Chapter 12 IR Spectroscopy

Size: px
Start display at page:

Download "Chapter 12 IR Spectroscopy"

Transcription

1 Chempocalypse Now! Chapter 12 IR Spectroscopy Page 1 Chapter 12 IR Spectroscopy Topic A3 from the IB HL Chemistry Curriculum A.3.1 Assessment Statement Obj Teacher s Notes Describe the operating principles of a doublebeam IR spectrometer. 2 A schematic diagram of a simple double-beam spectrometer is sufficient. A.3.2 Describe how information from an IR spectrum can be used to identify bonds. 2 A.3.3 Explain what occurs at a molecular level during the absorption of IR radiation by molecules. 3 H 2 O, CH 2, SO 2, and CO 2 are suitable examples. Stress the change in bond polarity as the vibrations (stretching and bending) occur. A.3.4 Analyze IR spectra of organic compounds. 3 Students will be assessed using examples containing up to three functional groups. The Chemistry data booklet contains a table of IR absorptions for some bonds in organic molecules. Students should realize that IR absorption data can be used to identify the bonds present, but not always the functional groups present. The natural frequency of a chemical bond A chemical bond can be thought of as a spring. Each bond vibrates and bends at a natural frequency which depends on the bond strength and the masses of the atoms. Light atoms, for example, vibrate at higher frequencies than heavier atoms and multiple bonds vibrate at higher frequencies than single bonds. Simple diatomic molecules such as HCl, HBr, and HI, can only vibrate when the bond stretches. The HCl bond has the highest frequency of these three as it has the largest bond energy and the halogen atom with the smallest relative atomic mass. The stretching of the bond can be seen at the right in Figure (a). In more complex molecules, different types of vibration can occur, such as bending, so that a complex range of frequencies is present. Bending of a bond can be seen at the right in Figure (b). Using infrared radiation to excite molecules The energy needed to excite the bonds in a molecule to make them vibrate with greater amplitude, occurs in the IR region. A bond will only interact with the electromagnetic infrared radiation, however, if it is polar. The presence of separate areas of partial positive and negative charge in a molecule allows the electric field component of the electromagnetic wave to excite the vibrational energy of the molecule. The change in the vibrational energy produces a corresponding change in the dipole moment of the molecule. The intensity of the absorptions depends on the polarity of the bond. Symmetrical non-polar bonds in N N and O=O do not absorb radiation, as they cannot interact with an electric field.

2 Chempocalypse Now! Chapter 12 IR Spectroscopy Page 2 Stretching and bending in a polyatomic molecule In a polyatomic molecule such as water, it is more correct to consider the molecule as a whole stretching and bending rather than the individual bonds. Water, for example, can vibrate at three fundamental frequencies as shown below. As each of the three modes of vibration results in a change in dipole of the molecule, they can be detected with IR spectroscopy. For a symmetrical linear molecule such as carbon dioxide, there are also three modes of vibration. However, the symmetric stretch is IR inactive as it produces no change in dipole moment. The dipoles of both C=O bonds are equal and opposite throughout the vibration. Exercise: Draw the structure of sulfur dioxide molecule and identify its possible modes of vibration. Predict which of these is likely to absorb IR radiation.

3 Chempocalypse Now! Chapter 12 IR Spectroscopy Page 3 The double-beam IR spectrometer Many spectroscopic methods use a double-beam method in which one beam is passed through the sample under investigation and the other through a reference sample. In the double-beam IR spectrometer, IR radiation from a heated filament is split into two parallel beams. Radiation is absorbed by the sample when it has the same frequency as any of the natural bond frequencies in the sample molecules. Other frequencies simply pass through the sample. The sample and reference beams are analyzed and differences in the intensities of the two beams measured by the detector at each wavenumber and fed into the recorder, which produces a spectrum. When the radiation is not absorbed by the sample, the transmittance is 100% but when radiation is absorbed the transmittance falls to lower values. The baseline of the spectrum corresponds to 100% transmittance and signals are recorded when the transmittance falls as the radiation is absorbed. The purpose of the reference is to eliminate absorptions caused by carbon dioxide and water vapor in the air, or absorptions from the bonds in the solvent used.

