastic deformation? Dislocations and Plastic Deformation Motion of dislocations in response to stress Slip

More information

Objective To conduct Charpy V-notch impact test and determine the ductile-brittle transition temperature of steels.

Objective To conduct Charpy V-notch impact test and determine the ductile-brittle transition temperature of steels. IMPACT TESTING Objective To conduct Charpy V-notch impact test and determine the ductile-brittle transition temperature of steels. Equipment Coolants Standard Charpy V-Notched Test specimens Impact tester

More information

GEOMETRY OF SINGLE POINT TURNING TOOLS

GEOMETRY OF SINGLE POINT TURNING TOOLS GEOMETRY OF SINGLE POINT TURNING TOOLS LEARNING OBJECTIVES Introduction to Features of single point cutting tool. Concept of rake and clearance angle and its importance System of description of Tool geometry

More information

The atomic packing factor is defined as the ratio of sphere volume to the total unit cell volume, or APF = V S V C. = 2(sphere volume) = 2 = V C = 4R

The atomic packing factor is defined as the ratio of sphere volume to the total unit cell volume, or APF = V S V C. = 2(sphere volume) = 2 = V C = 4R 3.5 Show that the atomic packing factor for BCC is 0.68. The atomic packing factor is defined as the ratio of sphere volume to the total unit cell volume, or APF = V S V C Since there are two spheres associated

More information

SPECIFICATIONS, LOADS, AND METHODS OF DESIGN

SPECIFICATIONS, LOADS, AND METHODS OF DESIGN CHAPTER Structural Steel Design LRFD Method Third Edition SPECIFICATIONS, LOADS, AND METHODS OF DESIGN A. J. Clark School of Engineering Department of Civil and Environmental Engineering Part II Structural

More information

ADHESIVE BONDING PERFORMANCE OF GA COATED 590 MPa TENSILE STRENGTH STEELS

ADHESIVE BONDING PERFORMANCE OF GA COATED 590 MPa TENSILE STRENGTH STEELS ADHESIVE BONDING PERFORMANCE OF GA COATED 590 MPa TENSILE STRENGTH STEELS Susan Wolf ArcelorMittal Global R&D East Chicago Acknowledgements Chann Cheng, Benda Yan, Jayanth Chintamani, ArcelorMittal Global

More information

NOTCHES AND THEIR EFFECTS. Ali Fatemi - University of Toledo All Rights Reserved Chapter 7 Notches and Their Effects 1

NOTCHES AND THEIR EFFECTS. Ali Fatemi - University of Toledo All Rights Reserved Chapter 7 Notches and Their Effects 1 NOTCHES AND THEIR EFFECTS Ali Fatemi - University of Toledo All Rights Reserved Chapter 7 Notches and Their Effects 1 CHAPTER OUTLINE Background Stress/Strain Concentrations S-N Approach for Notched Members

More information

PRACTICAL HARDNESS TESTING MADE SIMPLE. Table of Contents 1. GENERAL 1 2. INTRODUCTION 3 3. BRINELL HARDNESS TESTING 9 4. VICKERS HARDNESS TESTING 14

PRACTICAL HARDNESS TESTING MADE SIMPLE. Table of Contents 1. GENERAL 1 2. INTRODUCTION 3 3. BRINELL HARDNESS TESTING 9 4. VICKERS HARDNESS TESTING 14 Table of Contents Page 1. GENERAL 1 2. INTRODUCTION 3 3. BRINELL HARDNESS TESTING 9 4. VICKERS HARDNESS TESTING 14 5. ROCKWELL HARDNESS TESTING 17 6. INFORMATIONS 22 i 1. GENERAL Important facts and features

More information

Lap Fillet Weld Calculations and FEA Techniques

Lap Fillet Weld Calculations and FEA Techniques Lap Fillet Weld Calculations and FEA Techniques By: MS.ME Ahmad A. Abbas Sr. Analysis Engineer Ahmad.Abbas@AdvancedCAE.com www.advancedcae.com Sunday, July 11, 2010 Advanced CAE All contents Copyright

More information

VeMet, Utrecht, NL «Solution in Wear Protection» 26.10.2011 Dipl.-Ing. Wolfgang Leichnitz. Quit

VeMet, Utrecht, NL «Solution in Wear Protection» 26.10.2011 Dipl.-Ing. Wolfgang Leichnitz. Quit VeMet, Utrecht, NL «Solution in Wear Protection» 26.10.2011 Dipl.-Ing. Wolfgang Leichnitz Quit Theory and Practice of Wear Definition In materials science, wear is the erosion of material from a solid

More information

Force measurement. Forces VECTORIAL ISSUES ACTION ET RÉACTION ISOSTATISM

Force measurement. Forces VECTORIAL ISSUES ACTION ET RÉACTION ISOSTATISM Force measurement Forces VECTORIAL ISSUES In classical mechanics, a force is defined as "an action capable of modifying the quantity of movement of a material point". Therefore, a force has the attributes

More information

ANALYSIS FOR BEHAVIOR AND ULTIMATE STRENGTH OF CONCRETE CORBELS WITH HYBRID REINFORCEMENT

ANALYSIS FOR BEHAVIOR AND ULTIMATE STRENGTH OF CONCRETE CORBELS WITH HYBRID REINFORCEMENT International Journal of Civil Engineering and Technology (IJCIET) Volume 6, Issue 10, Oct 2015, pp. 25-35 Article ID: IJCIET_06_10_003 Available online at http://www.iaeme.com/ijciet/issues.asp?jtype=ijciet&vtype=6&itype=10

More information

4 Thermomechanical Analysis (TMA)

4 Thermomechanical Analysis (TMA) 172 4 Thermomechanical Analysis 4 Thermomechanical Analysis (TMA) 4.1 Principles of TMA 4.1.1 Introduction A dilatometer is used to determine the linear thermal expansion of a solid as a function of temperature.

More information

The Suitability of CRA Lined Pipes for Flowlines Susceptible to Lateral Buckling SUT Global Pipeline Buckling Symposium, 23 24 February 2011

The Suitability of CRA Lined Pipes for Flowlines Susceptible to Lateral Buckling SUT Global Pipeline Buckling Symposium, 23 24 February 2011 The Suitability of CRA Lined Pipes for Flowlines Susceptible to Lateral Buckling SUT Global Pipeline Buckling Symposium, 23 24 February 2011 Duncan Wilmot, Technical Manager, Cladtek International, Australia

More information

P4 Stress and Strain Dr. A.B. Zavatsky MT07 Lecture 3 Statically Indeterminate Structures

P4 Stress and Strain Dr. A.B. Zavatsky MT07 Lecture 3 Statically Indeterminate Structures 4 Stress and Strain Dr... Zavatsky MT07 ecture 3 Statically Indeterminate Structures Statically determinate structures. Statically indeterminate structures (equations of equilibrium, compatibility, and

More information

Activity 2.3b Engineering Problem Solving Answer Key

Activity 2.3b Engineering Problem Solving Answer Key Activity.3b Engineering roblem Solving Answer Key 1. A force of 00 lbs pushes against a rectangular plate that is 1 ft. by ft. Determine the lb lb pressure in and that the plate exerts on the ground due

More information

Assistant Professor of Civil Engineering, University of Texas at Arlington

Assistant Professor of Civil Engineering, University of Texas at Arlington FRC Performance Comparison: Direct Tensile Test, Beam Type Bending Test, and Round Panel Test Shih Ho Chao (Presenting Author) Assistant Professor of Civil Engineering, University of Texas at Arlington

More information