The Kronecker Product A Product of the Times


 Reynard King
 1 years ago
 Views:
Transcription
1 The Kronecker Product A Product of the Times Charles Van Loan Department of Computer Science Cornell University
2 The Kronecker Product B C is a block matrix whose ijth block is b ij C. E.g., [ b11 b 12 b 21 b 22 ] C = b 11C b 12 C b 21 C b 22 C Also called the Direct Product or the Tensor Product
3 Every b ij c kl Shows Up [ b11 b 12 b 21 b 22 ] c 11 c 12 c 13 c 21 c 22 c 23 c 31 c 32 c 33 = b 11 c 11 b 11 c 12 b 11 c 13 b 12 c 11 b 12 c 12 b 12 c 13 b 11 c 21 b 11 c 22 b 11 c 23 b 12 c 21 b 12 c 22 b 12 c 23 b 11 c 31 b 11 c 32 b 11 c 33 b 12 c 31 b 12 c 32 b 12 c 33 b 21 c 11 b 21 c 12 b 21 c 13 b 22 c 11 b 22 c 12 b 22 c 13 b 21 c 21 b 21 c 22 b 21 c 23 b 22 c 21 b 22 c 22 b 22 c 23 b 21 c 31 b 21 c 32 b 21 c 33 b 22 c 31 b 22 c 32 b 22 c 33
4 Basic Algebraic Properties (B C) T = B T C T (B C) 1 = B 1 C 1 (B C)(D F) = BD CF B (C D) C B = (B C) D = (Perfect Shuffle) T (B C)(Perfect Shuffle)
5 Reshaping KP Computations Suppose B,C IR n n and x IR n2. The operation y = (B C)x is O(n 4 ): y = kron(b,c)*x The operation Y = CXB T is O(n 3 ): y = reshape(c*reshape(x,n,n)*b,n,n)
6 Talk Outline 1. The 1800 s Origins: Z 2. The 1900 s Heightened Profile: 3. The 2000 s Future:
7 The 1800 s Z
8 Products and Deltas δ ij Leopold Kronecker ( )
9 The Kronecker Delta: Not as Interesting! U T δ ij V = δij κ 2 (δ ij ) = 1 δ ij
10 Acknowledgement H.V. Henderson, F. Pukelsheim, and S.R. Searle (1983). On the History of the Kronecker Product, Linear and Multilinear Algebra 14, Shayle Searle, Professor Emeritus, Cornell University (right)
11 Scandal! H.V. Henderson, F. Pukelsheim, and S.R. Searle (1983). On the History of the Kronecker Product, Linear and Multilinear Algebra 14, Abstract History reveals that what is today called the Kronecker product should be called the Zehfuss Product. This fact is somewhat appreciated by the modern (numerical) linear algebra community: R.J. Horn and C.R. Johnson(1991). Topics in Matrix Analysis, Cambridge University Press, NY, p A.N. Langville and W.J. Stewart (2004). The Kronecker product and stochastic automata networks, J. Computational and Applied Mathematics 167,
12 Let s Get to the Bottom of This! History Reveals That What is Today Called The Kronecker Product Should Be Called The Zehfuss Product
13 Who Was Zeyfuss? Born Obscure professor of mathematics at University of Heidelberg for a while. Then went on to other things. Wrote papers on determinants... G. Zeyfuss (1858). Uber eine gewasse Determinante, Zeitscrift fur Mathematik und Physik 3,
14 Main Result a.k.a. The Z Theorem If B IR m m and C IR n n then det (B C) = det(b) n det(c) m Proof: Noting that I n B and I m C are block diagonal, take determinants in B C = (B I n )(I m C) = P(I n B)P T (I m C) where P is a perfect shuffle permutation.