4 Chempocalypse Now! Chapter 12 IR Spectroscopy Page 4 Matching wavenumbers with bonds The absorption of particular wavenumbers of IR radiation helps the chemist to identify the bonds in a molecule. The precise position of the absorption depends on the environment of the bond, so a range of wavenumbers is used to identify different bonds. Characteristic infrared absorption bands are shown in the table below. Some bonds can also be identified by the distinctive shapes of their signals: the O H bond gives a broad signal and the C=O bond gives a sharp signal. Exercise: A molecule absorbs IR at a wavenumber of 1720 cm 1. Which functional group could account for this absorption? I. aldehydes II. esters III. ethers A. I only B. I and II C. I, II, and III D. None of these As hydrogen bonding broadens the absorptions, its presence can also be detected. For example, hydrogen bonding between hydroxyl groups changes the O H vibration; it makes the absorption much broader and shifts it to a lower frequency. Molecules with several bonds can vibrate in many different ways and with many different frequencies. The complex pattern can be used as a fingerprint to be matched against the recorded spectra of known compounds in a database. A comparison of the spectrum of a sample with that of a pure compound can also be used as a test of purity. On the right is the IR spectrum of heroin, compared with that of an unknown sample. The near perfect match indicates that the sample contains a high percentage of heroin. Spectral analysis such as this can identify unknown compounds in mixtures or from samples taken from clothing or equipment. The technique is widely used in forensic science.

5 Chempocalypse Now! Chapter 12 IR Spectroscopy Page 5 Consider the spectrum of propanone, seen below. The base line at the top corresponds to 100% transmittance and the key features are the troughs which occur at the natural frequencies of the bonds present in the molecule. The absorption at just below 1800 cm 1 shows the presence of the C=O bond and the absorption near 3000 cm 1 is due to the presence of the C H bond. The more polar C=O bond produces the more intense absorption. The presence of the C H bond can again been seen near 3000 cm 1 in the spectrum of ethanol, seen below. The broad peak at just below 3400 cm 1 shows the presence of hydrogen bonding which is due to the hydroxyl (OH) group.

6 Chempocalypse Now! Chapter 12 IR Spectroscopy Page 6 Exercises: A bond has an IR absorption of 2100 cm 1. What is the wavelength of the radiation and the natural frequency of the bond? State what occurs at the molecular level when infrared radiation is absorbed. Cyclohexane and hex-i-ene are isomers. Suggest how you could use infrared spectroscopy to distinguish between the two compounds. Include diagrams. The intoximeter, used by the police to test the alcohol levels in the breath of drivers, measures the absorbance at 2900 cm 1. ldentify the bond which causes ethanol to absorb at this wavenumber. A molecule has the molecular formula C 2 H 6 O. The infrared spectrum shows an absorption band at cm 1, but no absorption bands above 3000 cm 1. Deduce its structure.

7 Chempocalypse Now! Chapter 12 IR Spectroscopy Page 7

8 Chempocalypse Now! Chapter 12 IR Spectroscopy Page 8

9 Chempocalypse Now! Chapter 12 IR Spectroscopy Page 9

10 Chempocalypse Now! Chapter 12 IR Spectroscopy Page 10

11 Chempocalypse Now! Chapter 12 IR Spectroscopy Page 11 (This question continues on the next page.)

12 Chempocalypse Now! Chapter 12 IR Spectroscopy Page 12

Symmetric Stretch: allows molecule to move through space

Symmetric Stretch: allows molecule to move through space BACKGROUND INFORMATION Infrared Spectroscopy Before introducing the subject of IR spectroscopy, we must first review some aspects of the electromagnetic spectrum. The electromagnetic spectrum is composed

More information

Infrared Spectroscopy 紅 外 線 光 譜 儀

Infrared Spectroscopy 紅 外 線 光 譜 儀 Infrared Spectroscopy 紅 外 線 光 譜 儀 Introduction Spectroscopy is an analytical technique which helps determine structure. It destroys little or no sample (nondestructive method). The amount of light absorbed

