Robust Mean-Covariance Solutions for Stochastic Optimization

Size: px
Start display at page:

Download "Robust Mean-Covariance Solutions for Stochastic Optimization"

Transcription

1 OPERATIONS RESEARCH Vol. 00, No. 0, Xxxxx 0000, pp issn X eissn INFORMS doi /xxxx c 0000 INFORMS Robust Mean-Covariance Solutions for Stochastic Optimization Ioana Popescu INSEAD, Decision Sciences Area, Blvd. de Constance, Fontainebleau, France. ioana.popescu@insead.edu, We provide a method for deriving robust solutions to certain stochastic optimization problems, based on mean-covariance information about the distributions underlying the uncertain vector of returns. We prove that for a general class of objective functions, the robust solutions amount to solving a certain deterministic parametric quadratic program. We first prove a general projection property for multivariate distributions with given means and covariances, which reduces our problem to optimizing a univariate mean-variance robust objective. This allows us to use known univariate results in the multidimensional setting, and to add new results in this direction. In particular, we characterize a general class of objective functions (so called one or two-point support functions), for which the robust objective is reduced to a deterministic optimization problem in one variable. Finally, we adapt a result from Geoffrion (1967a) to reduce the main problem to a parametric quadratic program. In particular, our results are true for increasing concave utilities with convex or concave-convex derivatives. Closed form solutions are obtained for special discontinuous criteria, motivated by bonus and commission based incentive schemes for portfolio management. We also investigate a multi-product pricing application, which motivates extensions of our results for the case of non-negative and decision dependent returns. Subject classifications : programming: stochastic, quadratic; decision analysis: risk; finance: portfolio. Area of review : Decision Analysis. History : Received January 2004; accepted December

2 2 Operations Research 00(0), pp , c 0000 INFORMS 1. Introduction In this paper we provide a general approach for deriving robust solutions for stochastic optimization programs, based on mean-covariance information about the distributions underlying the return vector. Consider a decision maker interested in maximizing his expected utility u of a linear reward function, subject to a given set of convex constraints P on the vector of decision variables x. The decision maker solves the following general stochastic mathematical program without recourse: (P ) maximize E[u(x R)] subject to x P, Throughout the paper, random variables and random vectors will be denoted in bold, to be distinguished from deterministic quantities. We will use max and min in the wide sense of sup and inf, to account for the cases when the optimum is not achieved. When the distribution of the uncertain return vector R is exactly known, Problem (P) is a general one stage stochastic program. One obvious case when the solution of Problem (P) does not depend on the actual distribution of R, except its mean and covariance, is for quadratic utilities u(r) = ar 2 + br + c, in which case it amounts to: max x P ax (Σ + µµ )x + bx µ + c. However, this is only the case for quadratic (or linear) utility functions, explaining in part why these classes are particularly favored in economics and financial models. In many applications of stochastic programming, there is considerable uncertainty regarding the distribution of R. In many instances, only partial information about this distribution is available, or reliable, such as means, variances and covariances. A common approach in the literature is to assume that the underlying distribution is multivariate normal, and solve the corresponding stochastic program. However, this assumption is hard to justify unless the randomness comes from a central limit theorem type of process. Alternatively, the robust approach consists in basing the decision strictly on the available information, and maximizing the worst case expected utility over all possible distributions with the given properties. Even if the underlying distribution is actually known, the robust approach can be used to provide tractable approximations for the solution of Problem (P), which is typically a very difficult problem. The robust problem is the focus of our investigation, and can be formulated as follows: (G) max x P min R (µ,σ) E[u(x R)], (1) where we denote R (µ, Σ) to represent the fact that the distribution of R belongs in the class M n (µ,σ) of n-variate distributions with mean µ and covariance Σ. By a simple change of variable

3 Operations Research 00(0), pp , c 0000 INFORMS 3 u = u we obtain the min-max version of Problem (G). All the results in this paper can be rephrased to hold for min-max problems, so for simplicity we restrict the analysis to the max-min case. As an example, consider a portfolio manager interested in choosing a portfolio x among n assets with returns R = (R 1,..., R n ) in order to maximize the expected value or utility of his payoff (e.g. induced by his incentive system). The optimization is subject to a set of portfolio constraints, such as P = {x [0, 1] n x 1 n = 1}. In practice, one seldom has full information about the joint distribution of asset returns, which are typically assumed multi-variate normal and interpolated from very few data points (hence are not robust). Very often the only reliable data consists of first and second order moments. For example, RiskMetrics ( provides very large data sets of asset covariances, but no additional distributional information. In this case, if the manager has access only to the mean and covariance matrix of the asset returns, and not to the entire distribution, he may be interested in the best and worst case return of a given portfolio, and in the portfolios that would maximize such a worst case return. For instance, a risk neutral manager incentivised by a bonus for performance above a given target return will maximize the worst case probability of reaching that target level. There is a considerable amount of literature on robust portfolio optimization; see for example Goldfarb and Iyengar (2003), Rustem et al. (2000), El Ghaoui et al. (2003). We contribute to this stream by studying the portfolio example from the manager s perspective in Section 5. One can think about Problem (G) as a strategic game, where the first player chooses a decision x while nature picks the worst possible distribution R (see e.g. Dupačová 1966). The robust approach adopted in this paper is very much in the spirit of the max-min expected utility framework axiomatized by Gilboa and Schmeidler (1989). The concept of robustness, or incomplete knowledge about distributions, is captured in various ways in the stochastic optimization literature, the most common ones being uncertainty sets (Ben-Tal and Nemirovski 2002) and moments of the underlying distribution. Our model falls in the second category, and is related in that sense to a large literature including Scarf (1958), Birge and Wets (1987), Birge and Dulá (1991), Kall (1988), Dupačová (2001), Shapiro and Kleywegt (2002). For a given vector x, we refer to the problem (I) U(x) = min E[u(x R)] (2) R (µ,σ) as the inner optimization problem and to the function U(x) as the robust objective (or criterion). There are three main steps in our solution to Problem (G).

4 4 Operations Research 00(0), pp , c 0000 INFORMS 1. First, we transform the inner optimization problem into an equivalent problem over univariate distributions with a given mean and variance. This reduces the original problem to a bi-criteria optimization problem. 2. Second, we show that for some general classes of objective functions, this bi-criteria objective reduces to a deterministic optimization problem in one variable. 3. Finally, based on these results, we provide conditions to reduce the original problem to solving a parametric quadratic problem. The first key result of our derivations is a new projection property for classes of multi-variate distributions R with given mean vector µ and covariance matrix Σ. Based on this result, we show in Proposition 1 that for any vector x, Problem (I) reduces to an optimization problem over the class of projected univariate distributions r x with given mean µ x = x µ and variance σ 2 x = x Σx, that is: U(x) = min R (µ,σ) E[u(x R)] = min E[u(r x )]. r x (µ x,σx 2) The above problem is further reduced (Proposition 2) to optimizing over a restricted class of distributions with at most three support points. The robust objective U(x) can be cast as a deterministic optimization problem in at most three variables. This procedure reduces the robust stochastic optimization problem (G) to a deterministic bi-criteria problem that only depends on the mean and variance of the random variable x R. The results of Section 2 rely on the classical theory of moments (see e.g. Karlin and Studden 1966, Rogosinsky 1958) and require no assumptions on the objective function u. Section 3 provides conditions on the objective function u to express the robust objective U as an optimization problem in one variable. This holds for so-called one or two-point support functions u (see Definitions 1 and 3). Such functions are supported from below by a quadratic and intersect it at exactly one or two points. Special cases include concave utilities with convex, concave or concave-convex derivatives, in particular corresponding to risk averse and prudent/imprudent preferences, as well as some target-based piecewise polynomials. The resulting second order moment bounds are refinements of the Jensen and Edmundson-Madansky inequalities (see Dulá and Murthy 1992, Dokov and Morton 2002) and extend results of Krein and Nudelman (1977) and Birge and Dulá (1991) for distributions with unbounded support. These results are also useful for sensitivity analysis in many decision sciences applications (see e.g. Smith 1995), in particular in stochastic programming when the underlying distribution is actually known, but difficult to work with (Birge and Wets 1987).

5 Operations Research 00(0), pp , c 0000 INFORMS 5 In Section 4, we use results from Geoffrion (1967a) to show (Proposition 9) that for some general classes of objective functions, the robust Problem (G) over a convex polyhedral set P is equivalent to solving the following parametric quadratic program (PQP): (P λ ) max x P λ x µ (1 λ) x Σx. (3) In particular, this is true for increasing and concave utilities u that satisfy the one or two-point support property characterized in Section 3, which includes utilities with convex or concave-convex derivative. Section 5 illustrates our results with an application in the context of portfolio management incentives. We provide optimal robust portfolios corresponding to various (non-continuous, nondifferentiable) reward systems for portfolio managers, involving bonuses, commissions and combinations thereof, as well as non-expectation criteria such as value at risk. Our results show that the resulting robust portfolios are mean-variance efficient and solvable as PQPs. We obtain new results, as well as new proofs and insights for known technical results. In particular, we find that under bonus systems, a manager who assumes joint normal return distributions chooses the same portfolio as the most pessimistic manager, with the same given mean-covariance information. In Section 6 we propose two extensions of our results motivated by an application in multiproduct pricing. First, we show that our general model and solution naturally extend to the case when the distribution R (its mean and covariance) is dependent on the decision variable x. Second, we attempt to extend our framework to the case of non-negative random returns. While we prove that bi-criteria solutions are generally not optimal, we provide a method to compute (weak) bicriteria bounds on the corresponding robust problems, and show how they can be solved using parametric quadratic programming. Our conclusions are summarized in the last section. 2. The Robust Objective In this section we focus on Problem (I): for a non-zero vector x, we consider the problem U(x) = min E[u(x R)]. We show that this problem can be formulated as a bi-criterion objective, which R (µ,σ) can be cast as a deterministic optimization problem in (at most) three variables. The results of this section hold without any assumptions on the objective u A General Projection Property A lower bound on the robust objective U(x) can be obtained by optimizing over univariate distributions with mean µ x and variance σ 2 x: U(x) = min R (µ,σ) E[u(x R)] min r (µ x,σ 2 x ) E[u(r)]. (4)