15 Zehfuss(1858) = a 1 A 1 a 1 B 1 b 1 A 1 b 1 B 1 c 1 A 1 c 1 B 1 d 1 A 1 d 1 B 1 a 1 A 2 a 1 B 2 b 1 A 2 b 1 B 2 c 1 A 2 c 1 B 2 d 1 A 2 d 1 B 2 a 2 A 1 a 2 B 1 b 2 A 1 b 2 B 1 c 2 A 1 c 2 B 1 d 2 A 1 d 2 B 1 a 2 A 2 a 2 B 2 b 2 A 2 b 2 B 2 c 2 A 2 c 2 B 2 d 2 A 2 d 2 B 2 a 3 A 1 a 3 B 1 b 3 A 1 b 3 B 1 c 3 A 1 c 3 B 1 d 3 A 1 d 3 B 1 a 3 A 2 a 3 B 2 b 3 A 2 b 3 B 2 c 3 A 2 c 3 B 2 d 3 A 2 d 3 B 2 a 4 A 1 a 4 B 1 b 4 A 1 b 4 B 1 c 4 A 1 c 4 B 1 d 4 A 1 d 4 B 1 a 4 A 2 a 4 B 2 b 4 A 2 b 4 B 2 c 4 A 2 c 4 B 2 d 4 A 2 d 4 B 2
16 Zehfuss(1858) p = a 1 b 1 c 1 d 1 a 2 b 2 c 2 d 2 a 3 b 3 c 3 d 3 a 4 b 4 c 4 d 4 und P = A 1 B 1 A 2 B 2 2 2,2 = p 2 4 P Mm = p M P m
17 Hensel (1891) Student in Berlin Maintains that Kronecker presented the Ztheorem in his lectures. K. Hensel (1891). Uber die Darstellung der Determinante eines Systems, welsches aus zwei a irt ist, ACTA Mathematica 14,
18 The 1900 s
19 Muir (1911) Attributes the Ztheorem to Zehfuss. Calls det(b C) the Zehfuss determinant. T. Muir (1911). The Theory of Determinants in the Historical Order of Development, Vols 14, Dover, NY.
20 Rutherford(1933) On the Condition that Two Zehfuss Matrices are Equal B C??? = F G If B (m b n b ), C (m c n c ), F (m f n f ), G (m g n g ), then (B C) ij = (F G) ij means B(floor(i/m c ), floor(j/n c )) C(i mod m c,j mod n c ) = F(floor(i/m g ), floor(j/n g )) G(i mod m g,j mod n g )
21 Van Loan(1934) On the Condition that Two Square Zehfuss Matrices are Equal B C??? = F G If then U T b BV b = diag(σ i (B)) U T c CV c = diag(σ i (C)) U T b FV b = α diag(σ i (F)) U T c GV c = 1 α diag(σ i(g))
22 Heightened Profile Beginning in the 60s Some Reasons: Regular Grids Tensoring Low Dimension Ideas Higher Order Statistics Fast Transforms Preconditioners Numerical Multilinear Algebra
23 Regular Grids (M +1)by(N +1) discretization of the Laplacian on a rectangle... A = I M T N + T M I N T 5 =
24 Tensoring Low Dimension Ideas b a f(x) dx n i=1 w i f(x i ) = w T f(x) b1 b2 b3 a 1 a 2 a 3 f(x,y,z) dxdy dz n x i=1 n y j=1 n z k=1 w (x) i w (y) j w (z) k f(x i,y j,z k ) = (w (x) w (y) w (z) ) T f(x y z)
25 Higher Order Statistics E(xx T ) E(x x) E(x x x) Kronecker powers: k A = A A A (k times)
26 Fast Transforms FFT B 4 = F 16 P 16 = B 16 (I 2 B 8 )(I 4 B 4 )(I 8 B 2 ) ω ω 4 ω n = exp( 2πi/n) Haar Wavelet Transform W 2m = [ W m ( 1 1 ) I m ( 1 1 ) ] if m > 1 [ 1 ] if m = 1.
27 Preconditioners If A B C, then B C has potential as a preconditioner. It captures the essence of A. It is easy to solve (B C)z = r. Best Example: A band block Toeplitz with banded Toeplitz blocks. B and C chosen to be band Toeplitz. Nagy, Kamm, Kilmer, Perrone, others
28 Tensor Decompositions/Approximation Given A = A(1:n, 1:n, 1:n, 1:n), find orthogonal Q = [ q 1 q n ] U = [ u 1 u n ] V = [ v 1 v n ] W = [ w 1 w n ] and a core tensor σ so n vec(a) σ ijk,l w i v j u k q l i,j,k,l=1