More information

The Fundamentals of Infrared Spectroscopy. Joe Van Gompel, PhD

The Fundamentals of Infrared Spectroscopy. Joe Van Gompel, PhD TN-100 The Fundamentals of Infrared Spectroscopy The Principles of Infrared Spectroscopy Joe Van Gompel, PhD Spectroscopy is the study of the interaction of electromagnetic radiation with matter. The electromagnetic

More information

ANALYSIS OF ASPIRIN INFRARED (IR) SPECTROSCOPY AND MELTING POINT DETERMINATION

ANALYSIS OF ASPIRIN INFRARED (IR) SPECTROSCOPY AND MELTING POINT DETERMINATION Chem 306 Section (Circle) M Tu W Th Name Partners Date ANALYSIS OF ASPIRIN INFRARED (IR) SPECTROSCOPY AND MELTING POINT DETERMINATION Materials: prepared acetylsalicylic acid (aspirin), stockroom samples

More information

INFRARED SPECTROSCOPY (IR)

INFRARED SPECTROSCOPY (IR) INFRARED SPECTROSCOPY (IR) Theory and Interpretation of IR spectra ASSIGNED READINGS Introduction to technique 25 (p. 833-834 in lab textbook) Uses of the Infrared Spectrum (p. 847-853) Look over pages

More information

0 10 20 30 40 50 60 70 m/z

0 10 20 30 40 50 60 70 m/z Mass spectrum for the ionization of acetone MS of Acetone + Relative Abundance CH 3 H 3 C O + M 15 (loss of methyl) + O H 3 C CH 3 43 58 0 10 20 30 40 50 60 70 m/z It is difficult to identify the ions

More information

Infrared Spectroscopy: Theory

Infrared Spectroscopy: Theory u Chapter 15 Infrared Spectroscopy: Theory An important tool of the organic chemist is Infrared Spectroscopy, or IR. IR spectra are acquired on a special instrument, called an IR spectrometer. IR is used

More information

Determining the Structure of an Organic Compound

Determining the Structure of an Organic Compound Determining the Structure of an Organic Compound The analysis of the outcome of a reaction requires that we know the full structure of the products as well as the reactants In the 19 th and early 20 th

More information

DETERMINACIÓN DE ESTRUCTURAS ORGÁNICAS (ORGANIC SPECTROSCOPY) IR SPECTROSCOPY

DETERMINACIÓN DE ESTRUCTURAS ORGÁNICAS (ORGANIC SPECTROSCOPY) IR SPECTROSCOPY DETERMINACIÓN DE ESTRUCTURAS ORGÁNICAS (ORGANIC SPECTROSCOPY) IR SPECTROSCOPY Hermenegildo García Gómez Departamento de Química Instituto de Tecnología Química Universidad Politécnica de Valencia 46022

More information

electron does not become part of the compound; one electron goes in but two electrons come out.

electron does not become part of the compound; one electron goes in but two electrons come out. Characterization Techniques for Organic Compounds. When we run a reaction in the laboratory or when we isolate a compound from nature, one of our first tasks is to identify the compound that we have obtained.

More information

Application Note AN4

Application Note AN4 TAKING INVENTIVE STEPS IN INFRARED. MINIATURE INFRARED GAS SENSORS GOLD SERIES UK Patent App. No. 2372099A USA Patent App. No. 09/783,711 World Patents Pending INFRARED SPECTROSCOPY Application Note AN4

More information

Organic Chemistry Tenth Edition

Organic Chemistry Tenth Edition Organic Chemistry Tenth Edition T. W. Graham Solomons Craig B. Fryhle Welcome to CHM 22 Organic Chemisty II Chapters 2 (IR), 9, 3-20. Chapter 2 and Chapter 9 Spectroscopy (interaction of molecule with

More information

Infrared Spectroscopy

Infrared Spectroscopy Infrared Spectroscopy 1 Chap 12 Reactions will often give a mixture of products: OH H 2 SO 4 + Major Minor How would the chemist determine which product was formed? Both are cyclopentenes; they are isomers.