6 6 Operations Research 00(0), pp , c 0000 INFORMS This is because for any feasible random vector R (µ, Σ) on the left hand side, the corresponding projected random variable r x = x R has mean x µ = µ x and variance x Σx = σx, 2 hence r x is feasible on the right hand side. Our first key result is that, irrespective of the objective function u, relation (4) above holds with equality. Proposition 1. For any objective function u and any given real vector x, we have that: min R (µ,σ) E[u(x R)] = min E[u(r)]. (5) r (µ x,σx 2) The central idea behind Proposition 1 is that for any non-zero vector x, the optimization over random vectors R (µ, Σ) is equivalent to solving the corresponding projected problem over the class of univariate distributions with mean µ x and variance σx. 2 We provide a constructive proof for the following stronger result: for any non-zero vector x and any distribution r (µ x, σx), 2 there exists a multivariate distribution R (µ, Σ) such that r = x R. We remind the notation M n for (µ,σ) the set of probability measures on R n with mean µ and covariance Σ (with the default superscript n = 1). Proposition 1 is a direct corollary of the following stronger result, proved in the Appendix: Theorem 1 (General Projection Property). For any given n-vector µ, (n n)-matrix Σ 0 and any non-zero n-vector x, the x-projection mapping r = x R from n-variate distributions R (µ, Σ) to univariate distributions r (µ x, σx) 2 is onto, meaning that every distribution r in M (µx,σx 2) can be obtained from some distribution R in M n by r = (µ,σ) x R Equivalent Deterministic Formulation Based on Proposition 1, the general robust stochastic optimization problem (G) amounts to maximizing U(x) = min E[u(r)], over the domain x P. This is a special case of a univariate moment r (µ x,σx 2) problem, where only the first and second order moments (mean and variance) of the distribution are known. In this section we show that such problems can be reduced to a deterministic optimization problems in three variables. A classic result in the theory of moments, apparently due to Rogosinsky (1958, Theorem 1), is that moment problems with n moment constraints can be solved by optimizing only over discrete distributions with at most n + 1-support points (see Smith 1995, for a more accessible presentation). In our case, this result implies that the robust objective reduces to optimizing over (µ x, σx)- 2 distributions with at most three support points. We obtain the following deterministic formulation in three variables:

7 Operations Research 00(0), pp , c 0000 INFORMS 7 Proposition 2. For any objective u and x 0, the robust objective U can be calculated as: where U(x) = min p a u(a) + p b u(b) + p c u(c) s.t. a µ x σ2 x b µ x + σ2 x c µ x µ x a c, (6) p a = { σ 2 x +(µ x b)(µ x c) (a b)(a c), if a < b 1 σ2 x +(µx a)2, if a = b, p c = (c a) 2 { σ 2 x +(µ x a)(µ x b), if b < c (c a)(c b) 1 σ2 x +(µx c)2, if b = c, p b = 1 p a p c. (c a) 2 Proof: It remains to show that if a distribution with at most three support points satisfies the (µ x, σx)-moment 2 constraints, then it is of the above form. Note that two-point distributions with mean µ x and variance σx 2 1 p assign mass p to the point µ x + σ p x and mass 1 p to the point µ x p σ 1 p x, with p (0, 1). When a = b or b = c above, then we obtain precisely two point distributions of this form. Suppose now that a < b < c. The expressions for the probabilities are equivalent to the meanvariance conditions. In order for these to be non-negative, it is necessary and sufficient that a µ x σ2 x c µ x b µ x + σ2 x c. µ x a In particular, optimizing only over feasible two point distributions in problem (6), we obtain the following upper bound on U(x): U(x) min p u(µ x + p (0,1) 1 p 3. Simplified Formulation of The Robust Objective p p σ x) + (1 p) u(µ x 1 p σ x). (7) This section investigates the case when the above upper bound is sharp. We provide conditions on the objective u for the optimum in Problem (I) to be achieved exactly or asymptotically by two point distributions. This holds for a very general class of functions u (so-called one or two-point support functions), including all monotone convex functions and all concave functions with convex, concave or concave-convex derivative, as well as some important piecewise linear classes. These results are important because they allow to reduce the robust objective to an optimization problem in one variable. Moreover, in certain cases, closed form formulations of the robust objective can be obtained based on these results, as illustrated in Section 5. Finally, in the next section, we show that optimizing Problem (G) is relatively easy for one and two point support objectives. The key element of this section is the family Q = {(A, B, C) q(y) = Ay 2 + By + C u(y) y R} corresponding to coefficients of quadratic functions dominated by u. Clearly, E[u(r)] E[q(r)] = A(µ 2 x + σ 2 x) + Bµ x + C for any random variable r (µ x, σ 2 x), implying:

8 8 Operations Research 00(0), pp , c 0000 INFORMS Proposition 3. We have U(x) = min E[u(r)] r (µ x,σx 2) max (A,B,C) Q A(µ 2 x + σ 2 x) + Bµ x + C. Strong duality for moment problems (see e.g. Karlin and Studden 1966) insures that under certain regularity conditions (in our case amounting to σ x > 0) equality holds in Proposition 3. We mention this result for its general interest, however it will not be necessary for our work Two Point Support Objectives Consider (A 0, B 0, C 0 ) Q so that q 0 (y) = A 0 y 2 + B 0 y + C 0 intersects u at two points a < b. Suppose that there exists a distribution r (µ x, σ 2 x) with support {a, b}. It follows that E[u(r)] = E[q 0 (r)] = A 0 (µ 2 x + σ 2 x) + B 0 µ x + C 0. From Proposition 3, this must equal U(x). So in this case U(x) can be obtained by minimizing only over feasible two point distributions, i.e. equality holds in (7). We formalize this result as follows: Definition 1. A function u satisfies the two-point support property with respect to (µ, σ 2 ) if there exists a quadratic function that supports u from below and intersects it at two points a, b such that a feasible (µ, σ 2 ) distribution with support {a, b} exists. A function u satisfies the two-point support property if it satisfies it with respect to any (µ, σ 2 ). Proposition 4. If u has two point support, then the robust objective equals: 1 p p U(x) = min U(p, x), where U(p, x) = p u(µ x + p (0,1) p σ x) + (1 p)u(µ x 1 p σ x). (8) A similar result for a special piecewise linear objective and non-negative distributions has been derived by Scarf (1958), in the context of an inventory problem. Birge and Dulá (1991) use two point support functions to obtain the above result over a bounded domain. Note that a function can have two-point support on an interval, but not on the whole real line, e.g. if a support point lies on the boundary. This can be seen from the following example: Example 1. Let u(y) = 1 (µ kσ,µ+kσ) (y), where 1 S denotes the indicator function of a set S. We have that min E[u(r)] = r (µ,σ 2 ) min r (µ,σ 2 ) P ( r µ < kσ) = max(0, 1 1 k 2 ). This is the two-sided Chebyshev inequality, achieved by the three point distribution with mass 1, 1 1, respectively 1, at the points µ kσ, µ, respectively µ + kσ. Note that minimizing 2k 2 k 2 2k 2 ( over two point distributions yields a strictly larger bound, namely max 1 k, 2 1+k 2 1+k 2 ). In light of Proposition 4, u cannot have two point support. On the other hand, the same objective function, defined say on [µ kσ, ) has two point support for k 1.

9 Operations Research 00(0), pp , c 0000 INFORMS 9 Denote the two support points in relation (8) by a = µ x p σ 1 p 1 p x and b = µ x + σ p x (so a < b unless x = 0). For differentiable functions u we obtain: U p (p, x) = u(b) u(a) (b (b) + u (a) a)u. (9) 2 The first order condition for U(p, x), x 0, can be stated as: u(b) u(a) b a = u (a) + u (b). (10) 2 The optimum in (8) is either obtained at a point where the above equality holds, or as p 0, or p 1. In the first case, the two point support is precisely {a, b}. In the latter cases it degenerates into the one-point support case discussed in the next section. The remainder of the section provides conditions for a function to have two-point support. The next result is a technical restatement of Definition 1: Lemma 1. The function u has two point support if and only if for any µ and any σ > 0 there exist a < b and q a, q b such that the following conditions hold: (a) (b µ)(µ a) = σ 2 ; (b) u(b) u(a) b a = q a + q b ; 2 (c) q(y) = Ay 2 + By + C u(y), y R, where A= q b q a, B= bqa aq b, C = bu(a) au(b) 2(b a) b a b a ab qa q b 2(b a). Proof: From (b) and (c), it follows that q(a) = u(a) and q(b) = u(b) and q supports u. Condition (a) states that the intersection points a, b are the support of a (µ, σ 2 )-distribution. Hence the conditions of Definition 1 are met. Conversely, if u has two point support, then the conditions of the lemma are met for q a = q (a) and q b = q (b), where a, b and the quadratic q come from Definition 1. By Proposition 3, the above result shows that: Remark 1. If u satisfies the conditions of Lemma 1, then an optimal distribution for U(x), if it exists, has support {a, b} as defined by the conditions of the Lemma with respect to (µ x, σ x ). If u is differentiable at a, b, the construction in Lemma 1 implies q a = q (a) = u (a), q b = q (b) = u (b), i.e. q intersects u tangentially at a, b. In this case, condition (b) in Lemma 1 becomes precisely Eq. (10). This condition says that the average value of the derivative u (if it exists) on [a, b] equals the average of the values of u at the end points a, b. Geometrically, the area under the graph of u between a and b equals the area of the trapezoid with corners a, u (a), u (b), b. The existence of two such points a, b is insured for example if u is non-increasing and changes convexity at least once (between a and b). Moreover, we show that conditions (a) and (c) are satisfied if u is concave until some point and then convex, and has finite limits at ±.

