Chemical Bonding. Concepts. Introduction

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Chemical Bonding. Concepts. Introduction"

Transcription

1 Chemical Bonding Concepts (i) Formation of a chemical bond (iii) Lewis theory (ii) Nature of a chemical bond (iv) Types of chemical bond Introduction Though the periodic table has a place for 118 elements, there are obviously more substances in nature than 118 pure elements. This is because atoms of elements can react with one another to form new substances called compounds. When two or more elements combine, the resulting compound is unique both chemically and physically from its parent atoms. For example, sodium is a silver coloured metal that reacts so violently with water that flames are produced when sodium gets wet. The element chlorine is greenish coloured gas that is so poisonous that it was used as a weapon in world war I. When chemically bonded together, these two dangerous substances form the compound sodium chloride, a compound so safe that we eat it every day common table salt. Formation of a chemical bond Free atoms of elements are in random motion and possess some energy. Farther the atoms are, greater is their energy and lesser is the stability. Two or more atoms unite to form a molecule because in doing so, the energy of the united atoms is lowered. Thus the molecule becomes stable in comparison to separate atoms. In other words, a stable chemical union called bond between two or more atoms comes into existence only if the energy is lowered when the atoms come in close vicinity. The lower the energy of the molecule, the stronger the bond and more is the stability to the bonded atoms. Nature of chemical bond A chemical bond is an attraction between atoms. It is the attraction caused by the electromagnetic force between opposing charges either between electrons and nuclei or as the result of a dipole attraction. Since opposite charges attract via a simple electromagnetic force, the negatively charged electrons revolving round the nucleus and the positively charged protons in the nucleus attract each other. Also an electron positioned between two nuclei will be attracted to both of them. Thus, the most stable configuration of nuclei and electrons is one in which the electrons spend more time between nuclei than anywhere else in space. These electrons cause the nuclei to be attracted to each other and this attraction results in the bond. Electrons occupy large

2 volume compared to the nuclei and this volume keeps the atomic nuclei relatively far apart as compared with the size of the nuclei themselves. 2 The force of attraction which holds the two atoms together in a molecule is called a chemical bond. Lewis theory In 1916, an American chemist, Lewis proposed that chemical bonds are formed between atoms because electrons from the atoms interact with each other. Lewis had observed that many elements are most stable when they contain eight electrons in their outermost or valence shell of the atom. He suggested that atoms with fewer than eight electrons bond together to share electrons and complete their valence shell. While some of Lewis predictions have since been proven incorrect ( he suggested that electrons occupy cube shaped orbitals ), his work established the basis of what is known today about chemical bonding. Essentials of Lewis theory Between 1916 and 1919, Lewis, Kossel and Langmuir made several important proposals on bonding which lead to the development of Lewis theory of bonding. 1) Valence electrons mainly play a fundamental role in bonding. 2) Ionic bonding involves the transfer of one or more electrons from one atom to another. 3) Covalent bonding involves sharing of electrons between atoms. 4) Electrons are transferred or shared between atoms such that each atom achieves the electron configuration of a noble gas i.e. having eight electrons in the outermost shell called octet. 5) This arrangement is called octet rule. ( Exception He) 6) Exceptions to octet rule may occur. Lewis proposed symbols which represent the resulting structures that follow the octet rule. In a Lewis symbol, an element is surrounded by up to 8 dots where elemental symbol represents the nucleus and the dots represents the valence electrons. Activity 1 - Draw the Lewis dot formula for following molecules - BF 3, KCl

3 3 Types of chemical bonds Following figure shows a road map of chemical bonding i.e. which elements will form which type of bond Figure 1 Periodic table and elements forming different types of bonds.

4 4 Chemical bonds can be divided into three major types : ionic bonds which occur between a metal and a non-metal; covalent bonds which occur between two non-metals; and metallic bonds which occur within metals. Some people consider hydrogen bond as a separate type of bond. In an ionic bond, one or more electrons are transferred from metal to non-metal and the resultant ions are attracted to each other by coulombic forces. In a covalent bond, non-metals share electrons that interact with the nuclei of both atoms via coulombic forces, holding the atoms together. In a metallic bond, the atoms form a lattice in which each metal atom loses electrons to an electron sea. The attraction of the positively charged metal ions to the electron - sea holds the metal atoms together. Hydrogen bond occurs in some restricted hydrides. In addition, there are dipole dipole interactions and van der Waals forces which are small in magnitude and play a role in bonding limited substances.. Activity 2 Select one element from left hand side, one element from the right hand side and one element from the middle of the periodic table. Predict how many types of bonds each element can form with its own atoms as well as other atoms. Check your understanding (i) Why do atoms tend to combine and form a bond? (ii) When atoms come close, which forces come into existence? (iii) What is Lewis theory of bond formation? (iv) How many main types of bonds are known?

5 5 Concepts (i) Formation of ionic bond (iii) Formation of cation and anion (ii) Characteristic properties of ionic compounds (iv) Difference between atoms and ions Formation of ionic bond An ionic bond ( also called as electrovalent bond ) is a type of chemical bond that involves a metal ion and a non-metal ion ( or polyatomic ions such as ammonium ) through electrostatic attraction. In short, it is a bond formed by the attraction between two oppositely charged ions. The metal donates one or more electrons, forming a positively charged ion or cation with a stable electron configuration. These electrons then enter the non-metal, causing it to form a negatively charged ion or anion which also has a stable electron configuration. The electrostatic attraction between the oppositely charged ions causes them to come together and form a bond. For example, when sodium ( Na ) and chlorine ( Cl) are combined, the sodium atoms each lose an electron, forming a cation (Na + ) and the chlorine atoms each gain an electron to form an anion (Cl - ). These ions then are attracted to each other in 1:1 proportion to form sodium chloride NaCl. Na + Cl Na + + Cl - NaCl Figure 2 - Combination of Na and Cl to form Na + and Cl - The electrostatic force of attraction between two oppositely charged ions formed by transfer of electrons from one atom to another is called an ionic or electrovalent bond.

6 The figure given below shows the variation of potential energy as a function of distance of separation between sodium or chlorine atoms. An atom of sodium has one electron extra outside the closed shell and it takes 5.14 electron volts of energy to remove that electron (its ionization potential is 5.14 ev). 6 ( diagram is not to the scale) Figure 3 P.E. diagram for NaCl molecule The chlorine atom is short of one electron to fill a shell and it releases 3.62 electron volts when it acquires that electron ( its electron affinity is 3.62 ev). This means that it takes only 1.52 ev( ) of energy to donate one of the sodium electrons to chlorine when they are far apart. When the resultant ions are brought close together, their electric potential becomes more and more negative, reaching 1.52 ev at about 0.94 nm separation. This means that if neutral sodium and chlorine atoms found themselves closer than 0.94 nm, it would be energetically favourable to transfer electron from Na to Cl and form the ionic bond. The potential energy curve shows that there is a minimum at nm separation and then a steep rise in potential which represents a repulsive force. This repulsive force is more than just an electrostatic repulsion between the electron clouds of the two atoms. The removal of electron from the atom is endothermic and causes the ions to have a higher energy. There may also be energy changes associated with breaking of existing bonds or the addition of more than one electron to form anions. However, the attraction of the ions to each other lowers their energy.