More information

13C NMR Spectroscopy

13C NMR Spectroscopy 13 C NMR Spectroscopy Introduction Nuclear magnetic resonance spectroscopy (NMR) is the most powerful tool available for structural determination. A nucleus with an odd number of protons, an odd number

More information

Experiment 11. Infrared Spectroscopy

Experiment 11. Infrared Spectroscopy Chem 22 Spring 2010 Experiment 11 Infrared Spectroscopy Pre-lab preparation. (1) In Ch 5 and 12 of the text you will find examples of the most common functional groups in organic molecules. In your notebook,

More information

where h = 6.62 10-34 J s

where h = 6.62 10-34 J s Electromagnetic Spectrum: Refer to Figure 12.1 Molecular Spectroscopy: Absorption of electromagnetic radiation: The absorptions and emissions of electromagnetic radiation are related molecular-level phenomena

More information

12.4 FUNCTIONAL-GROUP INFRARED ABSORPTIONS

12.4 FUNCTIONAL-GROUP INFRARED ABSORPTIONS 552 APTER 12 INTRODUTION TO SPETROSOPY. INFRARED SPETROSOPY AND MASS SPETROMETRY PROBLEM 12.9 Which of the following vibrations should be infrared-active and which should be infrared-inactive (or nearly

More information

for excitation to occur, there must be an exact match between the frequency of the applied radiation and the frequency of the vibration

for excitation to occur, there must be an exact match between the frequency of the applied radiation and the frequency of the vibration ! = 1 2"c k (m + M) m M wavenumbers! =!/c = 1/" wavelength frequency! units: cm 1 for excitation to occur, there must be an exact match between the frequency of the applied radiation and the frequency

More information

Chapter 13 Spectroscopy NMR, IR, MS, UV-Vis

Chapter 13 Spectroscopy NMR, IR, MS, UV-Vis Chapter 13 Spectroscopy NMR, IR, MS, UV-Vis Main points of the chapter 1. Hydrogen Nuclear Magnetic Resonance a. Splitting or coupling (what s next to what) b. Chemical shifts (what type is it) c. Integration

More information

CHEM 51LB EXP 1 SPECTROSCOPIC METHODS: INFRARED AND NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY

CHEM 51LB EXP 1 SPECTROSCOPIC METHODS: INFRARED AND NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY CHEM 51LB EXP 1 SPECTRSCPIC METHDS: INFRARED AND NUCLEAR MAGNETIC RESNANCE SPECTRSCPY REACTINS: None TECHNIQUES: IR Spectroscopy, NMR Spectroscopy Infrared (IR) and nuclear magnetic resonance (NMR) spectroscopy

More information

IR Applied to Isomer Analysis

IR Applied to Isomer Analysis DiscovIR-LC TM Application Note 025 April 2008 Deposition and Detection System IR Applied to Isomer Analysis Infrared spectra provide valuable information about local configurations of atoms in molecules.

More information

CHE334 Identification of an Unknown Compound By NMR/IR/MS

CHE334 Identification of an Unknown Compound By NMR/IR/MS CHE334 Identification of an Unknown Compound By NMR/IR/MS Purpose The object of this experiment is to determine the structure of an unknown compound using IR, 1 H-NMR, 13 C-NMR and Mass spectroscopy. Infrared

More information

Ultraviolet Spectroscopy

Ultraviolet Spectroscopy Ultraviolet Spectroscopy The wavelength of UV and visible light are substantially shorter than the wavelength of infrared radiation. The UV spectrum ranges from 100 to 400 nm. A UV-Vis spectrophotometer

More information

Organic Spectroscopy. UV - Ultraviolet-Visible Spectroscopy. !! 200-800 nm. Methods for structure determination of organic compounds:

Organic Spectroscopy. UV - Ultraviolet-Visible Spectroscopy. !! 200-800 nm. Methods for structure determination of organic compounds: Organic Spectroscopy Methods for structure determination of organic compounds: X-ray rystallography rystall structures Mass spectroscopy Molecular formula -----------------------------------------------------------------------------