10 10 Operations Research 00(0), pp , c 0000 INFORMS Definition 2. A function f defined on R is convex-concave if there exists x 0 R such that f is convex on (, x 0 ) and concave on (x 0, ). A function f defined on R is concave-convex if f is convex-concave. A function f is S-shaped if it is increasing and convex-concave. A function f is inverse S-shaped if f is S-shaped. The following corollary of Lemma 1 is proved in the Appendix. An analogue result has been obtained by Birge and Dulá (1991, Theorem 5.1) for functions with bounded support. Proposition 5. If u is differentiable such that u is inverse S-shaped with finite limits at ±, then u satisfies the two-point support property. Furthermore, if u has two point support, then by Definition 1, u(x) + q(x) also has two point support for any quadratic q. Examples of functions satisfying these conditions include combinations of exponentials and logarithms (e.g. log-logistic u(x) = C + log 1/(1 + e ax ) used in statistics, classification), and hyperbolic functions (e.g. the catenary u(x) = C b cosh(ax) used in physics, engineering), where in all cases the constant C can be replaced by a concave quadratic. The conditions of Proposition 5 are not necessary, however, for a function to have two-point support. In general, two-point support functions need not be differentiable, not even continuous; such examples are investigated in Section 5. Furthermore, even for differentiable functions neither concavity, nor the concave-convex derivative condition are necessary for two-point support, as illustrated in the following counterexample. Example 2. The function u(y) = y ln(1 + y 2 ) is increasing, but not concave (a plot of its derivative is provided in Figure 1). However, u has the two-point support property. Note that u (y) + u ( y) = 2 for all real y. Hence conditions (a) and (b) of Lemma 1 hold for b = a = µ2 + σ 2 and q a = u (a), q b = u (b). By construction, the quadratic q defined in part (c) of the Lemma intersects u tangentially at a, b. The convexity properties of u imply that q supports u. From Proposition 4, for a given vector x, we have that U(x) = min U(p, x), where p (0,1) 1 p U(p, x) = µ x p ln(1 + (µ x + p σ x) 2 ) (1 p) ln(1 + (µ x p 1 p σ x) 2 ). Remark that lim U(p, x) = lim U(p, x) = u(µ x ) = µ x ln(1 + µ 2 p 0 p 1 x), and U(p, x) is decreasing in p around p = 0 and increasing around p = 1, so the minimum is achieved somewhere in-between. Suppose, for example that for a certain x = x 0 we have µ x = 0 and σ x = 1. Then U(p, x 0 ) = p ln p + (1 p) ln(1 p), which is minimized for p = 1/2 and U(x 0 ) = ln 2.

11 Operations Research 00(0), pp , c 0000 INFORMS 11 Figure 1 Plots of the functions u(y) = y ln(1 + y 2 ) and u (y) = 1 2y 1+y u 2 u One Point Support Objectives The previous section provided a simplified expression for the robust objective U(x) when u has twopoint support. In particular this is true when u is concave with concave-convex derivative. We now provide other conditions that allow a simplified formulation for U when u has one point support. Relevant special cases include u concave with a convex or concave derivative, and u monotonic and convex. The one-point support property is a limiting case of two-point support, where the expected value of the supporting quadratic is approached by a sequence of feasible two-point distributions, with one point approaching the mean and the other arbitrarily large (or small). This is formally defined as follows: Definition 3. A function u has the one-point support property with respect to (µ, σ 2 ) if there exists a quadratic q that supports u and intersects it at µ, and either lim E[u(r p )] = E[q(r p )] p 0 or lim E[u(r p )] = E[q(r p )], where r p is a (µ, σ 2 1 p ) random variable with support {µ + σ, µ p 1 p p σ}. A function u has the one-point support property if it satisfies it with respect to any 1 p (µ, σ 2 ). The following result follows trivially from Proposition 3. Proposition 6. If u satisfies the one point support property then U(x) = min U(p, x), specifically p (0,1) either U(x) = lim U(p, x) or U(x) = lim U(p, x). p 0 p 1 In the following we identify some general relevant classes of one-point support functions. Proposition 5 shows that concave functions with concave-convex derivative have two-point support. In the extreme case when the derivative is either convex or concave (x 0 = ± in Definition 2), i.e.

12 12 Operations Research 00(0), pp , c 0000 INFORMS the risk averse agent is prudent or imprudent, we obtain one-point support functions. The proof of the next result is provided in the Appendix. Proposition 7. If u is concave and twice differentiable with a monotonic second derivative then u has one-point support. Specifically, (a) if u is convex, then U(x) = u(µ x ) + lim y u (y) σ2 x 2 (b) if u is concave, then U(x) = u(µ x ) + lim y u (y) σ2 x 2 for all x; for all x. Example 3. Consider a portfolio manager facing an exponential utility u(x) = 1 e ax, with a > 0. Since lim y u (y) =, Proposition 7(a) shows that the robust solution should focus on maximizing the expected portfolio return µ x while setting σ x = 0, i.e. finding a perfect hedge. In particular, if Σ is non-singular, the optimal robust solution is not to invest at all, as for any investment strategy there exists a corresponding distribution that can make the expected utility of the return arbitrarily small. (These are two point distributions, with an arbitrarily large loss probability 1 p 1). While this is an extreme scenario, one should expect the robust approach to yield strategies that are by definition conservative. We now consider the case when u is monotonic and convex, so we need to optimize over concave quadratics that are tangent to u at exactly one point. The next result is proved in the Appendix. Proposition 8. If u is monotone convex, then it has one point support and U(x) = u(µ x ). More generally, the same result holds if u is convex with either u ( ) = 0 or u ( ) = 0. The class of one-point support functions includes utility functions most commonly used for mathematical modeling: those whose (first three) derivatives alternate in sign, i.e. those consistent with (up to third order) stochastic dominance (see Brockett and Golden 1987). Examples include the standard exponentials, logarithms, power functions and hyperbolic functions (see Pratt 1964), sumex and linear plus exponential (Bell s one-switch functions, see Bell 1988), or more generally, any mixtures of exponentials. In summary, one or two-point support functions are fairly general, including (but not limited to) convex monotone functions and concave functions with at most one third derivative sign change. Some additional relevant non-smooth classes include piecewise linear functions, discussed in the context of a financial application in Section Bi-criteria Optimization via PQP The previous sections focused on reducing the inner problem from an optimization problem over multivariate distributions to a deterministic optimization problem in one or three variables. The remaining step in the solution to Problem (G) is to optimize this robust objective.

13 Operations Research 00(0), pp , c 0000 INFORMS 13 This section exploits the fact that the robust objective depends on the decision variable x only through two criteria: the return s mean µ x and standard deviation σ x, U(x) V (µ x, σ x ). This allows a simple and efficient parametric quadratic programming (PQP) formulation and solution to Problem (G), based on Geoffrion (1967a). For a fairly general class of functions u, we show that optimizing the corresponding robust objective is equivalent to a mean-variance optimization problem, for a certain trade-off coefficient, i.e. the resulting optimal solution of Problem (G) is mean-variance efficient. Based on Propositions 4 and 6, we argue that these results hold in particular for increasing and concave utilities with one or two-point support, as well as other non-concave objectives, as illustrated in Section 5. Recall that a real function f defined on a convex set S is said to be quasi-concave if and only if for any λ [0, 1] and x, y S we have f(λx + (1 λ)y) min(f(x), f(y)). Equivalently, f is quasi-concave whenever for any l, the upper level sets L l = {x S f(x) l} are convex. The following result due to Geoffrion (1967a) (see also Geoffrion 1967b) provides general sufficient conditions for solving bi-criteria problems efficiently as parametric quadratic programs. Theorem 2 (Geoffrion 1967a). Consider the program max v(p 1(f 1 (x)), p 2 (f 2 (x))), (11) x X where X R n is a convex set. Suppose that f 1, f 2, p 1 (f 1 ), p 2 (f 2 ) are concave on X, p 1 and p 2 are increasing on the image of X under f 1, f 2 respectively, and v is non-decreasing in each coordinate and quasi-concave on the convex hull of the image of X under (p 1 (f 1 ), p 2 (f 2 )), and all functions are continuous. Further assume that the optimal solution x (λ) of the parametric program max x X λf 1(x)+ (1 λ)f 2 (x) is continuous for λ [0, 1]. Then the function w(λ) = v(p 1 (f 1 (x (λ))), p 2 (f 2 (x (λ)))) is continuous and unimodal on [0, 1]. Furthermore, if λ is its maximum, then x (λ ) is optimal for (11). Proposition 1 reduced Problem (G) to solving a bi-criteria (mean-variance) optimization problem. Based on Theorem 2, the following result shows that under fairly unrestrictive conditions, Problem (G) can be optimized by solving a parametric quadratic program. Proposition 9. Suppose that the robust objective function V (µ x, σ x ) = min E[u(r)] is continuous, non-decreasing in µ x, non-increasing in σ x and quasi-concave. Then Problem (G) over r (µ x,σx 2) a convex polyhedral set P is equivalent to solving the following parametric quadratic program: (P λ ) max x P λ x µ (1 λ) x Σx. (12)