7 The energy balance cycle for NaCl is shown below. (i) Gaseous sodium atom is formed from solid sodium metal Na (s) kj mol -1 Na(g) (ii) Sodium ion is formed from gaseous sodium atom. Na (g) kj mol -1 Na + (g) + e - (iii) Chlorine molecule dissociates into gaseous chlorine atoms. ½ Cl 2 (g) kj mol -1 Cl (g) (iv) Chloride ion is formed from gaseous chlorine atom. Cl (g) + e - Cl - (g) kj mol -1 (v) Sodium ions and chloride ions interact to form solid sodium chloride. Na + (g) + Cl - (g) Na + Cl - (s) kj mol Energy evolved = = 1136 kj Energy absorbed = = 725 kj Energy evolved = 411 kj mol -1 Ionic bonding will occur only if the overall energy change for the reaction is favourable when the bonded atoms have a lower energy than the free ones. The larger the resulting energy change, the stronger the bond. The low electronegativity of the metals and high electronegativity of non-metals means that the energy change of the reaction is most favourable when metals lose electrons and non-metals gain electrons. Notice that when sodium loses its one valence electron, it gets smaller in size, while chlorine grows larger when it gains an additional valence electron. This is typical of the relative sizes of the ions to atoms. Positive ions tend to be smaller than the parent atoms while negative ions tend to be larger than their parent. After the reaction takes place, the charged Na + and Cl - ions are held together by electrostatic forces, thus forming an ionic bond. Activity 3 - You are given following data All energy values are in kj mol -1 (i) Sublimation energy of K = 89.2 (ii) Ionisation energy of K = (iii) Dissociation energy of F 2 = (iv) Electron affinity of F = (v) Lattice energy of KF = (vi) Electronegativity of K = 0.82 ( vii) Electronegativity of F = 4 What type of bond K and F will form and energetically will KF be stable?

8 8 Activity 4 From the crystal structure of sodium chloride given in the book, find out the coordination number of Na + ion and Cl - ion and try to draw yourself the structure of NaCl. Other examples of ionic bonding As stated earlier, more the difference in electronegativity of the two atoms, more are the chances of forming ionic bonds. For example, two potassium atoms can lose one electron each to oxygen atom and potassium and oxygen may combine to form ionic bond. Similarly, rubidium and fluorine atom, magnesium and chlorine atom, calcium and oxygen atom can form ionic bond. Characteristic Properties of Ionic Compounds Ionic compounds have following characteristic properties. 1) Ionic compounds involve ionic bonds which are formed between metals and non-metals. 2) In naming simple ionic compounds, the metal is always first, the non-metal second ( e.g. sodium chloride ) 3) Ionic compounds dissolve easily in water and other polar solvents. 4) In solution and in molten state ionic compounds easily conduct electricity. 5) Ionic compounds tend to form crystalline solids with high melting temperatures. Pure ionic bonding is not known to exist. All ionic compounds have a degree of covalent bonding. The larger the difference in electronegativity between two atoms, the more ionic the bond. Formation of cation and anion (i) When an atom loses electron, it gets an overall positive charge because the number of protons now exceed the number of electrons. The positively charged ion is called a cation. The process of formation of a cation from its atom is called oxidation. (ii) When an atom gains electron, it gets an overall negative charge because the number of electrons now exceed the number of protons. The negatively charged ion is called an anion. The process of formation of an anion from its atom is called reduction.

9 9 Difference between atoms and ions Atoms Ions (i) Atoms are electrically neutral because (i) Ions are charged particles because of protons and electrons are equal in number. imbalance of protons and electrons. (ii) The outermost shell may or may not (ii) The outermost shell has a completed have a completed duplet or octet e.g duplet or octet e.g. Ne = 2,8 ( completed octet ) Cl - = 2,8 ( completed octet ) Na = 2,8,1 ( incomplete octet ) Li + = 2 ( completed duplet ) (iii) Atoms may be or may not be capable of (iii) Ions are capable of independent free existence e.g. existence in solution or gaseous state He atom exists in uncombined state e.g. NaCl Na + + Cl - ( in solution) Hydrogen ( H 2 ) exists in combined Na Na + + e - (Gaseous) state Check your understanding (i) Which elements in the periodic table tend to form ionic bond? (ii) In terms of electronegativity, what is the condition for formation of an ionic bond? (iii) What is the criterion to know whether the ionic compound will be stable or not? (iv) Which pair of elements in the periodic table will form the strongest ionic bond? (v) Why is it that the process of formation of cation is called oxidation and formation of anion is called reduction?

10 10 Concepts (i) Formation of covalent bond (iii) Polar and non-polar covalent bonds (iv) Coordinate bond (ii) Multiple bonds (v) Characteristics of covalent compounds Formation of covalent bond The second major type of chemical bond occurs when atoms share electrons. As opposed to ionic bonding in which a complete transfer of electrons occurs, covalent bonding occurs when two ( or more ) elements share electrons. Covalent bonding occurs because the atoms in the molecule have a similar tendency for electrons ( generally to gain electrons.) This most commonly occurs when two non-metals bond together. Because both of the non-metals want to gain electrons, the elements involved will share electrons in an effort to fill their valence shells. A good example of a covalent bond is that which occurs between two hydrogen atoms. Atoms of hydrogen (H) have one valence electron in their electron shell. Since the capacity of this shell is two electrons, each hydrogen atom will want to pick up a second electron. In an effort to pick up a second electron, hydrogen atoms will react with nearby hydrogen (H) atoms to form the molecule H 2. Since the hydrogen molecule is a combination of equally matched atoms, the atoms will share each other s single electron, forming one covalent bond. In this way, both atoms share the stability of a full valence shell. A chemical bond formed by sharing of electrons between atoms is called a covalent bond. As the two hydrogen atoms approach one another, in addition to nucleus electron attraction, nuclear-nuclear repulsion and electron electron repulsion also come into existence. When the two hydrogen atoms are at a distance of nm, the potential energy of the two hydrogen atoms together is at its minimum and releases 4.52 ev. At this stage, a chemical bond is formed. If the hydrogen atoms come still closer, the potential energy rises steeply making the molecule unstable. Thus, the sharing of electrons is energetically favourable to both the hydrogen atoms with the formation of stable single covalent bond. The figure given below shows the variation of potential energy as a function of distance of separation of hydrogen atoms.

11 11 ( diagram is not to the scale) Figure 4 P.E. diagram for H 2 molecule Following figure shows the formation of single covalent bond between two hydrogen atoms and two chlorine atoms. Figure 5 - Bonding in H 2 and Cl 2 molecule

12 12 Two or more atoms of different elements can also share electrons to form a single bond between them and complete the octet ( or duplet ) of each atom. For example, in methane, one carbon and four hydrogen atoms share one electron pair each to form four C - H bonds, in ammonia, one nitrogen and three hydrogen atoms share one electron pair each to form three N H bonds and in water, one oxygen and two hydrogen atoms share one electron pair each to form two O H bonds. This is shown in the following diagram. Multiple bonds Figure 6 Bonding in H 2 O, NH 3 and CH 4 molecules For every pair of electrons shared between two atoms, a single covalent bond is formed. Some atoms can share two or three pairs of electrons forming multiple bonds i. e. a double or triple bonds. For example, oxygen atom has six electrons in its outermost shell. It needs two electrons to complete its octet and attains the configuration of neon. Hence two oxygen atoms combine by sharing two pairs of electrons between them and form a double bond. Similarly, nitrogen atom has five electrons in its outermost shell. It needs three electrons to complete its octet and attain the configuration of the inert gas neon. Hence, two nitrogen atoms combine by sharing three pairs of electrons between them and form a triple bond. In HCN molecule, H and C atoms share one pair of electron to form a single bond while C and N atoms share three pairs of electrons to form a triple bond.