More information

For example: (Example is from page 50 of the Thinkbook)

For example: (Example is from page 50 of the Thinkbook) SOLVING COMBINED SPECTROSCOPY PROBLEMS: Lecture Supplement: page 50-53 in Thinkbook CFQ s and PP s: page 216 241 in Thinkbook Introduction: The structure of an unknown molecule can be determined using

More information

Determination of Molecular Structure by MOLECULAR SPECTROSCOPY

Determination of Molecular Structure by MOLECULAR SPECTROSCOPY Determination of Molecular Structure by MOLEULAR SPETROSOPY hemistry 3 B.Z. Shakhashiri Fall 29 Much of what we know about molecular structure has been learned by observing and analyzing how electromagnetic

More information

Suggested solutions for Chapter 3

Suggested solutions for Chapter 3 s for Chapter PRBLEM Assuming that the molecular ion is the base peak (00% abundance) what peaks would appear in the mass spectrum of each of these molecules: (a) C5Br (b) C60 (c) C64Br In cases (a) and

More information

HOMEWORK PROBLEMS: IR SPECTROSCOPY AND 13C NMR. The peak at 1720 indicates a C=O bond (carbonyl). One possibility is acetone:

HOMEWORK PROBLEMS: IR SPECTROSCOPY AND 13C NMR. The peak at 1720 indicates a C=O bond (carbonyl). One possibility is acetone: HMEWRK PRBLEMS: IR SPECTRSCPY AND 13C NMR 1. You find a bottle on the shelf only labeled C 3 H 6. You take an IR spectrum of the compound and find major peaks at 2950, 1720, and 1400 cm -1. Draw a molecule

More information

2. Molecular stucture/basic

2. Molecular stucture/basic 2. Molecular stucture/basic spectroscopy The electromagnetic spectrum Spectral region for atomic and molecular spectroscopy E. Hecht (2nd Ed.) Optics, Addison-Wesley Publishing Company,1987 Spectral regions

More information

MOLECULAR REPRESENTATIONS AND INFRARED SPECTROSCOPY

MOLECULAR REPRESENTATIONS AND INFRARED SPECTROSCOPY MLEULAR REPRESENTATINS AND INFRARED SPETRSPY A STUDENT SULD BE ABLE T: 1. Given a Lewis (dash or dot), condensed, bond-line, or wedge formula of a compound draw the other representations. 2. Give examples

More information

Proton Nuclear Magnetic Resonance Spectroscopy

Proton Nuclear Magnetic Resonance Spectroscopy Proton Nuclear Magnetic Resonance Spectroscopy Introduction: The NMR Spectrum serves as a great resource in determining the structure of an organic compound by revealing the hydrogen and carbon skeleton.

More information

Solving Spectroscopy Problems

Solving Spectroscopy Problems Solving Spectroscopy Problems The following is a detailed summary on how to solve spectroscopy problems, key terms are highlighted in bold and the definitions are from the illustrated glossary on Dr. Hardinger

More information

Introduction to Fourier Transform Infrared Spectrometry

Introduction to Fourier Transform Infrared Spectrometry Introduction to Fourier Transform Infrared Spectrometry What is FT-IR? I N T R O D U C T I O N FT-IR stands for Fourier Transform InfraRed, the preferred method of infrared spectroscopy. In infrared spectroscopy,

More information

NMR and other Instrumental Techniques in Chemistry and the proposed National Curriculum.

NMR and other Instrumental Techniques in Chemistry and the proposed National Curriculum. NMR and other Instrumental Techniques in Chemistry and the proposed National Curriculum. Dr. John Jackowski Chair of Science, Head of Chemistry Scotch College Melbourne john.jackowski@scotch.vic.edu.au

More information

passing through (Y-axis). The peaks are those shown at frequencies when less than

passing through (Y-axis). The peaks are those shown at frequencies when less than Infrared Spectroscopy used to analyze the presence of functional groups (bond types) in organic molecules The process for this analysis is two-fold: 1. Accurate analysis of infrared spectra to determine