14 14 Operations Research 00(0), pp , c 0000 INFORMS Specifically, if x (λ) denotes the optimal solution of Problem (P λ ), then the function w(λ) = V (µ x (λ), σ x (λ)) is continuous and unimodal in λ [0, 1]. Moreover, if λ x (λ ) is optimal for Problem (G). is its maximum, then Proof: Let f 1 (x) = µ x and f 2 (x) = x Σx, p 1 (f 1 ) = f 1 and p 2 (f 2 ) = ( f 2 ) 1 2, these are all concave, and the latter two are non-decreasing. In the notation of Theorem 2, we obtain v(µ x, σ x ) = v(p 1 (f 1 (x)), p 2 (f 2 (x))) = min E[u(r)] = V (µ x, σ x ). The assumptions on V insure that v is nondecreasing and quasi-concave. Furthermore, the convex polyhedral structure of the feasible set r (µ x,σx 2) P insures that there exists a continuous optimal solution x (λ) (see e.g. Wolfe 1959, Geoffrion 1967a). The result follows from Theorem 2. It is reasonable to assume that the robust utility U(x) = V (µ x, σ x ) is non-decreasing in the mean µ x and non-increasing in the standard deviation σ x of the underlying return. This basically says that the decision maker prefers distributions with higher return and lower risk. Quasi-concavity can be interpreted as a diminishing marginal rate of substitution between mean and standard deviation, a property shared by most utility functions. When the actual utility function u is increasing and concave (as is typically assumed in decision analysis), and has one or two-point support, then these conditions are automatically satisfied. We obtain the following result: Proposition 10. For increasing concave utilities with one or two point support, Problem (G) over a convex polyhedral set P is equivalent to solving the parametric quadratic program (P λ ) for a suitable value λ [0, 1]. Proof: From Propositions 6 respectively 4, we have that V (µ x, σ x ) = min V (p, µ x, σ x ), where p (0,1) 1 p p V (p, µ x, σ x ) = p u(µ x + p σ x) + (1 p) u(µ x 1 p σ x). Monotonicity of u implies that V (p, µ x, σ x ) is non-decreasing in µ x. Concavity of u implies monotonicity of V (p, µ x, σ x ) in σ x, and concavity in (µ x, σ x ). Since monotonicity and concavity are preserved through minimization, the same results hold for V (µ x, σ x ). The final result follows from Proposition 9. In particular, the above results hold for increasing concave utilities with convex or concaveconvex derivative. For more general utilities, one can attempt to check monotonicity of V in µ x and σ x as well as quasi-concavity using the results of Propositions 2, 4 or 6, depending of the support properties of the function u. In particular, for one or two-point support functions, monotonicity in µ x can be ensured by assuming that u is non-decreasing. Some examples are provided in the next section.

15 Operations Research 00(0), pp , c 0000 INFORMS 15 Remark that if u is concave and has one or two point support, Propositions 4 and 6 imply that U(x) is concave in x. So alternatively, traditional computational methods for convex programming may also be suitable to solving Problem (G) without exploiting its bi-criteria structure. Several algorithms are available for solving parametric quadratic programs (Wolfe 1959, Geoffrion 1967a,b, Best 1996). They all yield an optimal solution x (λ) that is continuous in λ. Geoffrion (1967a) solves (P λ ) with λ = 1 and decreases λ until the unimodal function w (λ) = v(µ x (λ), σ x (λ)) achieves its maximum on [0, 1]. In our applications, the intermediate solutions are also of interest, as they yield a portion of the mean-variance trade-off curve. More recent algorithms for PQP are due to Best (1996) and Arseneau and Best (1999). For a general treatment of parametric quadratic programs see Bank et al. (1982). Sensitivity analysis for quadratic programs in the mean-variance framework of Markowitz (1959) is discussed in Dupačová et al. (2002, Ch. II.7). Example 4. In Problem (G), suppose that the constraint set is given by P = {x x i = 1, x 0}, and let u(y) = ln( 1 1+e y ). Then u is increasing and concave and its derivative u (y) = e y 1+e y is inverse S-shaped (see Figure 2). Therefore V (µ x, σ x ) = min p ln(1 + e x+q (µ p (0,1) 1 p p σ x) ) (1 p) ln(1 + e (µx p 1 p σx) ) is increasing in µ x, decreasing in σ x and concave in (µ x, σ x ), i.e. satisfies the conditions of Proposition 9. To solve Problem (G), we first compute x (λ), the optimal solution of: (P λ ) max λ x µ (1 λ) x Σx s.t. xi = 1 x 0, and then maximize over λ (0, 1) the function w(λ) = V (µ x (λ), σ x (λ)), which is unimodal. This can be seen from Figure 3, where we display w(λ) for the following three data sets: µ 1 = (1 3), Σ 1 = ( ) , µ = ( ) , Σ 2 = , respectively µ 3 = µ 2, Σ 3 = Σ 2. The resulting optimal values w(λ ) are the desired optimal values of (G), in our case , and , achieved at λ =.60,.72, and respectively 1. The corresponding optimal solutions of Problem (G) are x (λ ) = ( ), ( ) and ( ). All programs were run in MATLAB 5.3 under Windows XP. 5. Application: Portfolio Management Incentives In this section we present an applications of our results in the context of financial portfolio management incentives. This application prompts us to analyse a set of special non-continuous/nondifferentiable two-point support objectives, induced by bonus and commission-based incentives, as

16 16 Operations Research 00(0), pp , c 0000 INFORMS Figure 2 Plots of the functions u(y) = ln( ) and u (y) = e y 1+e y 1 1+e y. u u Figure 3 Plots of the unimodal function w(λ) w 1 (λ) 0.4 w 2 (λ) 0.3 w 3 (λ) λ λ λ well as non-expectation criteria such as value at risk. We obtain new results, as well as new proofs and insight for some technically known results. Consider the example described in the introduction: a portfolio manager is interested in a robust portfolio among a set of n assets with random returns R 1,..., R n. Suppose that the manager does not know the distribution of the random returns, but estimates them to have means µ and covariance structure Σ. The manager is interested in a robust portfolio that maximizes the worst case expected payoff u(r), where r is the portfolio return achieved at the end of the evaluation period. This problem can be formulated as follows: max x P min R (µ,σ) E[u(x R)], where the underlying feasible set P is convex polyhedral, and may have different forms, according to the type of portfolio problem of interest. For example, P = {x R n A x b} or in particular P = {x [0, 1] n x 1 n = 1}. The objective function u can either represent the agent s utility function for a reward proportional to the portfolio return, or the valuation induced by a more complex

17 Operations Research 00(0), pp , c 0000 INFORMS 17 compensation mechanism. For example, if a (risk neutral) agent is rewarded a one-shot bonus for outperforming a certain index s, then u is precisely the cdf of s. According to Proposition 10, if u is increasing and concave (i.e. the agent is risk averse) with one or two-point support, this problem amounts to solving the PQP (12) over the portfolio choice set P for a suitable value λ. In particular, the resulting optimal portfolio is mean-variance efficient (a portfolio is mean-variance efficient if it has the highest expected return for a given variance, or, equivalently, if it has smallest variance for a given expected return (see e.g. Markowitz 1959). The robust approach associates with each utility function u a worst case risk factor κ = (1 λ )/λ, obtainable by the methods of Theorem 2 and Proposition 9, such that solving the robust optimization problem is equivalent to solving a deterministic problem with quadratic utility u κ (x) = µ x κ x Σx. This is a deterministic mean-variance portfolio problem that can be solved by standard methods. Consider for comparison purposes the alternative approach, based on the assumption that the underlying distribution of returns is multivariate normal. In this case the problem can be formulated as follows: (N) max E[u(r x)] = max x P x P 1 u(y) e (y µ x) 2 x Σx dy. 2π For increasing and concave utilities u, it is well known that solving the above problem yields a mean-variance efficient portfolio (see e.g. Kira and Ziemba 1977). Moreover, for exponential utilities, the solution can be easily computed. For more general utilities, however, Problem (N) involves numerical integration. In the following we investigate Problem (G) for some relevant non-differentiable criteria that arise from typical incentive schemes for portfolio managers. The resulting objectives do not satisfy the conditions of Proposition 10, so stronger results are needed. We first argue that the objective has two point support, then calculate the robust objective U(x) = V (µ x, σ x ) in closed form. Finally, we show that V satisfies the conditions of Proposition 9, hence the optimal robust portfolio is mean-variance efficient and the problem can be solved as a PQP. Bonus and Commission Incentives. Portfolio managers, and generally sales managers, are typically incentivised by a fixed salary plus a bonus β, contingent on the realization of a certain preset performance target, denoted α. It is often argued that fixed target bonus systems are unappealing because managers have no direct incentive to over-perform the target. As a remedy, managers are offered an additional commission rate γ for over-achieving the target. Such a reward system, mixing a bonus β and commission rate γ for output above the target α, can be modeled

18 18 Operations Research 00(0), pp , c 0000 INFORMS as u(y) = γ(y α) + + β1 (y>α). If the distribution of returns is normal, then the problem amounts to optimizing (numerically) the objective: γσ x Ψ( µ x α ) + βφ( µ x α ), where Ψ(a) = E[(Z + a) + ], Φ(a) = P (Z a), Z N(0, 1). (13) σ x σ x Given only means and covariances of the asset returns, the manager maximizes over x P the corresponding robust criterion: U + α (x) = min R (µ,σ) γe[(x R α) + ] + βp (x R > α) = min γe[(r α) + ] + βp (r > α), (14) r (µ x,σx 2) where the last equality follows by Proposition 1. The following result is proved in the Appendix. Proposition 11. The optimal robust portfolio for a manager incentivized by a bonus β plus a commission rate γ for performance above a target α maximizes over x P the robust objective: (µ U + x α) 2 + α (x) = γ(µ x α) + + β σx 2 + (µ x α). 2 Moreover, the optimal portfolio is mean-variance efficient and can be solved as a PQP. In particular, with a commission-only reward (β = 0), the manager only cares about expected return. If the manager is only rewarded a bonus (γ = 0), the objective is to maximize the (worst case) probability of achieving the given target α. Proposition 11 reduces the optimal robust portfolio to maximizing (µ x α) +. This follows also from Proposition 1 and Chebyshev s inequality. For σ x comparison, from (13), the corresponding problem with normal returns is equivalent to optimizing the portfolio s Sharpe ratio µ x α σ x (see e.g. Charnes and Cooper 1963). The interesting analogy between the robust and normal criteria can be interpreted as follows: Consider two portfolio managers who have access to the same set of assets with known means µ and covariance Σ and are incentivised by the same achievable target α (i.e. there exists x P such that µ x α). The first manager believes that stocks follow a multivariate normal distribution with these parameters, whereas the other manager ignores the distribution and adopts a worst case approach. This result says that the two managers, despite their different beliefs, will choose the same portfolio. Penalty and Value at Risk (VaR) Incentives. One problem with the above incentives is that managers who are not on the winning track (i.e. have low chances of making the bonus) may undertake extremely risky strategies, with potentially disastruous consequences for the firm. As a remedy, down-side incentive schemes are designed to minimize risk exposure; we consider two