13 Following figure shows the multiple bonds in O 2, N 2 and HCN molecules. 13 Figure 7 - Bonding in O 2, N 2 and HCN molecules. Activity 5 - Carbon atom has four electrons in its outermost shell. Oxygen atom has six electrons in its outermost shell. Arrange the valence electrons around these two atoms and draw the Lewis dot formula in such a way that each atom completes its octet. Name and count the types of bonds in the molecule. Polar and Non-polar covalent bonds There are two subtypes of covalent bonds non-polar and polar. The H 2 molecule is a good example of the first subtype of covalent bond. Since both atoms in H 2 molecule have an equal attraction ( or affinity ) for electrons, the bonding electrons are equally shared between the two atoms i.e. the shared pair lies exactly in the middle of two atoms and a non-polar covalent bond is formed. There is no charge separation and the molecule is non-polar. Whenever two atoms of the same element bond together, a non-polar covalent bond is formed. Following figure shows the non-polar covalent bond between H 2 and O 2 molecules. Figure 8 - Non-polar covalent bonds in H 2 and O 2 molecules

14 14 A polar covalent bond is formed when electrons are unequally shared between two atoms. Polar covalent bonding occurs because one atom has stronger affinity for electrons than the other ( yet not enough to pull the electrons away completely and form an ion).in a polar covalent bond, the bonding electrons spend more time around the atom that has the stronger affinity for electrons. Due to this uneven distribution of charge, one end of the molecule acquires a slightly positive charge while the other end acquires a slightly negative charge. These slight charges are represented by the symbols + and - (called delta). Good examples of polar covalent bond are HCl and H 2 O. The figure given below shows the polar covalent bond in HCl and H 2 O molecule. Figure 9 - Polar covalent bond in HCl and H 2 O molecules. The polar or non-polar nature of the covalent bond can be predicted from the electronegativity values of the two atoms. There is a correlation between the electronegativity difference and the percentage ionic character of the molecule. In case of HCl, the electronegativity difference between H and Cl is 0.9 and the ionic character is 20%. In case of NaCl molecule, the elctronegativity difference between Na and Cl is 2.1 and the ionic character is 65%. In order to have 50% ionic character in a molecule, the atoms should have 1.7 as the difference in electronegativity values. It is also possible that the multi-bond molecule is non-polar but the individual bonds in the molecule are polar. This is the case in carbon tetrachloride molecule. Each C Cl bond is slightly polar but the overall molecule is non-polar. When the directions of the bonds are taken into account, the net effect of the polarity of four C-Cl bonds is zero. Following figure shows the individual polarities of bond in carbon tetrachloride molecule. Figure 10 - Non-polar carbon tetrachloride molecule

15 Activity 6 - Draw the Lewis dot formula and show the polar covalent bond formation in HBr molecule. Coordinate bond 15 A coordinate bond, also known as dative or semi polar bond, is a special type of covalent bond in which the shared pair of electrons comes from one of the bonding atoms only. This bond is formed when an electron pair donor ( Lewis base ) donates a pair of electrons to an electron pair acceptor ( Lewis acid ) to give a so called adduct. The process of forming a coordinate bond is called coordination. In this process, the electron donor acquires a formal positive charge while the electron acceptor acquires a formal negative charge. Since a dipole is created, this bond is, sometimes, called as a dipolar bond. The distinction between a normal covalent bond and a coordinate bond is artificial. Once the coordinate bond is formed, its strength and description is no different from that of other polar covalent bond. Any atom, ion or molecule which has a lone pair of electrons is capable of forming a coordinate bond. For example, ammonia molecule has a lone pair of electrons. It can act as electron donor ( Lewis base). Hydrogen ion is electron deficient and can act as an electron acceptor ( Lewis acid ). When they come together, they form a coordinate bond. In this process, nitrogen of the ammonia molecule acquires a formal positive charge while hydrogen ion acquires a formal negative charge. Once the coordinate bond is formed all four N H bonds in ammonium ion become identical in all respects. The figure given below shows the formation of a coordinate bond between ammonia molecule and H + ion. Figure 11 - Formation of coordinate bond. Formation of H 3 O + ion and NH 3 BF 3 adduct are some more examples of coordinate bonding.

16 16 Characteristic Properties of Covalent Compounds Covalent compounds have following characteristic properties 1) Covalent compounds do not exist as ions but exist as molecules. They may occur in solid, liquid or gaseous state. 2) They are generally soft and have low melting and boiling points. 3) Covalent compounds are generally insoluble or less soluble in water and in other polar solvents. 4) Covalent compounds are poor conductors of electricity in fused or dissolved state. Check your understanding (i) Draw a potential energy curve for H 2 molecule and show the bond length and potential energy at which H 2 molecule is formed. (ii) What is the difference between covalent bond and coordinate bond? (iii) Choose the pairs of atoms which will form (i) non-polar (ii) polar covalent bond. Be, B, C, N, O, F, N, O, F (iv) Identify the types of bonds in NH 4 Cl molecule.

17 17 Concepts (i) Metallic bonding (ii) Characteristic properties of metals Metallic bonding The elements which are placed on the extreme left, the middle and a few on the right of the periodic table are metals. Alkali metals like sodium, potassium, alkaline earth metals like magnesium, calcium, transition metals like iron, cobalt, nickel, copper and others like lead, tin represent the family of metals. They have low electronegativity. They tend to lose their valence electrons easily. When we have a macroscopic collection of metal atoms, the valence electrons are detached from the atoms but not held by any of the other atoms. In other words, these valence electrons are free from any particular atom and are held only collectively by the entire assembly of atoms. When atoms lose their outer-shell electrons they become positive ions. The outer electrons become a sea of mobile electrons surrounding a lattice of positive ions. The positive ion cores are held more or less at fixed places in an ordered or crystal lattice. The valence electrons are free to move about under applied stimulation like electrical field or heat. This is called electron sea model of metals. The force of attraction which holds the delocalized (or mobile) electrons and the metallic nuclei together in a metal is called a metallic bond. Following figure shows electron sea model of metals. Figure 12 - Electron sea model of a metal

18 18 Although the term metallic bond is often used in contrast to the term covalent bond it is preferable to use the term metallic bonding because this type of bonding is collective in nature and a single metallic bond does not exist. Characteristic Properties of Metals Metals show following characteristic physical properties: 1) At room temperature, they are solids (except mercury) 2) They are opaque to light. 3) They, generally, have high density. 4) They show metallic luster. 5) They are malleable and ductile in their solid state. 6) They are good conductors of heat and electricity. 7) They have crystal structure in which each atom is surrounded by eight to twelve near neighbours. Activity 7 Draw the picture of a metal lattice and show the position of metal nuclei and valence electrons in the lattice. Activity 8 Metals generally have high densities. Support this statement by giving densities of some metals. Check your understanding (i) Why the crystal structure of metal is described as a sea of electrons? (ii) Give any one property of metals which can be explained by its crystal structure. Justify your answer.

19 19 Concepts (i) Hydrogen bond (ii) Effects of hydrogen bonding Hydrogen bond This is a different type of bond. It is restricted to only some molecules containing hydrogen atoms. The force of attraction between the hydrogen atom attached to an electronegative atom of one molecule and an electronegative atom of another molecule is called hydrogen bond. Usually, the electronegative atom is O, N or F. In a molecule, the O, N or F atom has a partial negative charge and then the hydrogen atom which has a very small size has a partial positive charge. This type of bond always involves hydrogen atom and hence the name hydrogen bond. In order to form a hydrogen bond, it is necessary that the electronegative atom should have one or more lone pairs of electrons and a partial negative charge so that there is a force of attraction termed as dipole-dipole interaction. The hydrogen atom which has a partial positive charge tries to find another atom of O,N or F with excess of electrons to share and is attracted to partial negative charge. This forms the basis of hydrogen bond. The hydrogen bond can occur between molecules ( intermolecular ) like HF or within different parts of a single molecule ( intramolecular ) like o-nitro phenol. The hydrogen bond is stronger than van-der-waals bond but weaker than covalent or ionic bond. The hydrogen bond has the bond energy in the range 5 to 30 kj per mole. Following figure shows hydrogen bonding in HF molecules. Figure 13 - Hydrogen bonding in HF

20 Activity 1 Draw the structure of water molecules with hydrogen bonding. Effects of hydrogen bonding Hydrogen bonding has effects on the properties of certain substances. 20 (i) Hydrogen bonding leads to association of molecules which affects the physical state of a substance. For example, HF which should be a gas at room temperature, becomes a liquid due to association of molecules. (ii) Covalent compounds are normally insoluble in water. But compounds like ethanol, lower aldehydes, ketones, though covalent, are soluble in water due to formation of hydrogen bonds with water molecules. (iii) The boiling points of water ( C), HF ( C) and ammonia ( C ) are exceptionally high as compared to other Group 16 hydrides which have no hydrogen bonds. (iv) Intramolecular hydrogen bonding is partly responsible for secondary, tertiary and quaternary structure of proteins and nucleic acids. It also plays an important role in the structure of polymers. Activity 2 - Draw the structure of o nitro phenol and show the intramolecular bonding in it. Check your understanding (i) Hydrogen bonding is known only in the hydrides of O, N and F. Why? (ii)water molecules are joined by hydrogen bonds. Is hydrogen bonding present in ice also?