More information

Organic Spectroscopy

Organic Spectroscopy 1 Organic Spectroscopy Second Year, Michaelmas term, 8 lectures: Dr TDW Claridge & Prof BG Davis Lectures 1 4 highlight the importance of spectroscopic methods in the structural elucidation of organic

More information

Nuclear Magnetic Resonance Spectroscopy

Nuclear Magnetic Resonance Spectroscopy Nuclear Magnetic Resonance Spectroscopy Nuclear magnetic resonance spectroscopy is a powerful analytical technique used to characterize organic molecules by identifying carbonhydrogen frameworks within

More information

CHEM 51LB: EXPERIMENT 5 SPECTROSCOPIC METHODS: INFRARED AND NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY

CHEM 51LB: EXPERIMENT 5 SPECTROSCOPIC METHODS: INFRARED AND NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY CHEM 51LB: EXPERIMENT 5 SPECTROSCOPIC METHODS: INFRARED AND NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY REACTIONS: None TECHNIQUES: IR, NMR Infrared (IR) and nuclear magnetic resonance (NMR) spectroscopy are

More information

CHAPTER 13 MOLECULAR SPECTROSCOPY

CHAPTER 13 MOLECULAR SPECTROSCOPY CHAPTER 13 MOLECULAR SPECTROSCOPY Our most detailed knowledge of atomic and molecular structure has been obtained from spectroscopy study of the emission, absorption and scattering of electromagnetic radiation

More information

QUANTITATIVE INFRARED SPECTROSCOPY. Willard et. al. Instrumental Methods of Analysis, 7th edition, Wadsworth Publishing Co., Belmont, CA 1988, Ch 11.

QUANTITATIVE INFRARED SPECTROSCOPY. Willard et. al. Instrumental Methods of Analysis, 7th edition, Wadsworth Publishing Co., Belmont, CA 1988, Ch 11. QUANTITATIVE INFRARED SPECTROSCOPY Objective: The objectives of this experiment are: (1) to learn proper sample handling procedures for acquiring infrared spectra. (2) to determine the percentage composition

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Exam Name 1) Which compound would be expected to show intense IR absorption at 3300 cm-1? A) butane B) CH3CH2C CH C)CH3C CCH3 D) but-1-ene 1) 2) Which compound would be expected to show intense IR absorption

More information

NMR SPECTROSCOPY A N I N T R O D U C T I O N T O... Self-study booklet NUCLEAR MAGNETIC RESONANCE. 4 3 2 1 0 δ PUBLISHING

NMR SPECTROSCOPY A N I N T R O D U C T I O N T O... Self-study booklet NUCLEAR MAGNETIC RESONANCE. 4 3 2 1 0 δ PUBLISHING A N I N T R O D U T I O N T O... NMR SPETROSOPY NULEAR MAGNETI RESONANE 4 3 1 0 δ Self-study booklet PUBLISING NMR Spectroscopy NULEAR MAGNETI RESONANE SPETROSOPY Origin of Spectra Theory All nuclei possess

More information

6. 3. Molecular spectroscopy. Unit 6: Physical chemistry of spectroscopy, surfaces and chemical and phase equilibria

6. 3. Molecular spectroscopy. Unit 6: Physical chemistry of spectroscopy, surfaces and chemical and phase equilibria 6. 3 Molecular spectroscopy Spectroscopy in its various forms is a technique with wide applications across many disciplines. From qualitative analysis in toxicology through to quantitative measurements

More information

EXPERIMENT # 17 CHEMICAL BONDING AND MOLECULAR POLARITY

EXPERIMENT # 17 CHEMICAL BONDING AND MOLECULAR POLARITY EXPERIMENT # 17 CHEMICAL BONDING AND MOLECULAR POLARITY Purpose: 1. To distinguish between different types of chemical bonds. 2. To predict the polarity of some common molecules from a knowledge of bond

More information

F322: Chains, Energy and Resources 2.2.4 Alcohols

F322: Chains, Energy and Resources 2.2.4 Alcohols F322: hains, Energy and Resources 2.2.4 Alcohols 167 marks 1. This question is about the six alcohols below. butan-2-ol 2-methylpentan-3-ol propan-1-ol ethane-1,2-diol 2-methylpropan-2-ol propan-2-ol Which