29 Offspring 1. The Left Kronecker Product 2. The Hadamard Product 3. The TracySingh Product 4. The KhatriRao Product 5. The Generalized Kronecker Product 6. The Symmetric Kronecker Product 7. The BiAlternate Product
30 Left Kronecker Product Definition: ] [ c11 B c 12 B ] B Left [ c11 c 12 c 21 c 22 = c 21 B c 22 B = C B Fact: If B IR m b n b and C IR m c n c then B Left C = Π T m c, m b m c (B C)Π nc, n b n c Perfect Shuffles
31 The Hadamard Product Definition: b 11 b 12 b 21 b 22 Had c 11 c 12 c 21 c 22 = b 11 c 11 b 12 c 12 b 21 c 21 b 22 c 22 b 31 b 32 c 31 c 32 b 31 c 31 b 32 c 32 B Had C = B. C
32 The Hadamard Product Fact: If Ã = B C and B,C IR m n, then B Had C = Ã(1:(m+1):m2, 1:(n+1):n 2 ) E.g., b 11 b 12 b 21 b 22 b 31 b 32 c 11 c 12 c 21 c 22 c 31 c 32 = b 11 c 11 b 11 c 12 b 12 c 11 b 12 c 12 b 11 c 21 b 11 c 22 b 12 c 21 b 12 c 22 b 11 c 31 b 11 c 32 b 12 c 31 b 12 c 32 b 21 c 11 b 21 c 12 b 22 c 11 b 22 c 12 b 21 c 21 b 21 c 22 b 22 c 21 b 22 c 22 b 21 c 31 b 21 c 32 b 22 c 31 b 22 c 32 b 31 c 11 b 31 c 12 b 32 c 11 b 32 c 12 b 31 c 21 b 31 c 22 b 32 c 21 b 32 c 22 b 31 c 31 b 31 c 32 b 32 c 31 b 32 c 32
33 The TracySingh Product Definition: B = B TS C = B 11 B 12 B 21 B 22 B 31 B 32 C = [ C11 C 12 C 21 C 22 B 11 C 11 B 11 C 12 B 12 C 11 B 12 C 12 B 11 C 21 B 11 C 22 B 12 C 21 B 12 C 22 B 21 C 11 B 21 C 12 B 22 C 11 B 22 C 12 B 21 C 21 B 21 C 22 B 22 C 21 B 22 C 22 B 31 C 11 B 31 C 12 B 32 C 11 B 32 C 12 B 31 C 21 B 31 C 22 B 32 C 21 B 32 C 22 ]
34 The KhatriRao Product Definition: B = B 11 B 12 B 21 B 22 C = C 11 C 12 C 21 C 22 B 31 B 32 B KR C = C 31 C 32 B 11 C 11 B 12 C 12 B 21 C 21 B 22 C 22 B 31 C 31 B 32 C 32
35 The KhatriRao Product Fact: B TS C = B KR C is a submatrix of B TS C B 11 C 11 B 11 C 12 B 12 C 11 B 12 C 12 B 11 C 21 B 11 C 22 B 12 C 21 B 12 C 22 B 11 C 31 B 11 C 32 B 12 C 31 B 12 C 32 B 21 C 11 B 21 C 12 B 22 C 11 B 22 C 12 B 21 C 21 B 21 C 22 B 22 C 21 B 22 C 22 B 21 C 31 B 21 C 32 B 22 C 31 B 22 C 32 B 31 C 11 B 31 C 12 B 32 C 11 B 32 C 12 B 31 C 21 B 31 C 22 B 32 C 21 B 32 C 22 B 31 C 31 B 31 C 32 B 32 C 31 B 32 C 32
36 The Generalized Kronecker Product Regalia and Mitra (1989), Kronecker Products, Unitary Matrices, and Signal Processing Applications, SIAM Review, 31, B 1 B 2 B 3 B 4 gen C = B 1 Left C(1, :) B 2 Left C(2, :) B 3 Left C(3, :) B 4 Left C(4, :)]
37 The Generalized Kronecker Product B 1 B 2 B 3 B 4 GEN { C1 C 2 } = { B1 B 2 { B3 B 4 } gen C 1 } gen C 2
38 The Symmetric Kronecker Product Kronecker Product turns matrix equations into vector equations: CXB T = G (B C) vec(x) = vec(g) The symmetric Kronecker product does the same thing for matrix equations with symmetric solutions: 1 2 ( CXB T + BXC T) = G (symmetric) (B sym C) svec(x) = svec(g) where svec x 11 x 12 x 13 x 12 x 22 x 23 x 13 x 23 x 33 = [ ] T x 11 2x12 x 22 2x13 2x23 x 33
39 Symmetric Kronecker Product Fact: If P = α α α α α α α α = 1/ 2 then vec(x) = P svec(x) and B sym C = P T (B C)P
40 BiAlternate Product B C = 1 2 (B C + C B) W. Govaerts, Numerical Methods for Bifurcations of Dynamical Equilibria, SIAM.