21 21 References / Figures / Diagrams etc 1) Fig. 1 Periodic table and elements forming different types of bonds www. Smallscalechemistry.colostate.edu/ /chemicalbonding.pdf 2) Fig. 2 Combination of Na and Cl to form Na + and Cl - 3) Fig. 3 Potential energy diagram for NaCl molecule hbase/chemical/bond.html 4) Fig. 4 Potential energy diagram for H 2 molecule hbase/molecule/hmol.html 5) Fig. 5 Bonding in H 2 and Cl 2 molecule 6) Fig. 6 Bonding in H 2 O, NH 3 and CH 4 molecules 7) Fig.7 - Bonding in O 2, N 2 and HCN 8) Fig. 8 Non-polar covalent bond in H 2 and O 2 molecules For H 2 For O ) Fig. 9 Polar covalent bond in HCl and H 2 O molecules For H 2 O - For HCl 10) Fig. 10 Non-polar carbon tetrachloride molecule 11) Fig Formation of coordinate bond 12) Fig. 12 Electron sea model of a metal 13) Fig. 13 Hydrogen bonding in HF fluoride

22

CHAPTER 6 Chemical Bonding

CHAPTER 6 Chemical Bonding CHAPTER 6 Chemical Bonding SECTION 1 Introduction to Chemical Bonding OBJECTIVES 1. Define Chemical bond. 2. Explain why most atoms form chemical bonds. 3. Describe ionic and covalent bonding.. 4. Explain

More information

Chapter 11. Chemical Bonds: The Formation of Compounds from Atoms

Chapter 11. Chemical Bonds: The Formation of Compounds from Atoms Chapter 11 Chemical Bonds: The Formation of Compounds from Atoms 1 11.1 Periodic Trends in atomic properties 11.1 Periodic Trends in atomic properties design of periodic table is based on observing properties

More information

2C Intermolecular forces, structure and properties:

2C Intermolecular forces, structure and properties: Electronegativity and polarity Polar and non-polar bonds: 1) Non-Polar bonds: 2C Intermolecular forces, structure and properties: A covalent bond shares an electron pair: In a hydrogen molecule, the electrons

More information

A mutual electrical attraction between the nuclei and valence electrons of different atoms that binds the atoms together is called a(n)

A mutual electrical attraction between the nuclei and valence electrons of different atoms that binds the atoms together is called a(n) Chemistry I ATOMIC BONDING PRACTICE QUIZ Mr. Scott Select the best answer. 1) A mutual electrical attraction between the nuclei and valence electrons of different atoms that binds the atoms together is

More information

CHEMISTRY BONDING REVIEW

CHEMISTRY BONDING REVIEW Answer the following questions. CHEMISTRY BONDING REVIEW 1. What are the three kinds of bonds which can form between atoms? The three types of Bonds are Covalent, Ionic and Metallic. Name Date Block 2.

More information

Chapter 2 The Chemical Context of Life

Chapter 2 The Chemical Context of Life Chapter 2 The Chemical Context of Life Multiple-Choice Questions 1) About 25 of the 92 natural elements are known to be essential to life. Which four of these 25 elements make up approximately 96% of living

More information

Packet 4: Bonding. Play song: (One of Mrs. Stampfel s favorite songs)

Packet 4: Bonding. Play song:  (One of Mrs. Stampfel s favorite songs) Most atoms are not Packet 4: Bonding Atoms will, or share electrons in order to achieve a stable. Octet means that the atom has in its level. If an atom achieves a stable octet it will have the same electron

More information

In the box below, draw the Lewis electron-dot structure for the compound formed from magnesium and oxygen. [Include any charges or partial charges.

In the box below, draw the Lewis electron-dot structure for the compound formed from magnesium and oxygen. [Include any charges or partial charges. Name: 1) Which molecule is nonpolar and has a symmetrical shape? A) NH3 B) H2O C) HCl D) CH4 7222-1 - Page 1 2) When ammonium chloride crystals are dissolved in water, the temperature of the water decreases.

More information

Bonding Practice Problems

Bonding Practice Problems NAME 1. When compared to H 2 S, H 2 O has a higher 8. Given the Lewis electron-dot diagram: boiling point because H 2 O contains stronger metallic bonds covalent bonds ionic bonds hydrogen bonds 2. Which

More information

Chapter 8 Concepts of Chemical Bonding

Chapter 8 Concepts of Chemical Bonding Chapter 8 Concepts of Chemical Bonding Chemical Bonds Three types: Ionic Electrostatic attraction between ions Covalent Sharing of electrons Metallic Metal atoms bonded to several other atoms Ionic Bonding

More information

AP Chemistry A. Allan Chapter 8 Notes - Bonding: General Concepts

AP Chemistry A. Allan Chapter 8 Notes - Bonding: General Concepts AP Chemistry A. Allan Chapter 8 Notes - Bonding: General Concepts 8.1 Types of Chemical Bonds A. Ionic Bonding 1. Electrons are transferred 2. Metals react with nonmetals 3. Ions paired have lower energy

More information

CHAPTER NOTES CHAPTER 16. Covalent Bonding

CHAPTER NOTES CHAPTER 16. Covalent Bonding CHAPTER NOTES CHAPTER 16 Covalent Bonding Goals : To gain an understanding of : NOTES: 1. Valence electron and electron dot notation. 2. Stable electron configurations. 3. Covalent bonding. 4. Polarity

More information

Chapter 8 Basic Concepts of Chemical Bonding

Chapter 8 Basic Concepts of Chemical Bonding Chapter 8 Basic Concepts of Chemical Bonding Why do TiCl 4 and TiCl 3 have different colors?... different chemical properties?... different physical states? Chemical Bonding and Properties Difference in

More information

Lesmahagow High School CfE Higher Chemistry. Chemical Changes & Structure Structure and Bonding

Lesmahagow High School CfE Higher Chemistry. Chemical Changes & Structure Structure and Bonding Lesmahagow High School CfE Higher Chemistry Chemical Changes & Structure Structure and Bonding Page 1 of 26 No. Learning Outcome Understanding? 1 2 The bonding types of the first twenty elements; metallic

More information

Which substance contains positive ions immersed in a sea of mobile electrons? A) O2(s) B) Cu(s) C) CuO(s) D) SiO2(s)

Which substance contains positive ions immersed in a sea of mobile electrons? A) O2(s) B) Cu(s) C) CuO(s) D) SiO2(s) BONDING MIDTERM REVIEW 7546-1 - Page 1 1) Which substance contains positive ions immersed in a sea of mobile electrons? A) O2(s) B) Cu(s) C) CuO(s) D) SiO2(s) 2) The bond between hydrogen and oxygen in