More information

Used to determine relative location of atoms within a molecule Most helpful spectroscopic technique in organic chemistry Related to MRI in medicine

Used to determine relative location of atoms within a molecule Most helpful spectroscopic technique in organic chemistry Related to MRI in medicine Structure Determination: Nuclear Magnetic Resonance CHEM 241 UNIT 5C 1 The Use of NMR Spectroscopy Used to determine relative location of atoms within a molecule Most helpful spectroscopic technique in

More information

Raman Spectroscopy. 1. Introduction. 2. More on Raman Scattering. " scattered. " incident

Raman Spectroscopy. 1. Introduction. 2. More on Raman Scattering.  scattered.  incident February 15, 2006 Advanced Physics Laboratory Raman Spectroscopy 1. Introduction When light is scattered from a molecule or crystal, most photons are elastically scattered. The scattered photons have the

More information

4. It is possible to excite, or flip the nuclear magnetic vector from the α-state to the β-state by bridging the energy gap between the two. This is a

4. It is possible to excite, or flip the nuclear magnetic vector from the α-state to the β-state by bridging the energy gap between the two. This is a BASIC PRINCIPLES INTRODUCTION TO NUCLEAR MAGNETIC RESONANCE (NMR) 1. The nuclei of certain atoms with odd atomic number, and/or odd mass behave as spinning charges. The nucleus is the center of positive

More information

Raman Scattering Theory David W. Hahn Department of Mechanical and Aerospace Engineering University of Florida (dwhahn@ufl.edu)

Raman Scattering Theory David W. Hahn Department of Mechanical and Aerospace Engineering University of Florida (dwhahn@ufl.edu) Introduction Raman Scattering Theory David W. Hahn Department of Mechanical and Aerospace Engineering University of Florida (dwhahn@ufl.edu) The scattering of light may be thought of as the redirection

More information

Section 6 Raman Scattering (lecture 10)

Section 6 Raman Scattering (lecture 10) Section 6 Scattering (lecture 10) Previously: Quantum theory of atoms / molecules Quantum Mechanics Valence Atomic and Molecular Spectroscopy Scattering The scattering process Elastic (Rayleigh) and inelastic

More information

E35 SPECTROSCOPIC TECHNIQUES IN ORGANIC CHEMISTRY

E35 SPECTROSCOPIC TECHNIQUES IN ORGANIC CHEMISTRY E35 SPECTRSCPIC TECNIQUES IN RGANIC CEMISTRY TE TASK To use mass spectrometry and IR, UV/vis and NMR spectroscopy to identify organic compounds. TE SKILLS By the end of the experiment you should be able

More information

Time out states and transitions

Time out states and transitions Time out states and transitions Spectroscopy transitions between energy states of a molecule excited by absorption or emission of a photon hn = DE = E i - E f Energy levels due to interactions between

More information

Worked solutions to student book questions Chapter 7 Spectroscopy

Worked solutions to student book questions Chapter 7 Spectroscopy Q1. Potassium chloride can be used instead of salt by people suffering from high blood pressure. Suppose, while cooking, someone spilt some potassium chloride in the flame of a gas stove. a What colour

More information

Pesticide Analysis by Mass Spectrometry

Pesticide Analysis by Mass Spectrometry Pesticide Analysis by Mass Spectrometry Purpose: The purpose of this assignment is to introduce concepts of mass spectrometry (MS) as they pertain to the qualitative and quantitative analysis of organochlorine

More information

Module 3 : Molecular Spectroscopy Lecture 13 : Rotational and Vibrational Spectroscopy

Module 3 : Molecular Spectroscopy Lecture 13 : Rotational and Vibrational Spectroscopy Module 3 : Molecular Spectroscopy Lecture 13 : Rotational and Vibrational Spectroscopy Objectives After studying this lecture, you will be able to Calculate the bond lengths of diatomics from the value