19 Operations Research 00(0), pp , c 0000 INFORMS 19 examples, based on penalties and value at risk. With both up and down-side incentives in place, successful managers will attempt to maximize gains, while under-performers minimize losses. Ross (2004) suggests an incentive system whereby managers are penalized for performances below a benchmark level α; this is modeled by an option-type payoff u(y) = (α y) +, with the unit penalty normalized wlog to 1. The corresponding robust portfolio minimizes over x P the worst case penalty Uα = max R (µ,σ) E[(α x R) + ]. Although this is a min-max formulation, a simple change of sign transformation can convert it to max-min, and our standard results apply. The next result is proved in the Appendix. A direct proof of the univariate bound is due to Jagannathan (1977), who also provides solutions for non-negative and symmetric distributions. Proposition 12. The optimal robust portfolio for a manager incentivized by a linear penalty for performance below a target α, minimizes over x P the robust criterion: U α = 1 2 [(α µ x) + σx 2 + (α µ x ) 2 ]. Moreover, the optimal portfolio is mean-variance efficient and can be solved as a PQP. Another relevant measure of downside risk, which financial firms, as well as portfolio and insurance managers are often required to quote and optimize is value at risk (see e.g. Linsmeier and Pearson 1996). The value at risk of a return x (or loss x) at a confidence level α (typically α = 0.95 or α = 0.99) is defined as the following fractile criterion: V ar(α; x) = min{ξ P ( x < ξ) α} = max{z P (x > z) α}. The definition with strict inequality is needed for our results. However, weak inequalities can replace strict ones throughout if return distributions are known to be continuous. For normal returns, Charnes and Cooper (1963) prove that V ar N (α) = Φ 1 (α)σ x µ x. In practice, return distributions are typically not normal, and exact computation of VaR may amount to difficult numeric integration. Robust (or worst case) value at risk is defined as the largest VaR attainable, given only the mean and covariance of the returns. The robust portfolio with VaR criterion solves: V ar(α) = max x P {z min P (x R > z) α} R (µ,σ) = max {z (µ x z) 2 α, z µ x P (µ x z) 2 + σx 2 x }. The second formulation follows by Proposition 11 for γ = 0; the optimum is achieved when equality holds in the first constraint. Solving for z, we obtain the following result; a proof based on the multivariate Chebyshev inequality (Karlin and Studden 1966) is due to El Ghaoui et al. (2003). (15)

20 20 Operations Research 00(0), pp , c 0000 INFORMS Proposition 13. The optimal robust portfolio for a manager minimizing an α-var incentive α solves min x P 1 α σ x µ x, so it is mean-variance efficient. Notice that the VaR objective is not an expectation; this suggests possible extensions of our results beyond the main framework of this paper. 6. A Multi-Product Pricing Application and Extensions In this section we consider the optimal pricing decision of a firm (or sales manager) setting prices for a line of products so as to maximize the expected utility of profits (respectively, of his expected compensation). In this case the random returns are the demands for each product, which are non-negative and depend on the set prices. This setting indicates two possible extensions of our original problem, which we address in this section: (1) we incorporate dependence of the random vector R on the decision variable x, and (2) we analyse the case of non-negative random vectors R. We extend Proposition 9 to address the first issue, and we provide weak bounds for non-negative random variables to address the second. Consider a firm setting a vector of prices x for a set of n products with random demands R(x) = (R 1 (x),..., R n (x)) in order to maximize the expected utility of profits, given by u(r), where r is the total profit. Suppose that the demands for the n products are correlated due to substitution and/or complementarity effects, and depend on the prices of all products. Demand is estimated to have mean µ(x) and covariance structure Σ(x). The variable cost per product is given by the vector c. The problem of the firm looking for a robust pricing scheme for the n products can be formulated as follows: ( G) max x P min E[u((x c) R(x))]. R (µ(x),σ(x)) The marketing constraints on the feasible set of prices can be assumed to be of the following form: P = {x R n + A x b, x min i x i x max i } Returns Dependent on the Decision Variable The above problem ( G) is not a special case of the robust problem (G) studied in this paper, since the random return (in this case the demand), together with its mean and variance, actually depend on the decision variable (in this case the price x). While the results of this section are presented in the context of the specific pricing application, one can naturally extend them to the general abstract setting.

2.3 Convex Constrained Optimization Problems

2.3 Convex Constrained Optimization Problems 42 CHAPTER 2. FUNDAMENTAL CONCEPTS IN CONVEX OPTIMIZATION Theorem 15 Let f : R n R and h : R R. Consider g(x) = h(f(x)) for all x R n. The function g is convex if either of the following two conditions

More information

A Log-Robust Optimization Approach to Portfolio Management

A Log-Robust Optimization Approach to Portfolio Management A Log-Robust Optimization Approach to Portfolio Management Dr. Aurélie Thiele Lehigh University Joint work with Ban Kawas Research partially supported by the National Science Foundation Grant CMMI-0757983

More information

Moral Hazard. Itay Goldstein. Wharton School, University of Pennsylvania

Moral Hazard. Itay Goldstein. Wharton School, University of Pennsylvania Moral Hazard Itay Goldstein Wharton School, University of Pennsylvania 1 Principal-Agent Problem Basic problem in corporate finance: separation of ownership and control: o The owners of the firm are typically

More information

Adaptive Online Gradient Descent

Adaptive Online Gradient Descent Adaptive Online Gradient Descent Peter L Bartlett Division of Computer Science Department of Statistics UC Berkeley Berkeley, CA 94709 bartlett@csberkeleyedu Elad Hazan IBM Almaden Research Center 650

More information

Optimization under uncertainty: modeling and solution methods

Optimization under uncertainty: modeling and solution methods Optimization under uncertainty: modeling and solution methods Paolo Brandimarte Dipartimento di Scienze Matematiche Politecnico di Torino e-mail: paolo.brandimarte@polito.it URL: http://staff.polito.it/paolo.brandimarte

More information

Cost-Per-Impression and Cost-Per-Action Pricing in Display Advertising with Risk Preferences

Cost-Per-Impression and Cost-Per-Action Pricing in Display Advertising with Risk Preferences MANUFACTURING & SERVICE OPERATIONS MANAGEMENT Vol. 00, No. 0, Xxxxx 0000, pp. 000 000 issn 1523-4614 eissn 1526-5498 00 0000 0001 INFORMS doi 10.1287/xxxx.0000.0000 c 0000 INFORMS Cost-Per-Impression and

More information

1 Portfolio mean and variance

1 Portfolio mean and variance Copyright c 2005 by Karl Sigman Portfolio mean and variance Here we study the performance of a one-period investment X 0 > 0 (dollars) shared among several different assets. Our criterion for measuring

More information

1 if 1 x 0 1 if 0 x 1

1 if 1 x 0 1 if 0 x 1 Chapter 3 Continuity In this chapter we begin by defining the fundamental notion of continuity for real valued functions of a single real variable. When trying to decide whether a given function is or

More information

Duality of linear conic problems

Duality of linear conic problems Duality of linear conic problems Alexander Shapiro and Arkadi Nemirovski Abstract It is well known that the optimal values of a linear programming problem and its dual are equal to each other if at least

More information

4: SINGLE-PERIOD MARKET MODELS

4: SINGLE-PERIOD MARKET MODELS 4: SINGLE-PERIOD MARKET MODELS Ben Goldys and Marek Rutkowski School of Mathematics and Statistics University of Sydney Semester 2, 2015 B. Goldys and M. Rutkowski (USydney) Slides 4: Single-Period Market

More information

Stochastic Inventory Control

Stochastic Inventory Control Chapter 3 Stochastic Inventory Control 1 In this chapter, we consider in much greater details certain dynamic inventory control problems of the type already encountered in section 1.3. In addition to the

More information

FIRST YEAR CALCULUS. Chapter 7 CONTINUITY. It is a parabola, and we can draw this parabola without lifting our pencil from the paper.

FIRST YEAR CALCULUS. Chapter 7 CONTINUITY. It is a parabola, and we can draw this parabola without lifting our pencil from the paper. FIRST YEAR CALCULUS WWLCHENW L c WWWL W L Chen, 1982, 2008. 2006. This chapter originates from material used by the author at Imperial College, University of London, between 1981 and 1990. It It is is

More information

Sensitivity analysis of utility based prices and risk-tolerance wealth processes

Sensitivity analysis of utility based prices and risk-tolerance wealth processes Sensitivity analysis of utility based prices and risk-tolerance wealth processes Dmitry Kramkov, Carnegie Mellon University Based on a paper with Mihai Sirbu from Columbia University Math Finance Seminar,

More information

arxiv:1112.0829v1 [math.pr] 5 Dec 2011

arxiv:1112.0829v1 [math.pr] 5 Dec 2011 How Not to Win a Million Dollars: A Counterexample to a Conjecture of L. Breiman Thomas P. Hayes arxiv:1112.0829v1 [math.pr] 5 Dec 2011 Abstract Consider a gambling game in which we are allowed to repeatedly

More information

Further Study on Strong Lagrangian Duality Property for Invex Programs via Penalty Functions 1

Further Study on Strong Lagrangian Duality Property for Invex Programs via Penalty Functions 1 Further Study on Strong Lagrangian Duality Property for Invex Programs via Penalty Functions 1 J. Zhang Institute of Applied Mathematics, Chongqing University of Posts and Telecommunications, Chongqing

More information

1 Introduction. Linear Programming. Questions. A general optimization problem is of the form: choose x to. max f(x) subject to x S. where.