More information

Chapter 4: Structure and Properties of Ionic and Covalent Compounds

Chapter 4: Structure and Properties of Ionic and Covalent Compounds Chapter 4: Structure and Properties of Ionic and Covalent Compounds 4.1 Chemical Bonding o Chemical Bond - the force of attraction between any two atoms in a compound. o Interactions involving valence

More information

Test 8: Review Questions

Test 8: Review Questions Name: Thursday, February 14, 2008 Test 8: Review Questions 1. Based on bond type, which compound has the highest melting point? 1. CH OH 3. CaCl 3 2 2. C H 4. CCl 6 14 4 2. Which compound contains ionic

More information

Type of Chemical Bonds

Type of Chemical Bonds Type of Chemical Bonds Covalent bond Polar Covalent bond Ionic bond Hydrogen bond Metallic bond Van der Waals bonds. Covalent Bonds Covalent bond: bond in which one or more pairs of electrons are shared

More information

Unit 2 Periodic Behavior and Ionic Bonding

Unit 2 Periodic Behavior and Ionic Bonding Unit 2 Periodic Behavior and Ionic Bonding 6.1 Organizing the Elements I. The Periodic Law A. The physical and chemical properties of the elements are periodic functions of their atomic numbers B. Elements

More information

TRENDS IN ATOMIC PROPERTIES: THE PERIODIC TABLE

TRENDS IN ATOMIC PROPERTIES: THE PERIODIC TABLE TRENDS IN ATOMIC PROPERTIES: THE PERIODIC TABLE Electron configurations determine organization of the periodic table Next properties of elements and their periodic behavior Elemental properties determined

More information

19.1 Bonding and Molecules

19.1 Bonding and Molecules Most of the matter around you and inside of you is in the form of compounds. For example, your body is about 80 percent water. You learned in the last unit that water, H 2 O, is made up of hydrogen and

More information

Matter, Elements, Compounds, Chemical Bonds and Energy

Matter, Elements, Compounds, Chemical Bonds and Energy Science of Kriyayoga IST 111-01, Spring 2005 Matter, Elements, Compounds, Chemical Bonds and Energy In our discussion so far, we have discussed human nervous system and cell biology, in addition to the

More information

Solid Type of solid Type of particle

Solid Type of solid Type of particle QUESTION (2015:3) Complete the table below by stating the type of solid, the type of particle, and the attractive forces between the particles in each solid. Solid Type of solid Type of particle Cu(s)

More information

A pure covalent bond is an equal sharing of shared electron pair(s) in a bond. A polar covalent bond is an unequal sharing.

A pure covalent bond is an equal sharing of shared electron pair(s) in a bond. A polar covalent bond is an unequal sharing. CHAPTER EIGHT BNDING: GENERAL CNCEPT or Review 1. Electronegativity is the ability of an atom in a molecule to attract electrons to itself. Electronegativity is a bonding term. Electron affinity is the

More information

List the 3 main types of subatomic particles and indicate the mass and electrical charge of each.

List the 3 main types of subatomic particles and indicate the mass and electrical charge of each. Basic Chemistry Why do we study chemistry in a biology course? All living organisms are composed of chemicals. To understand life, we must understand the structure, function, and properties of the chemicals

More information

Lewis Dot Notation Ionic Bonds Covalent Bonds Polar Covalent Bonds Lewis Dot Notation Revisited Resonance

Lewis Dot Notation Ionic Bonds Covalent Bonds Polar Covalent Bonds Lewis Dot Notation Revisited Resonance Lewis Dot Notation Ionic Bonds Covalent Bonds Polar Covalent Bonds Lewis Dot Notation Revisited Resonance Lewis Dot notation is a way of describing the outer shell (also called the valence shell) of an

More information

H 2O gas: molecules are very far apart

H 2O gas: molecules are very far apart Non-Covalent Molecular Forces 2/27/06 3/1/06 How does this reaction occur: H 2 O (liquid) H 2 O (gas)? Add energy H 2O gas: molecules are very far apart H 2O liquid: bonding between molecules Use heat

More information

Chapter 8 Basic Concepts of the Chemical Bonding

Chapter 8 Basic Concepts of the Chemical Bonding Chapter 8 Basic Concepts of the Chemical Bonding 1. There are paired and unpaired electrons in the Lewis symbol for a phosphorus atom. (a). 4, 2 (b). 2, 4 (c). 4, 3 (d). 2, 3 Explanation: Read the question

More information

CHEM-UA 127: Advanced General Chemistry I

CHEM-UA 127: Advanced General Chemistry I CHEM-UA 127: Advanced General Chemistry I In this part of the course, we will set aside quantum mechanics briefly and discuss the so-called classical theory of chemical bonding. In our crude classical

More information

S block elements p block elements and chemical bonding -1

S block elements p block elements and chemical bonding -1 S block elements p block elements and chemical bonding -1 1.Group I elements do not occur free (native state) in the nature because a. They are unstable b. Their compounds with other elements are highly

More information

Bonding & Molecular Shape Ron Robertson

Bonding & Molecular Shape Ron Robertson Bonding & Molecular Shape Ron Robertson r2 n:\files\courses\1110-20\2010 possible slides for web\00bondingtrans.doc The Nature of Bonding Types 1. Ionic 2. Covalent 3. Metallic 4. Coordinate covalent Driving

More information

Periodic Table Study Guide

Periodic Table Study Guide Chemistry Periodic Table Name: Period: 1 2 3 4 5 6 7 8 Periodic Table Study Guide Directions: Please use this packet as practice and review. DO NOT try to answer these questions during presentations, take

More information

Bonding Web Practice. Trupia

Bonding Web Practice. Trupia 1. If the electronegativity difference between the elements in compound NaX is 2.1, what is element X? bromine fluorine chlorine oxygen 2. Which bond has the greatest degree of ionic character? H Cl Cl

More information

Name Class Date. What is ionic bonding? What happens to atoms that gain or lose electrons? What kinds of solids are formed from ionic bonds?

Name Class Date. What is ionic bonding? What happens to atoms that gain or lose electrons? What kinds of solids are formed from ionic bonds? CHAPTER 1 2 Ionic Bonds SECTION Chemical Bonding BEFORE YOU READ After you read this section, you should be able to answer these questions: What is ionic bonding? What happens to atoms that gain or lose

More information

Lewis Dot Structures of Atoms and Ions

Lewis Dot Structures of Atoms and Ions Why? The chemical properties of an element are based on the number of electrons in the outer shell of its atoms. We use Lewis dot structures to map these valence electrons in order to identify stable electron

More information

AS Chemistry Revision Notes Unit 1 Atomic Structure, Bonding And Periodicity

AS Chemistry Revision Notes Unit 1 Atomic Structure, Bonding And Periodicity AS Chemistry Revision Notes Unit Atomic Structure, Bonding And Periodicity Atomic Structure. All atoms have a mass number, A (the number of nucleons), and a proton number, Z (the number of protons). 2.

More information

Name Date Class STUDY GUIDE FOR CONTENT MASTERY

Name Date Class STUDY GUIDE FOR CONTENT MASTERY Ionic Compounds Section 8.1 Forming Chemical Bonds In your textbook, read about chemical bonds and formation of ions. Use each of the terms below just once to complete the passage. chemical bond electrons

More information

Test Bank - Chapter 4 Multiple Choice

Test Bank - Chapter 4 Multiple Choice Test Bank - Chapter 4 The questions in the test bank cover the concepts from the lessons in Chapter 4. Select questions from any of the categories that match the content you covered with students. The

More information

CHAPTER 6 REVIEW. Chemical Bonding. Answer the following questions in the space provided.