41 The 2000 s Three Predictions
42 Big N Will Mean Big d Will Mean KP A = [ a11 a 12 a 21 a 22 ] [ b11 b 12 b 21 b 22 ] [ z11 z 12 z 21 z 22 ] N = 2 d
43 Think Scalar Think Block Think Tensor If for all 1 m i n we have, n i 1,i 2,i 3,i 4 =1 B(m 1,m 2,m 3,m 4 ) = W(i 1,m 1 )Y (i 2,m 2 )X(i 3,m 3 )Z(i 4,m 4 )A(i 1,i 2,i 3,i 4 ) then B = (W Y ) T A(X Z)
44 DataSparse Approximate Factorizations A (B 1 C 1 )(B 2 C 2 )(B 3 C 3 )
45 Det(Log(A)) A (B C)(D E)(F G) log(det(a)) n c log(det(b)) + n b log(det(c)) + n e log(det(d)) + n d log(det(e)) + n g log(det(f)) + n f log(det(g)) See Zehfuss (2058).
The Singular Value Decomposition in Symmetric (Löwdin) Orthogonalization and Data Compression
The Singular Value Decomposition in Symmetric (Löwdin) Orthogonalization and Data Compression The SVD is the most generally applicable of the orthogonaldiagonalorthogonal type matrix decompositions Every
More information1 Sets and Set Notation.
LINEAR ALGEBRA MATH 27.6 SPRING 23 (COHEN) LECTURE NOTES Sets and Set Notation. Definition (Naive Definition of a Set). A set is any collection of objects, called the elements of that set. We will most
More informationPROOFS BY DESCENT KEITH CONRAD
PROOFS BY DESCENT KEITH CONRAD As ordinary methods, such as are found in the books, are inadequate to proving such difficult propositions, I discovered at last a most singular method... that I called the
More informationGrouptheoretic Algorithms for Matrix Multiplication
Grouptheoretic Algorithms for Matrix Multiplication Henry Cohn Robert Kleinberg Balázs Szegedy Christopher Umans Abstract We further develop the grouptheoretic approach to fast matrix multiplication
More information26. Determinants I. 1. Prehistory
26. Determinants I 26.1 Prehistory 26.2 Definitions 26.3 Uniqueness and other properties 26.4 Existence Both as a careful review of a more pedestrian viewpoint, and as a transition to a coordinateindependent
More informationOrthogonal Bases and the QR Algorithm
Orthogonal Bases and the QR Algorithm Orthogonal Bases by Peter J Olver University of Minnesota Throughout, we work in the Euclidean vector space V = R n, the space of column vectors with n real entries
More informationSome Applications of Laplace Eigenvalues of Graphs
Some Applications of Laplace Eigenvalues of Graphs Bojan MOHAR Department of Mathematics University of Ljubljana Jadranska 19 1111 Ljubljana, Slovenia Notes taken by Martin Juvan Abstract In the last decade
More informationAn Iteration Method for the Solution of the Eigenvalue Problem of Linear Differential and Integral Operators 1
Journal of Research of the National Bureau of Standards Vol. 45, No. 4, October 95 Research Paper 233 An Iteration Method for the Solution of the Eigenvalue Problem of Linear Differential and Integral
More informationSymmetric planar non collinear relative equilibria for the Lennard Jones potential 3 body problem with two equal masses
Monografías de la Real Academia de Ciencias de Zaragoza. 25: 93 114, (2004). Symmetric planar non collinear relative equilibria for the Lennard Jones potential 3 body problem with two equal masses M. Corbera,
More informationMarkov Chains. Chapter 11. 11.1 Introduction. Specifying a Markov Chain
Chapter 11 Markov Chains 11.1 Introduction Most of our study of probability has dealt with independent trials processes. These processes are the basis of classical probability theory and much of statistics.