1 Introduction. Linear Programming. Questions. A general optimization problem is of the form: choose x to. max f(x) subject to x S. where. Introduction Linear Programming Neil Laws TT 00 A general optimization problem is of the form: choose x to maximise f(x) subject to x S where x = (x,..., x n ) T, f : R n R is the objective function, S

More information

Unraveling versus Unraveling: A Memo on Competitive Equilibriums and Trade in Insurance Markets

Unraveling versus Unraveling: A Memo on Competitive Equilibriums and Trade in Insurance Markets Unraveling versus Unraveling: A Memo on Competitive Equilibriums and Trade in Insurance Markets Nathaniel Hendren January, 2014 Abstract Both Akerlof (1970) and Rothschild and Stiglitz (1976) show that

More information

A Log-Robust Optimization Approach to Portfolio Management

A Log-Robust Optimization Approach to Portfolio Management A Log-Robust Optimization Approach to Portfolio Management Ban Kawas Aurélie Thiele December 2007, revised August 2008, December 2008 Abstract We present a robust optimization approach to portfolio management

More information

3 Introduction to Assessing Risk

3 Introduction to Assessing Risk 3 Introduction to Assessing Risk Important Question. How do we assess the risk an investor faces when choosing among assets? In this discussion we examine how an investor would assess the risk associated

More information

Properties of BMO functions whose reciprocals are also BMO

Properties of BMO functions whose reciprocals are also BMO Properties of BMO functions whose reciprocals are also BMO R. L. Johnson and C. J. Neugebauer The main result says that a non-negative BMO-function w, whose reciprocal is also in BMO, belongs to p> A p,and

More information

The Effects ofVariation Between Jain Mirman and JMC

The Effects ofVariation Between Jain Mirman and JMC MARKET STRUCTURE AND INSIDER TRADING WASSIM DAHER AND LEONARD J. MIRMAN Abstract. In this paper we examine the real and financial effects of two insiders trading in a static Jain Mirman model (Henceforth

More information

OPRE 6201 : 2. Simplex Method

OPRE 6201 : 2. Simplex Method OPRE 6201 : 2. Simplex Method 1 The Graphical Method: An Example Consider the following linear program: Max 4x 1 +3x 2 Subject to: 2x 1 +3x 2 6 (1) 3x 1 +2x 2 3 (2) 2x 2 5 (3) 2x 1 +x 2 4 (4) x 1, x 2

More information

Analyzing the Demand for Deductible Insurance

Analyzing the Demand for Deductible Insurance Journal of Risk and Uncertainty, 18:3 3 1999 1999 Kluwer Academic Publishers. Manufactured in The Netherlands. Analyzing the emand for eductible Insurance JACK MEYER epartment of Economics, Michigan State

More information

Convex analysis and profit/cost/support functions

Convex analysis and profit/cost/support functions CALIFORNIA INSTITUTE OF TECHNOLOGY Division of the Humanities and Social Sciences Convex analysis and profit/cost/support functions KC Border October 2004 Revised January 2009 Let A be a subset of R m

More information

Chapter 2 Portfolio Management and the Capital Asset Pricing Model

Chapter 2 Portfolio Management and the Capital Asset Pricing Model Chapter 2 Portfolio Management and the Capital Asset Pricing Model In this chapter, we explore the issue of risk management in a portfolio of assets. The main issue is how to balance a portfolio, that

More information

ARBITRAGE-FREE OPTION PRICING MODELS. Denis Bell. University of North Florida

ARBITRAGE-FREE OPTION PRICING MODELS. Denis Bell. University of North Florida ARBITRAGE-FREE OPTION PRICING MODELS Denis Bell University of North Florida Modelling Stock Prices Example American Express In mathematical finance, it is customary to model a stock price by an (Ito) stochatic

More information

PUTNAM TRAINING POLYNOMIALS. Exercises 1. Find a polynomial with integral coefficients whose zeros include 2 + 5.

PUTNAM TRAINING POLYNOMIALS. Exercises 1. Find a polynomial with integral coefficients whose zeros include 2 + 5. PUTNAM TRAINING POLYNOMIALS (Last updated: November 17, 2015) Remark. This is a list of exercises on polynomials. Miguel A. Lerma Exercises 1. Find a polynomial with integral coefficients whose zeros include

More information

Choice under Uncertainty

Choice under Uncertainty Choice under Uncertainty Part 1: Expected Utility Function, Attitudes towards Risk, Demand for Insurance Slide 1 Choice under Uncertainty We ll analyze the underlying assumptions of expected utility theory

More information

The Advantages and Disadvantages of Online Linear Optimization

The Advantages and Disadvantages of Online Linear Optimization LINEAR PROGRAMMING WITH ONLINE LEARNING TATSIANA LEVINA, YURI LEVIN, JEFF MCGILL, AND MIKHAIL NEDIAK SCHOOL OF BUSINESS, QUEEN S UNIVERSITY, 143 UNION ST., KINGSTON, ON, K7L 3N6, CANADA E-MAIL:{TLEVIN,YLEVIN,JMCGILL,MNEDIAK}@BUSINESS.QUEENSU.CA

More information

Persuasion by Cheap Talk - Online Appendix

Persuasion by Cheap Talk - Online Appendix Persuasion by Cheap Talk - Online Appendix By ARCHISHMAN CHAKRABORTY AND RICK HARBAUGH Online appendix to Persuasion by Cheap Talk, American Economic Review Our results in the main text concern the case

More information

Chapter 7. Sealed-bid Auctions

Chapter 7. Sealed-bid Auctions Chapter 7 Sealed-bid Auctions An auction is a procedure used for selling and buying items by offering them up for bid. Auctions are often used to sell objects that have a variable price (for example oil)

More information

Regret and Rejoicing Effects on Mixed Insurance *

Regret and Rejoicing Effects on Mixed Insurance * Regret and Rejoicing Effects on Mixed Insurance * Yoichiro Fujii, Osaka Sangyo University Mahito Okura, Doshisha Women s College of Liberal Arts Yusuke Osaki, Osaka Sangyo University + Abstract This papers

More information

Online Appendix to Stochastic Imitative Game Dynamics with Committed Agents

Online Appendix to Stochastic Imitative Game Dynamics with Committed Agents Online Appendix to Stochastic Imitative Game Dynamics with Committed Agents William H. Sandholm January 6, 22 O.. Imitative protocols, mean dynamics, and equilibrium selection In this section, we consider

More information

A Portfolio Model of Insurance Demand. April 2005. Kalamazoo, MI 49008 East Lansing, MI 48824

A Portfolio Model of Insurance Demand. April 2005. Kalamazoo, MI 49008 East Lansing, MI 48824 A Portfolio Model of Insurance Demand April 2005 Donald J. Meyer Jack Meyer Department of Economics Department of Economics Western Michigan University Michigan State University Kalamazoo, MI 49008 East

More information

Chapter 21: The Discounted Utility Model

Chapter 21: The Discounted Utility Model Chapter 21: The Discounted Utility Model 21.1: Introduction This is an important chapter in that it introduces, and explores the implications of, an empirically relevant utility function representing intertemporal

More information

Some Polynomial Theorems. John Kennedy Mathematics Department Santa Monica College 1900 Pico Blvd. Santa Monica, CA 90405 rkennedy@ix.netcom.

Some Polynomial Theorems. John Kennedy Mathematics Department Santa Monica College 1900 Pico Blvd. Santa Monica, CA 90405 rkennedy@ix.netcom. Some Polynomial Theorems by John Kennedy Mathematics Department Santa Monica College 1900 Pico Blvd. Santa Monica, CA 90405 rkennedy@ix.netcom.com This paper contains a collection of 31 theorems, lemmas,

More information

Economics 121b: Intermediate Microeconomics Problem Set 2 1/20/10

Economics 121b: Intermediate Microeconomics Problem Set 2 1/20/10 Dirk Bergemann Department of Economics Yale University s by Olga Timoshenko Economics 121b: Intermediate Microeconomics Problem Set 2 1/20/10 This problem set is due on Wednesday, 1/27/10. Preliminary

More information

Large induced subgraphs with all degrees odd

Large induced subgraphs with all degrees odd Large induced subgraphs with all degrees odd A.D. Scott Department of Pure Mathematics and Mathematical Statistics, University of Cambridge, England Abstract: We prove that every connected graph of order

More information

Advanced Lecture on Mathematical Science and Information Science I. Optimization in Finance

Advanced Lecture on Mathematical Science and Information Science I. Optimization in Finance Advanced Lecture on Mathematical Science and Information Science I Optimization in Finance Reha H. Tütüncü Visiting Associate Professor Dept. of Mathematical and Computing Sciences Tokyo Institute of Technology

More information

Date: April 12, 2001. Contents

Date: April 12, 2001. Contents 2 Lagrange Multipliers Date: April 12, 2001 Contents 2.1. Introduction to Lagrange Multipliers......... p. 2 2.2. Enhanced Fritz John Optimality Conditions...... p. 12 2.3. Informative Lagrange Multipliers...........