CHAPTER 6 REVIEW. Chemical Bonding. Answer the following questions in the space provided. Name Date lass APTER 6 REVIEW hemical Bonding SETIN 1 SRT ANSWER Answer the following questions in the space provided. 1. a A chemical bond between atoms results from the attraction between the valence

More information

Chapter 6 Assessment. Name: Class: Date: ID: A. Multiple Choice Identify the choice that best completes the statement or answers the question.

Chapter 6 Assessment. Name: Class: Date: ID: A. Multiple Choice Identify the choice that best completes the statement or answers the question. Name: Class: Date: ID: A Chapter 6 Assessment Multiple Choice Identify the choice that best completes the statement or answers the question. 1. When an atom loses an electron, it forms a(n) a. anion. c.

More information

Bonds. Bond Length. Forces that hold groups of atoms together and make them function as a unit. Bond Energy. Chapter 8. Bonding: General Concepts

Bonds. Bond Length. Forces that hold groups of atoms together and make them function as a unit. Bond Energy. Chapter 8. Bonding: General Concepts Bonds hapter 8 Bonding: General oncepts Forces that hold groups of atoms together and make them function as a unit. Bond Energy Bond Length It is the energy required to break a bond. The distance where

More information

Chapter 6 The Periodic Table

Chapter 6 The Periodic Table Chapter 6 The Periodic Table Organizing the Periodic Table In a grocery store, the products are grouped according to similar characteristics. With a logical classification system, finding and comparing

More information

2.1. The Formation of Ionic and Covalent Bonds. Clues in Naturally Occurring Compounds SECTION. Key Terms

2.1. The Formation of Ionic and Covalent Bonds. Clues in Naturally Occurring Compounds SECTION. Key Terms SETI 2.1 The Formation of Ionic and ovalent Bonds Key Terms octet rule ionic bond ionic compound covalent bond molecular compound single bond double bond triple bond bonding pair lone pair Lewis structure

More information

Ionic and Metallic Bonding

Ionic and Metallic Bonding Ionic and Metallic Bonding BNDING AND INTERACTINS 71 Ions For students using the Foundation edition, assign problems 1, 3 5, 7 12, 14, 15, 18 20 Essential Understanding Ions form when atoms gain or lose

More information

7.4. Using the Bohr Theory KNOW? Using the Bohr Theory to Describe Atoms and Ions

7.4. Using the Bohr Theory KNOW? Using the Bohr Theory to Describe Atoms and Ions 7.4 Using the Bohr Theory LEARNING TIP Models such as Figures 1 to 4, on pages 218 and 219, help you visualize scientific explanations. As you examine Figures 1 to 4, look back and forth between the diagrams

More information

Periodic Table Questions

Periodic Table Questions Periodic Table Questions 1. The elements characterized as nonmetals are located in the periodic table at the (1) far left; (2) bottom; (3) center; (4) top right. 2. An element that is a liquid at STP is

More information

SCPS Chemistry Worksheet Periodicity A. Periodic table 1. Which are metals? Circle your answers: C, Na, F, Cs, Ba, Ni

SCPS Chemistry Worksheet Periodicity A. Periodic table 1. Which are metals? Circle your answers: C, Na, F, Cs, Ba, Ni SCPS Chemistry Worksheet Periodicity A. Periodic table 1. Which are metals? Circle your answers: C, Na, F, Cs, Ba, Ni Which metal in the list above has the most metallic character? Explain. Cesium as the

More information

Chapter 5 TEST: The Periodic Table name

Chapter 5 TEST: The Periodic Table name Chapter 5 TEST: The Periodic Table name HPS # date: Multiple Choice Identify the choice that best completes the statement or answers the question. 1. The order of elements in the periodic table is based

More information

Transition metals: half-filled and fully-filled subshells have extra stability. d 5 s 1 d 10 s 1

Transition metals: half-filled and fully-filled subshells have extra stability. d 5 s 1 d 10 s 1 Unusual electron configurations Transition metals: half-filled and fully-filled subshells have extra stability. d 5 s 1 d 10 s 1 Examples: Cr and Cu Transition metal ions: s and d energy levels change

More information

Organizing the Elements

Organizing the Elements The Periodic Table Organizing the Elements A few elements, such as gold and copper, have been known for thousands of years - since ancient times Yet, only about 13 had been identified by the year 1700.

More information

Sharing of Electrons. Covalent Bonding Chapter 8. Ch. 8 Vocabulary OBJECTIVES. Exothermic Reaction Structural Formula (Ch. 8.3) Polar Covalent Bond

Sharing of Electrons. Covalent Bonding Chapter 8. Ch. 8 Vocabulary OBJECTIVES. Exothermic Reaction Structural Formula (Ch. 8.3) Polar Covalent Bond Ch. 8 Vocabulary 2 Covalent Bonding Chapter 8 Covalent bond Molecule Lewis Structure Sigma bond Pi bond Bond Dissociation Energy Endothermic Reaction Exothermic Reaction Structural Formula (Ch. 8.3) Polar

More information

11/9/2014. Atoms of elements (except Gp.8A) exist in some form of aggregation.

11/9/2014. Atoms of elements (except Gp.8A) exist in some form of aggregation. APTER 8 hemical Bonding Atoms of elements (except Gp.8A) exist in some form of aggregation. All compounds made (by chemical combination) of different elements exist in some form of aggregation of elements.

More information

Atomic Theory and Bonding

Atomic Theory and Bonding Atomic Theory and Bonding Textbook pages 168 183 Section 4.1 Summary Before You Read What do you already know about Bohr diagrams? Record your answer in the lines below. What are atoms? An atom is the

More information

Explain 'Dobereiner's Triads and its drawback.

Explain 'Dobereiner's Triads and its drawback. CLASS: X NCERT (CBSE) Chemistry: For Class 10 Page : 1 Question 1: Explain 'Dobereiner's Triads and its drawback. Dobereiner classified elements into groups of three where the atomic weight of the middle

More information

Chemical bonds between atoms involve electrons.

Chemical bonds between atoms involve electrons. Chapter 6, Section 2 Key Concept: Chemical bonds hold compounds together. BEFORE, you learned Elements combine to form compounds Electrons are located in a cloud around the nucleus Atoms can lose or gain

More information

Sample Exercise 8.1 Magnitudes of Lattice Energies

Sample Exercise 8.1 Magnitudes of Lattice Energies Sample Exercise 8.1 Magnitudes of Lattice Energies Without consulting Table 8.2, arrange the ionic compounds NaF, CsI, and CaO in order of increasing lattice energy. Analyze From the formulas for three

More information

Theme 3: Bonding and Molecular Structure. (Chapter 8)

Theme 3: Bonding and Molecular Structure. (Chapter 8) Theme 3: Bonding and Molecular Structure. (Chapter 8) End of Chapter questions: 5, 7, 9, 12, 15, 18, 23, 27, 28, 32, 33, 39, 43, 46, 67, 77 Chemical reaction valence electrons of atoms rearranged (lost,

More information

Question 4.2: Write Lewis dot symbols for atoms of the following elements: Mg, Na, B, O, N, Br.

Question 4.2: Write Lewis dot symbols for atoms of the following elements: Mg, Na, B, O, N, Br. Question 4.1: Explain the formation of a chemical bond. A chemical bond is defined as an attractive force that holds the constituents (atoms, ions etc.) together in a chemical species. Various theories

More information

6.5 Periodic Variations in Element Properties

6.5 Periodic Variations in Element Properties 324 Chapter 6 Electronic Structure and Periodic Properties of Elements 6.5 Periodic Variations in Element Properties By the end of this section, you will be able to: Describe and explain the observed trends

More information

Molecular Models in Biology

Molecular Models in Biology Molecular Models in Biology Objectives: After this lab a student will be able to: 1) Understand the properties of atoms that give rise to bonds. 2) Understand how and why atoms form ions. 3) Model covalent,

More information

Untitled Document. 1. Which of the following best describes an atom? 4. Which statement best describes the density of an atom s nucleus?