More informationSpaceTime Approach to NonRelativistic Quantum Mechanics
R. P. Feynman, Rev. of Mod. Phys., 20, 367 1948 SpaceTime Approach to NonRelativistic Quantum Mechanics R.P. Feynman Cornell University, Ithaca, New York Reprinted in Quantum Electrodynamics, edited
More informationFrom Sparse Solutions of Systems of Equations to Sparse Modeling of Signals and Images
SIAM REVIEW Vol. 51,No. 1,pp. 34 81 c 2009 Society for Industrial and Applied Mathematics From Sparse Solutions of Systems of Equations to Sparse Modeling of Signals and Images Alfred M. Bruckstein David
More informationA Study on SMOtype Decomposition Methods for Support Vector Machines
1 A Study on SMOtype Decomposition Methods for Support Vector Machines PaiHsuen Chen, RongEn Fan, and ChihJen Lin Department of Computer Science, National Taiwan University, Taipei 106, Taiwan cjlin@csie.ntu.edu.tw
More informationTHE KADISONSINGER PROBLEM IN MATHEMATICS AND ENGINEERING: A DETAILED ACCOUNT
THE ADISONSINGER PROBLEM IN MATHEMATICS AND ENGINEERING: A DETAILED ACCOUNT PETER G. CASAZZA, MATTHEW FICUS, JANET C. TREMAIN, ERIC WEBER Abstract. We will show that the famous, intractible 1959 adisonsinger
More informationScattered Node Compact Finite DifferenceType Formulas Generated from Radial Basis Functions
Scattered Node Compact Finite DifferenceType Formulas Generated from Radial Basis Functions Grady B. Wright a,,, Bengt Fornberg b,2 a Department of Mathematics, University of Utah, Salt Lake City, UT
More informationElements of Abstract Group Theory
Chapter 2 Elements of Abstract Group Theory Mathematics is a game played according to certain simple rules with meaningless marks on paper. David Hilbert The importance of symmetry in physics, and for
More informationLearning over Sets using Kernel Principal Angles
Journal of Machine Learning Research 4 (2003) 913931 Submitted 3/03; Published 10/03 Learning over Sets using Kernel Principal Angles Lior Wolf Amnon Shashua School of Engineering and Computer Science
More informationAlgebraic Number Theory. J.S. Milne
Algebraic Number Theory J.S. Milne Version 3.06 May 28, 2014 An algebraic number field is a finite extension of Q; an algebraic number is an element of an algebraic number field. Algebraic number theory
More informationSimultaneous tridiagonalization of two symmetric matrices
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING Int. J. Numer. Meth. Engng 2003; 57:1643 1660 (DOI: 10.1002/nme.733) Simultaneous tridiagonalization of two symmetric matrices Seamus D. Garvey
More informationHow Bad is Forming Your Own Opinion?
How Bad is Forming Your Own Opinion? David Bindel Jon Kleinberg Sigal Oren August, 0 Abstract A longstanding line of work in economic theory has studied models by which a group of people in a social network,
More informationAn Introductory Course in Elementary Number Theory. Wissam Raji
An Introductory Course in Elementary Number Theory Wissam Raji 2 Preface These notes serve as course notes for an undergraduate course in number theory. Most if not all universities worldwide offer introductory
More informationA Perfect Example for The BFGS Method
A Perfect Example for The BFGS Method YuHong Dai Abstract Consider the BFGS quasinewton method applied to a general nonconvex function that has continuous second derivatives. This paper aims to construct
More informationThe Backpropagation Algorithm
7 The Backpropagation Algorithm 7. Learning as gradient descent We saw in the last chapter that multilayered networks are capable of computing a wider range of Boolean functions than networks with a single
More informationU.C. Berkeley CS276: Cryptography Handout 0.1 Luca Trevisan January, 2009. Notes on Algebra
U.C. Berkeley CS276: Cryptography Handout 0.1 Luca Trevisan January, 2009 Notes on Algebra These notes contain as little theory as possible, and most results are stated without proof. Any introductory
More informationSUMMING CURIOUS, SLOWLY CONVERGENT, HARMONIC SUBSERIES
SUMMING CURIOUS, SLOWLY CONVERGENT, HARMONIC SUBSERIES THOMAS SCHMELZER AND ROBERT BAILLIE 1 Abstract The harmonic series diverges But if we delete from it all terms whose denominators contain any string
More informationIntroduction to Group Theory with Applications in Molecular and Solid State Physics
Introduction to Group Theory with Applications in Molecular and Solid State Physics Karsten Horn FritzHaberInstitut der MaxPlanckGesellschaft 3 84 3, email horn@fhiberlin.mpg.de Symmetry  old concept,
More informationA Course on Number Theory. Peter J. Cameron
A Course on Number Theory Peter J. Cameron ii Preface These are the notes of the course MTH6128, Number Theory, which I taught at Queen Mary, University of London, in the spring semester of 2009. There
More information2 Polynomials over a field
2 Polynomials over a field A polynomial over a field F is a sequence (a 0, a 1, a 2,, a n, ) where a i F i with a i = 0 from some point on a i is called the i th coefficient of f We define three special
More informationFoundations of Data Science 1
Foundations of Data Science John Hopcroft Ravindran Kannan Version /4/204 These notes are a first draft of a book being written by Hopcroft and Kannan and in many places are incomplete. However, the notes
More informationFoundations of Data Science 1
Foundations of Data Science John Hopcroft Ravindran Kannan Version 2/8/204 These notes are a first draft of a book being written by Hopcroft and Kannan and in many places are incomplete. However, the notes
More information