More information

Lecture 05: Mean-Variance Analysis & Capital Asset Pricing Model (CAPM)

Lecture 05: Mean-Variance Analysis & Capital Asset Pricing Model (CAPM) Lecture 05: Mean-Variance Analysis & Capital Asset Pricing Model (CAPM) Prof. Markus K. Brunnermeier Slide 05-1 Overview Simple CAPM with quadratic utility functions (derived from state-price beta model)

More information

U.C. Berkeley CS276: Cryptography Handout 0.1 Luca Trevisan January, 2009. Notes on Algebra

U.C. Berkeley CS276: Cryptography Handout 0.1 Luca Trevisan January, 2009. Notes on Algebra U.C. Berkeley CS276: Cryptography Handout 0.1 Luca Trevisan January, 2009 Notes on Algebra These notes contain as little theory as possible, and most results are stated without proof. Any introductory

More information

CPC/CPA Hybrid Bidding in a Second Price Auction

CPC/CPA Hybrid Bidding in a Second Price Auction CPC/CPA Hybrid Bidding in a Second Price Auction Benjamin Edelman Hoan Soo Lee Working Paper 09-074 Copyright 2008 by Benjamin Edelman and Hoan Soo Lee Working papers are in draft form. This working paper

More information

Introduction to Algebraic Geometry. Bézout s Theorem and Inflection Points

Introduction to Algebraic Geometry. Bézout s Theorem and Inflection Points Introduction to Algebraic Geometry Bézout s Theorem and Inflection Points 1. The resultant. Let K be a field. Then the polynomial ring K[x] is a unique factorisation domain (UFD). Another example of a

More information

On the Efficiency of Competitive Stock Markets Where Traders Have Diverse Information

On the Efficiency of Competitive Stock Markets Where Traders Have Diverse Information Finance 400 A. Penati - G. Pennacchi Notes on On the Efficiency of Competitive Stock Markets Where Traders Have Diverse Information by Sanford Grossman This model shows how the heterogeneous information

More information

Chapter 4, Arithmetic in F [x] Polynomial arithmetic and the division algorithm.

Chapter 4, Arithmetic in F [x] Polynomial arithmetic and the division algorithm. Chapter 4, Arithmetic in F [x] Polynomial arithmetic and the division algorithm. We begin by defining the ring of polynomials with coefficients in a ring R. After some preliminary results, we specialize

More information

3. Linear Programming and Polyhedral Combinatorics

3. Linear Programming and Polyhedral Combinatorics Massachusetts Institute of Technology Handout 6 18.433: Combinatorial Optimization February 20th, 2009 Michel X. Goemans 3. Linear Programming and Polyhedral Combinatorics Summary of what was seen in the

More information

No: 10 04. Bilkent University. Monotonic Extension. Farhad Husseinov. Discussion Papers. Department of Economics

No: 10 04. Bilkent University. Monotonic Extension. Farhad Husseinov. Discussion Papers. Department of Economics No: 10 04 Bilkent University Monotonic Extension Farhad Husseinov Discussion Papers Department of Economics The Discussion Papers of the Department of Economics are intended to make the initial results

More information

Economics 2020a / HBS 4010 / HKS API-111 FALL 2010 Solutions to Practice Problems for Lectures 1 to 4

Economics 2020a / HBS 4010 / HKS API-111 FALL 2010 Solutions to Practice Problems for Lectures 1 to 4 Economics 00a / HBS 4010 / HKS API-111 FALL 010 Solutions to Practice Problems for Lectures 1 to 4 1.1. Quantity Discounts and the Budget Constraint (a) The only distinction between the budget line with

More information

Separation Properties for Locally Convex Cones

Separation Properties for Locally Convex Cones Journal of Convex Analysis Volume 9 (2002), No. 1, 301 307 Separation Properties for Locally Convex Cones Walter Roth Department of Mathematics, Universiti Brunei Darussalam, Gadong BE1410, Brunei Darussalam

More information

Notes from Week 1: Algorithms for sequential prediction

Notes from Week 1: Algorithms for sequential prediction CS 683 Learning, Games, and Electronic Markets Spring 2007 Notes from Week 1: Algorithms for sequential prediction Instructor: Robert Kleinberg 22-26 Jan 2007 1 Introduction In this course we will be looking

More information

Cost Minimization and the Cost Function

Cost Minimization and the Cost Function Cost Minimization and the Cost Function Juan Manuel Puerta October 5, 2009 So far we focused on profit maximization, we could look at a different problem, that is the cost minimization problem. This is

More information

Single-Period Balancing of Pay Per-Click and Pay-Per-View Online Display Advertisements

Single-Period Balancing of Pay Per-Click and Pay-Per-View Online Display Advertisements Single-Period Balancing of Pay Per-Click and Pay-Per-View Online Display Advertisements Changhyun Kwon Department of Industrial and Systems Engineering University at Buffalo, the State University of New

More information

OPTIMAL CONTROL OF A COMMERCIAL LOAN REPAYMENT PLAN. E.V. Grigorieva. E.N. Khailov

OPTIMAL CONTROL OF A COMMERCIAL LOAN REPAYMENT PLAN. E.V. Grigorieva. E.N. Khailov DISCRETE AND CONTINUOUS Website: http://aimsciences.org DYNAMICAL SYSTEMS Supplement Volume 2005 pp. 345 354 OPTIMAL CONTROL OF A COMMERCIAL LOAN REPAYMENT PLAN E.V. Grigorieva Department of Mathematics

More information

The Relative Worst Order Ratio for On-Line Algorithms

The Relative Worst Order Ratio for On-Line Algorithms The Relative Worst Order Ratio for On-Line Algorithms Joan Boyar 1 and Lene M. Favrholdt 2 1 Department of Mathematics and Computer Science, University of Southern Denmark, Odense, Denmark, joan@imada.sdu.dk

More information

How To Prove The Dirichlet Unit Theorem

How To Prove The Dirichlet Unit Theorem Chapter 6 The Dirichlet Unit Theorem As usual, we will be working in the ring B of algebraic integers of a number field L. Two factorizations of an element of B are regarded as essentially the same if

More information

ALMOST COMMON PRIORS 1. INTRODUCTION

ALMOST COMMON PRIORS 1. INTRODUCTION ALMOST COMMON PRIORS ZIV HELLMAN ABSTRACT. What happens when priors are not common? We introduce a measure for how far a type space is from having a common prior, which we term prior distance. If a type

More information

Pacific Journal of Mathematics

Pacific Journal of Mathematics Pacific Journal of Mathematics GLOBAL EXISTENCE AND DECREASING PROPERTY OF BOUNDARY VALUES OF SOLUTIONS TO PARABOLIC EQUATIONS WITH NONLOCAL BOUNDARY CONDITIONS Sangwon Seo Volume 193 No. 1 March 2000

More information

24. The Branch and Bound Method

24. The Branch and Bound Method 24. The Branch and Bound Method It has serious practical consequences if it is known that a combinatorial problem is NP-complete. Then one can conclude according to the present state of science that no

More information

Advanced Microeconomics

Advanced Microeconomics Advanced Microeconomics Ordinal preference theory Harald Wiese University of Leipzig Harald Wiese (University of Leipzig) Advanced Microeconomics 1 / 68 Part A. Basic decision and preference theory 1 Decisions

More information

Fairness in Routing and Load Balancing

Fairness in Routing and Load Balancing Fairness in Routing and Load Balancing Jon Kleinberg Yuval Rabani Éva Tardos Abstract We consider the issue of network routing subject to explicit fairness conditions. The optimization of fairness criteria

More information

Notes V General Equilibrium: Positive Theory. 1 Walrasian Equilibrium and Excess Demand

Notes V General Equilibrium: Positive Theory. 1 Walrasian Equilibrium and Excess Demand Notes V General Equilibrium: Positive Theory In this lecture we go on considering a general equilibrium model of a private ownership economy. In contrast to the Notes IV, we focus on positive issues such

More information

Discussion on the paper Hypotheses testing by convex optimization by A. Goldenschluger, A. Juditsky and A. Nemirovski.

Discussion on the paper Hypotheses testing by convex optimization by A. Goldenschluger, A. Juditsky and A. Nemirovski. Discussion on the paper Hypotheses testing by convex optimization by A. Goldenschluger, A. Juditsky and A. Nemirovski. Fabienne Comte, Celine Duval, Valentine Genon-Catalot To cite this version: Fabienne

More information

MATH10212 Linear Algebra. Systems of Linear Equations. Definition. An n-dimensional vector is a row or a column of n numbers (or letters): a 1.

MATH10212 Linear Algebra. Systems of Linear Equations. Definition. An n-dimensional vector is a row or a column of n numbers (or letters): a 1. MATH10212 Linear Algebra Textbook: D. Poole, Linear Algebra: A Modern Introduction. Thompson, 2006. ISBN 0-534-40596-7. Systems of Linear Equations Definition. An n-dimensional vector is a row or a column

More information

Practical Guide to the Simplex Method of Linear Programming

Practical Guide to the Simplex Method of Linear Programming Practical Guide to the Simplex Method of Linear Programming Marcel Oliver Revised: April, 0 The basic steps of the simplex algorithm Step : Write the linear programming problem in standard form Linear

More information

Convex Rationing Solutions (Incomplete Version, Do not distribute)

Convex Rationing Solutions (Incomplete Version, Do not distribute) Convex Rationing Solutions (Incomplete Version, Do not distribute) Ruben Juarez rubenj@hawaii.edu January 2013 Abstract This paper introduces a notion of convexity on the rationing problem and characterizes

More information

On the Interaction and Competition among Internet Service Providers

On the Interaction and Competition among Internet Service Providers On the Interaction and Competition among Internet Service Providers Sam C.M. Lee John C.S. Lui + Abstract The current Internet architecture comprises of different privately owned Internet service providers

More information

15.062 Data Mining: Algorithms and Applications Matrix Math Review

15.062 Data Mining: Algorithms and Applications Matrix Math Review .6 Data Mining: Algorithms and Applications Matrix Math Review The purpose of this document is to give a brief review of selected linear algebra concepts that will be useful for the course and to develop

More information

Multivariate Normal Distribution

Multivariate Normal Distribution Multivariate Normal Distribution Lecture 4 July 21, 2011 Advanced Multivariate Statistical Methods ICPSR Summer Session #2 Lecture #4-7/21/2011 Slide 1 of 41 Last Time Matrices and vectors Eigenvalues

More information

TOPIC 4: DERIVATIVES

TOPIC 4: DERIVATIVES TOPIC 4: DERIVATIVES 1. The derivative of a function. Differentiation rules 1.1. The slope of a curve. The slope of a curve at a point P is a measure of the steepness of the curve. If Q is a point on the