Untitled Document. 1. Which of the following best describes an atom? 4. Which statement best describes the density of an atom s nucleus? Name: Date: 1. Which of the following best describes an atom? A. protons and electrons grouped together in a random pattern B. protons and electrons grouped together in an alternating pattern C. a core

More information

Bonding in Elements and Compounds. Covalent

Bonding in Elements and Compounds. Covalent Bonding in Elements and Compounds Structure of solids, liquids and gases Types of bonding between atoms and molecules Ionic Covalent Metallic Many compounds between metals & nonmetals (salts), e.g. Na,

More information

Sample Exercise 8.1 Magnitudes of Lattice Energies

Sample Exercise 8.1 Magnitudes of Lattice Energies Sample Exercise 8.1 Magnitudes of Lattice Energies Without consulting Table 8.2, arrange the following ionic compounds in order of increasing lattice energy: NaF, CsI, and CaO. Analyze: From the formulas

More information

Trends of the Periodic Table Basics

Trends of the Periodic Table Basics Trends of the Periodic Table Basics Trends are patterns of behaviors that atoms on the periodic table of elements follow. Trends hold true most of the time, but there are exceptions, or blips, where the

More information

Name: Intermolecular Forces Practice Exam Date:

Name: Intermolecular Forces Practice Exam Date: Name: Intermolecular Forces Practice Exam Date: 1. At STP, fluorine is a gas and bromine is a liquid because, compared to fluorine, bromine has 1) stronger covalent bonds 2) stronger intermolecular forces

More information

3/5/2014. iclicker Participation Question: A. MgS < AlP < NaCl B. MgS < NaCl < AlP C. NaCl < AlP < MgS D. NaCl < MgS < AlP

3/5/2014. iclicker Participation Question: A. MgS < AlP < NaCl B. MgS < NaCl < AlP C. NaCl < AlP < MgS D. NaCl < MgS < AlP Today: Ionic Bonding vs. Covalent Bonding Strengths of Covalent Bonds: Bond Energy Diagrams Bond Polarities: Nonpolar Covalent vs. Polar Covalent vs. Ionic Electronegativity Differences Dipole Moments

More information

Trends of the Periodic Table Diary

Trends of the Periodic Table Diary Trends of the Periodic Table Diary Trends are patterns of behaviors that atoms on the periodic table of elements follow. Trends hold true most of the time, but there are exceptions, or blips, where the

More information

Section Activity #1: Fill out the following table for biology s most common elements assuming that each atom is neutrally charged.

Section Activity #1: Fill out the following table for biology s most common elements assuming that each atom is neutrally charged. LS1a Fall 2014 Section Week #1 I. Valence Electrons and Bonding The number of valence (outer shell) electrons in an atom determines how many bonds it can form. Knowing the number of valence electrons present

More information

IONISATION ENERGY CONTENTS

IONISATION ENERGY CONTENTS IONISATION ENERGY IONISATION ENERGY CONTENTS What is Ionisation Energy? Definition of t Ionisation Energy What affects Ionisation Energy? General variation across periods Variation down groups Variation

More information

Laboratory 11: Molecular Compounds and Lewis Structures

Laboratory 11: Molecular Compounds and Lewis Structures Introduction Laboratory 11: Molecular Compounds and Lewis Structures Molecular compounds are formed by sharing electrons between non-metal atoms. A useful theory for understanding the formation of molecular

More information

B) atomic number C) both the solid and the liquid phase D) Au C) Sn, Si, C A) metal C) O, S, Se C) In D) tin D) methane D) bismuth B) Group 2 metal

B) atomic number C) both the solid and the liquid phase D) Au C) Sn, Si, C A) metal C) O, S, Se C) In D) tin D) methane D) bismuth B) Group 2 metal 1. The elements on the Periodic Table are arranged in order of increasing A) atomic mass B) atomic number C) molar mass D) oxidation number 2. Which list of elements consists of a metal, a metalloid, and

More information

Name period AP chemistry Unit 2 worksheet Practice problems

Name period AP chemistry Unit 2 worksheet Practice problems Name period AP chemistry Unit 2 worksheet Practice problems 1. What are the SI units for a. Wavelength of light b. frequency of light c. speed of light Meter hertz (s -1 ) m s -1 (m/s) 2. T/F (correct

More information

Chemistry B2A Chapter 12 Chemical Bonding

Chemistry B2A Chapter 12 Chemical Bonding Chemistry B2A Chapter 12 Chemical Bonding Octet rule-duet role: when undergoing chemical reaction, atoms of group 1A-7A elements tend to gain, lose, or share sufficient electrons to achieve an electron

More information

CHEMICAL BONDING. Session Reasons for bond formation; Tendency to acquire electronic configuration of nearest noble gas.

CHEMICAL BONDING. Session Reasons for bond formation; Tendency to acquire electronic configuration of nearest noble gas. Session-1 CHEMICAL BONDING 1.1 INTRODUCTION; Atoms of most elements (except noble gases) are not able to exist independently. A group of two or more atoms known as molecules have independent existence.

More information

Chemistry Assessment Unit AS 1

Chemistry Assessment Unit AS 1 Centre Number 71 Candidate Number ADVANCED SUBSIDIARY (AS) General Certificate of Education January 2014 Chemistry Assessment Unit AS 1 assessing Basic Concepts in Physical and Inorganic Chemistry AC112

More information

Chapter 2: Atoms, Molecules & Life

Chapter 2: Atoms, Molecules & Life Chapter 2: Atoms, Molecules & Life What Are Atoms? An atom are the smallest unit of matter. Atoms are composed of Electrons = negatively charged particles. Neutrons = particles with no charge (neutral).

More information

M. Prakash Academy Weekly workout 6

M. Prakash Academy Weekly workout 6 M. Prakash Academy Weekly workout 6 Periodic properties Q1. According to modern periodic law the properties of elements repeat at regular intervals when the elements are arranged in order of: (a) decreasing

More information

Ch. 14 The Periodic Table p. 390-406

Ch. 14 The Periodic Table p. 390-406 Name Period PRE-AP 14-1 Development of the Periodic Table Ch. 14 The Periodic Table p. 390-406 Dmitri Mendeleev published the first periodic table in 1869. He organized the elements by atomic mass. He

More information

comparing ionic and covalent bonding.notebook October 16, 2014 Bond strength IMF strength Oct 6 10:43 AM Oct 14 10:06 PM

comparing ionic and covalent bonding.notebook October 16, 2014 Bond strength IMF strength Oct 6 10:43 AM Oct 14 10:06 PM Bond strength IMF strength Oct 6 10:43 AM Oct 14 10:06 PM 1 Oct 14 10:07 PM Oct 14 10:07 PM 2 Oct 14 10:10 PM Oct 14 10:11 PM 3 comparing ionic and covalent bonding.notebook October 16, 2014 Hardness Ionic

More information

Ionic and Covalent Bonds

Ionic and Covalent Bonds Ionic and Covalent Bonds Ionic Bonds Transfer of Electrons When metals bond with nonmetals, electrons are from the metal to the nonmetal The becomes a cation and the becomes an anion. The between the cation

More information

4.5 Physical Properties: Solubility

4.5 Physical Properties: Solubility 4.5 Physical Properties: Solubility When a solid, liquid or gaseous solute is placed in a solvent and it seems to disappear, mix or become part of the solvent, we say that it dissolved. The solute is said

More information

Questions on Chapter 8 Basic Concepts of Chemical Bonding

Questions on Chapter 8 Basic Concepts of Chemical Bonding Questions on Chapter 8 Basic Concepts of Chemical Bonding Circle the Correct Answer: 1) Which ion below has a noble gas electron configuration? A) Li 2+ B) Be 2+ C) B2+ D) C2+ E) N 2-2) Of the ions below,

More information

CHAPTER 12: CHEMICAL BONDING

CHAPTER 12: CHEMICAL BONDING CHAPTER 12: CHEMICAL BONDING Active Learning Questions: 3-9, 11-19, 21-22 End-of-Chapter Problems: 1-36, 41-59, 60(a,b), 61(b,d), 62(a,b), 64-77, 79-89, 92-101, 106-109, 112, 115-119 An American chemist

More information

Q1. Hydrogen chloride (HCl) can be made by the reaction of hydrogen (H 2) with chlorine (Cl 2).

Q1. Hydrogen chloride (HCl) can be made by the reaction of hydrogen (H 2) with chlorine (Cl 2). Q. Hydrogen chloride (HCl) can be made by the reaction of hydrogen (H 2) with chlorine (Cl 2). (a) The diagrams represent molecules of hydrogen and chlorine. Draw a similar diagram to represent a molecule

More information

Assessment Schedule 2015 Chemistry: Demonstrate understanding of bonding, structure, properties and energy changes (91164)

Assessment Schedule 2015 Chemistry: Demonstrate understanding of bonding, structure, properties and energy changes (91164) NCEA Level 2 Chemistry (91164) 2015 page 1 of 7 Assessment Schedule 2015 Chemistry: Demonstrate understanding of bonding, structure, properties and energy changes (91164) Evidence Statement Q Evidence

More information

Unit 3 Study Guide: Electron Configuration & The Periodic Table

Unit 3 Study Guide: Electron Configuration & The Periodic Table Name: Teacher s Name: Class: Block: Date: Unit 3 Study Guide: Electron Configuration & The Periodic Table 1. For each of the following elements, state whether the element is radioactive, synthetic or both.

More information

Worksheet 11 - Periodic Trends

Worksheet 11 - Periodic Trends Worksheet 11 - Periodic Trends A number of physical and chemical properties of elements can be predicted from their position in the Periodic Table. Among these properties are Ionization Energy, Electron

More information

CHAPTER 10: INTERMOLECULAR FORCES: THE UNIQUENESS OF WATER Problems: 10.2, 10.6,10.15-10.33, 10.35-10.40, 10.56-10.60, 10.101-10.

CHAPTER 10: INTERMOLECULAR FORCES: THE UNIQUENESS OF WATER Problems: 10.2, 10.6,10.15-10.33, 10.35-10.40, 10.56-10.60, 10.101-10. CHAPTER 10: INTERMOLECULAR FORCES: THE UNIQUENESS OF WATER Problems: 10.2, 10.6,10.15-10.33, 10.35-10.40, 10.56-10.60, 10.101-10.102 10.1 INTERACTIONS BETWEEN IONS Ion-ion Interactions and Lattice Energy

More information

Directions: Multiple Choice For each of the following questions, choose the answer that best answers the question and place it on your answer sheet.

Directions: Multiple Choice For each of the following questions, choose the answer that best answers the question and place it on your answer sheet. CHEMISTRY TEST: THE PERIODIC TABLE Directions: Multiple Choice For each of the following questions, choose the answer that best answers the question and place it on your answer sheet. 1. Which of the following

More information

Periodic Table Instructional Background Patterns in Element Properties (History): Elements vary widely in their properties, but in an orderly way.

Periodic Table Instructional Background Patterns in Element Properties (History): Elements vary widely in their properties, but in an orderly way. Periodic Table Instructional Background Patterns in Element Properties (History): Elements vary widely in their properties, but in an orderly way. In 1869, the Russian chemist Dmitri Mendeleev produced

More information

100% ionic compounds do not exist but predominantly ionic compounds are formed when metals combine with non-metals.

100% ionic compounds do not exist but predominantly ionic compounds are formed when metals combine with non-metals. 2.21 Ionic Bonding 100% ionic compounds do not exist but predominantly ionic compounds are formed when metals combine with non-metals. Forming ions Metal atoms lose electrons to form +ve ions. Non-metal

More information

ANSWER KEY. Energy Levels, Electrons and IONIC Bonding It s all about the Give and Take!

ANSWER KEY. Energy Levels, Electrons and IONIC Bonding It s all about the Give and Take! ANSWER KEY Energy Levels, Electrons and IONIC Bonding It s all about the Give and Take! From American Chemical Society Middle School Chemistry Unit: Chapter 4 Content Statements: Distinguish the difference

More information

POLAR COVALENT BONDS Ionic compounds form repeating. Covalent compounds form distinct. Consider adding to NaCl(s) vs. H 2 O(s):

POLAR COVALENT BONDS Ionic compounds form repeating. Covalent compounds form distinct. Consider adding to NaCl(s) vs. H 2 O(s): POLAR COVALENT BONDS Ionic compounds form repeating. Covalent compounds form distinct. Consider adding to NaCl(s) vs. H 2 O(s): Sometimes when atoms of two different elements form a bond by sharing an

More information

Chapter 13 - LIQUIDS AND SOLIDS

Chapter 13 - LIQUIDS AND SOLIDS Chapter 13 - LIQUIDS AND SOLIDS Problems to try at end of chapter: Answers in Appendix I: 1,3,5,7b,9b,15,17,23,25,29,31,33,45,49,51,53,61 13.1 Properties of Liquids 1. Liquids take the shape of their container,

More information

Chapter 7 Periodic Properties of the Elements

Chapter 7 Periodic Properties of the Elements Chapter 7 Periodic Properties of the Elements 1. Elements in the modern version of the periodic table are arranged in order of increasing. (a). oxidation number (b). atomic mass (c). average atomic mass

More information

file:///biology Exploring Life/BiologyExploringLife04/

file:///biology Exploring Life/BiologyExploringLife04/ Objectives Compare and contrast ionic bonds and covalent bonds. Describe various ways to represent molecules. Summarize what happens in a chemical reaction. Key Terms ionic bond ion covalent bond molecule

More information

Copyright 2014 Edmentum - All rights reserved. Chemistry Chemical bonding, molecular structure and Gases Blizzard Bag 2014-2015

Copyright 2014 Edmentum - All rights reserved. Chemistry Chemical bonding, molecular structure and Gases Blizzard Bag 2014-2015 Copyright 2014 Edmentum - All rights reserved. Chemistry Chemical bonding, molecular structure and Gases Blizzard Bag 2014-2015 1. Which of the following is a unit of pressure? A. newton-meters per second

More information

CHEMISTRY STANDARDS BASED RUBRIC ATOMIC STRUCTURE AND BONDING

CHEMISTRY STANDARDS BASED RUBRIC ATOMIC STRUCTURE AND BONDING CHEMISTRY STANDARDS BASED RUBRIC ATOMIC STRUCTURE AND BONDING Essential Standard: STUDENTS WILL UNDERSTAND THAT THE PROPERTIES OF MATTER AND THEIR INTERACTIONS ARE A CONSEQUENCE OF THE STRUCTURE OF MATTER,

More information

Chapter 18: How Atoms Bond and Molecules Attract. 18.1: Electron-Dot Structures Help Us to Understand Bonding

Chapter 18: How Atoms Bond and Molecules Attract. 18.1: Electron-Dot Structures Help Us to Understand Bonding Chapter 18: How Atoms Bond and Molecules Attract Name: 18.1: Electron-Dot Structures Help Us to Understand Bonding What are the 3 types of bonds we will be learning about? When 2 atoms meet, which part

More information

How Atoms Interact with Each Other

How Atoms Interact with Each Other Active Chemistry The Periodic Table Active Chemistry The Periodic Table Activity 8 ow Atoms Interact with Each Other GOALS In this activity you will: Relate patterns in ionization energies of elements

More information