More information

Review of Fundamental Mathematics

Review of Fundamental Mathematics Review of Fundamental Mathematics As explained in the Preface and in Chapter 1 of your textbook, managerial economics applies microeconomic theory to business decision making. The decision-making tools

More information

Continued Fractions and the Euclidean Algorithm

Continued Fractions and the Euclidean Algorithm Continued Fractions and the Euclidean Algorithm Lecture notes prepared for MATH 326, Spring 997 Department of Mathematics and Statistics University at Albany William F Hammond Table of Contents Introduction

More information

MOP 2007 Black Group Integer Polynomials Yufei Zhao. Integer Polynomials. June 29, 2007 Yufei Zhao yufeiz@mit.edu

MOP 2007 Black Group Integer Polynomials Yufei Zhao. Integer Polynomials. June 29, 2007 Yufei Zhao yufeiz@mit.edu Integer Polynomials June 9, 007 Yufei Zhao yufeiz@mit.edu We will use Z[x] to denote the ring of polynomials with integer coefficients. We begin by summarizing some of the common approaches used in dealing

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 5 9/17/2008 RANDOM VARIABLES

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 5 9/17/2008 RANDOM VARIABLES MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 5 9/17/2008 RANDOM VARIABLES Contents 1. Random variables and measurable functions 2. Cumulative distribution functions 3. Discrete

More information

1 Short Introduction to Time Series

1 Short Introduction to Time Series ECONOMICS 7344, Spring 202 Bent E. Sørensen January 24, 202 Short Introduction to Time Series A time series is a collection of stochastic variables x,.., x t,.., x T indexed by an integer value t. The

More information

Algebra Unpacked Content For the new Common Core standards that will be effective in all North Carolina schools in the 2012-13 school year.

Algebra Unpacked Content For the new Common Core standards that will be effective in all North Carolina schools in the 2012-13 school year. This document is designed to help North Carolina educators teach the Common Core (Standard Course of Study). NCDPI staff are continually updating and improving these tools to better serve teachers. Algebra

More information

Linear Programming I

Linear Programming I Linear Programming I November 30, 2003 1 Introduction In the VCR/guns/nuclear bombs/napkins/star wars/professors/butter/mice problem, the benevolent dictator, Bigus Piguinus, of south Antarctica penguins

More information

Working Paper Series

Working Paper Series RGEA Universidade de Vigo http://webs.uvigo.es/rgea Working Paper Series A Market Game Approach to Differential Information Economies Guadalupe Fugarolas, Carlos Hervés-Beloso, Emma Moreno- García and

More information

Definition and Properties of the Production Function: Lecture

Definition and Properties of the Production Function: Lecture Definition and Properties of the Production Function: Lecture II August 25, 2011 Definition and : Lecture A Brief Brush with Duality Cobb-Douglas Cost Minimization Lagrangian for the Cobb-Douglas Solution

More information

Nan Kong, Andrew J. Schaefer. Department of Industrial Engineering, Univeristy of Pittsburgh, PA 15261, USA

Nan Kong, Andrew J. Schaefer. Department of Industrial Engineering, Univeristy of Pittsburgh, PA 15261, USA A Factor 1 2 Approximation Algorithm for Two-Stage Stochastic Matching Problems Nan Kong, Andrew J. Schaefer Department of Industrial Engineering, Univeristy of Pittsburgh, PA 15261, USA Abstract We introduce

More information

The Multiplicative Weights Update method

The Multiplicative Weights Update method Chapter 2 The Multiplicative Weights Update method The Multiplicative Weights method is a simple idea which has been repeatedly discovered in fields as diverse as Machine Learning, Optimization, and Game

More information

Lecture 2. Marginal Functions, Average Functions, Elasticity, the Marginal Principle, and Constrained Optimization

Lecture 2. Marginal Functions, Average Functions, Elasticity, the Marginal Principle, and Constrained Optimization Lecture 2. Marginal Functions, Average Functions, Elasticity, the Marginal Principle, and Constrained Optimization 2.1. Introduction Suppose that an economic relationship can be described by a real-valued

More information

Betting with the Kelly Criterion

Betting with the Kelly Criterion Betting with the Kelly Criterion Jane June 2, 2010 Contents 1 Introduction 2 2 Kelly Criterion 2 3 The Stock Market 3 4 Simulations 5 5 Conclusion 8 1 Page 2 of 9 1 Introduction Gambling in all forms,

More information

Review of Basic Options Concepts and Terminology

Review of Basic Options Concepts and Terminology Review of Basic Options Concepts and Terminology March 24, 2005 1 Introduction The purchase of an options contract gives the buyer the right to buy call options contract or sell put options contract some

More information

The Expectation Maximization Algorithm A short tutorial

The Expectation Maximization Algorithm A short tutorial The Expectation Maximiation Algorithm A short tutorial Sean Borman Comments and corrections to: em-tut at seanborman dot com July 8 2004 Last updated January 09, 2009 Revision history 2009-0-09 Corrected

More information

Single item inventory control under periodic review and a minimum order quantity

Single item inventory control under periodic review and a minimum order quantity Single item inventory control under periodic review and a minimum order quantity G. P. Kiesmüller, A.G. de Kok, S. Dabia Faculty of Technology Management, Technische Universiteit Eindhoven, P.O. Box 513,

More information

A Simple Model of Price Dispersion *

A Simple Model of Price Dispersion * Federal Reserve Bank of Dallas Globalization and Monetary Policy Institute Working Paper No. 112 http://www.dallasfed.org/assets/documents/institute/wpapers/2012/0112.pdf A Simple Model of Price Dispersion

More information

Some Research Problems in Uncertainty Theory

Some Research Problems in Uncertainty Theory Journal of Uncertain Systems Vol.3, No.1, pp.3-10, 2009 Online at: www.jus.org.uk Some Research Problems in Uncertainty Theory aoding Liu Uncertainty Theory Laboratory, Department of Mathematical Sciences

More information

Portfolio Allocation and Asset Demand with Mean-Variance Preferences

Portfolio Allocation and Asset Demand with Mean-Variance Preferences Portfolio Allocation and Asset Demand with Mean-Variance Preferences Thomas Eichner a and Andreas Wagener b a) Department of Economics, University of Bielefeld, Universitätsstr. 25, 33615 Bielefeld, Germany.

More information

Duality in General Programs. Ryan Tibshirani Convex Optimization 10-725/36-725

Duality in General Programs. Ryan Tibshirani Convex Optimization 10-725/36-725 Duality in General Programs Ryan Tibshirani Convex Optimization 10-725/36-725 1 Last time: duality in linear programs Given c R n, A R m n, b R m, G R r n, h R r : min x R n c T x max u R m, v R r b T

More information

THE DYING FIBONACCI TREE. 1. Introduction. Consider a tree with two types of nodes, say A and B, and the following properties:

THE DYING FIBONACCI TREE. 1. Introduction. Consider a tree with two types of nodes, say A and B, and the following properties: THE DYING FIBONACCI TREE BERNHARD GITTENBERGER 1. Introduction Consider a tree with two types of nodes, say A and B, and the following properties: 1. Let the root be of type A.. Each node of type A produces

More information

Optimal proportional reinsurance and dividend pay-out for insurance companies with switching reserves

Optimal proportional reinsurance and dividend pay-out for insurance companies with switching reserves Optimal proportional reinsurance and dividend pay-out for insurance companies with switching reserves Abstract: This paper presents a model for an insurance company that controls its risk and dividend

More information

Understanding Basic Calculus

Understanding Basic Calculus Understanding Basic Calculus S.K. Chung Dedicated to all the people who have helped me in my life. i Preface This book is a revised and expanded version of the lecture notes for Basic Calculus and other

More information

MATH 425, PRACTICE FINAL EXAM SOLUTIONS.

MATH 425, PRACTICE FINAL EXAM SOLUTIONS. MATH 45, PRACTICE FINAL EXAM SOLUTIONS. Exercise. a Is the operator L defined on smooth functions of x, y by L u := u xx + cosu linear? b Does the answer change if we replace the operator L by the operator

More information

Mathematics Review for MS Finance Students

Mathematics Review for MS Finance Students Mathematics Review for MS Finance Students Anthony M. Marino Department of Finance and Business Economics Marshall School of Business Lecture 1: Introductory Material Sets The Real Number System Functions,

More information

Institute for Empirical Research in Economics University of Zurich. Working Paper Series ISSN 1424-0459. Working Paper No. 229

Institute for Empirical Research in Economics University of Zurich. Working Paper Series ISSN 1424-0459. Working Paper No. 229 Institute for Empirical Research in Economics University of Zurich Working Paper Series ISSN 1424-0459 Working Paper No. 229 On the Notion of the First Best in Standard Hidden Action Problems Christian

More information

Critical points of once continuously differentiable functions are important because they are the only points that can be local maxima or minima.

Critical points of once continuously differentiable functions are important because they are the only points that can be local maxima or minima. Lecture 0: Convexity and Optimization We say that if f is a once continuously differentiable function on an interval I, and x is a point in the interior of I that x is a critical point of f if f (x) =

More information

1 Solving LPs: The Simplex Algorithm of George Dantzig

1 Solving LPs: The Simplex Algorithm of George Dantzig Solving LPs: The Simplex Algorithm of George Dantzig. Simplex Pivoting: Dictionary Format We illustrate a general solution procedure, called the simplex algorithm, by implementing it on a very simple example.

More information

Fund Manager s Portfolio Choice

Fund Manager s Portfolio Choice Fund Manager s Portfolio Choice Zhiqing Zhang Advised by: Gu Wang September 5, 2014 Abstract Fund manager is allowed to invest the fund s assets and his personal wealth in two separate risky assets, modeled

More information

Week 1: Introduction to Online Learning

Week 1: Introduction to Online Learning Week 1: Introduction to Online Learning 1 Introduction This is written based on Prediction, Learning, and Games (ISBN: 2184189 / -21-8418-9 Cesa-Bianchi, Nicolo; Lugosi, Gabor 1.1 A Gentle Start Consider

More information