More information

Raman spectroscopy Lecture

Raman spectroscopy Lecture Raman spectroscopy Lecture Licentiate course in measurement science and technology Spring 2008 10.04.2008 Antti Kivioja Contents - Introduction - What is Raman spectroscopy? - The theory of Raman spectroscopy

More information

18 electron rule : How to count electrons

18 electron rule : How to count electrons 18 electron rule : How to count electrons The rule states that thermodynamically stable transition metal organometallic compounds are formed when the sum of the metal d electrons and the electrons conventionally

More information

Nuclear Structure. particle relative charge relative mass proton +1 1 atomic mass unit neutron 0 1 atomic mass unit electron -1 negligible mass

Nuclear Structure. particle relative charge relative mass proton +1 1 atomic mass unit neutron 0 1 atomic mass unit electron -1 negligible mass Protons, neutrons and electrons Nuclear Structure particle relative charge relative mass proton 1 1 atomic mass unit neutron 0 1 atomic mass unit electron -1 negligible mass Protons and neutrons make up

More information

Chapter 4 Lecture Notes

Chapter 4 Lecture Notes Chapter 4 Lecture Notes Chapter 4 Educational Goals 1. Given the formula of a molecule, the student will be able to draw the line-bond (Lewis) structure. 2. Understand and construct condensed structural

More information

Molecular Spectroscopy:

Molecular Spectroscopy: : How are some molecular parameters determined? Bond lengths Bond energies What are the practical applications of spectroscopic knowledge? Can molecules (or components thereof) be identified based on differences

More information

Group Theory and Chemistry

Group Theory and Chemistry Group Theory and Chemistry Outline: Raman and infra-red spectroscopy Symmetry operations Point Groups and Schoenflies symbols Function space and matrix representation Reducible and irreducible representation

More information

4.5 Physical Properties: Solubility

4.5 Physical Properties: Solubility 4.5 Physical Properties: Solubility When a solid, liquid or gaseous solute is placed in a solvent and it seems to disappear, mix or become part of the solvent, we say that it dissolved. The solute is said

More information

FTIR Instrumentation

FTIR Instrumentation FTIR Instrumentation Adopted from the FTIR lab instruction by H.-N. Hsieh, New Jersey Institute of Technology: http://www-ec.njit.edu/~hsieh/ene669/ftir.html 1. IR Instrumentation Two types of instrumentation

More information

ENERGY & ENVIRONMENT

ENERGY & ENVIRONMENT Greenhouse molecules, their spectra and function in the atmosphere by Jack Barrett Reprinted from ENERGY & ENVIRNMENT VLUME 16 No. 6 2005 MULTI-SCIENCE PUBLISING C. LTD. 5 Wates Way, Brentwood, Essex CM15

More information

Absorption by atmospheric gases in the IR, visible and UV spectral regions.

Absorption by atmospheric gases in the IR, visible and UV spectral regions. Lecture 6. Absorption by atmospheric gases in the IR, visible and UV spectral regions. Objectives: 1. Gaseous absorption in thermal IR. 2. Gaseous absorption in the visible and near infrared. 3. Gaseous

More information

Chapter 1: Moles and equations. Learning outcomes. you should be able to:

Chapter 1: Moles and equations. Learning outcomes. you should be able to: Chapter 1: Moles and equations 1 Learning outcomes you should be able to: define and use the terms: relative atomic mass, isotopic mass and formula mass based on the 12 C scale perform calculations, including

More information

Austin Peay State University Department of Chemistry Chem 1111. The Use of the Spectrophotometer and Beer's Law

Austin Peay State University Department of Chemistry Chem 1111. The Use of the Spectrophotometer and Beer's Law Purpose To become familiar with using a spectrophotometer and gain an understanding of Beer s law and it s relationship to solution concentration. Introduction Scientists use many methods to determine

More information

Proton Nuclear Magnetic Resonance ( 1 H-NMR) Spectroscopy

Proton Nuclear Magnetic Resonance ( 1 H-NMR) Spectroscopy Proton Nuclear Magnetic Resonance ( 1 H-NMR) Spectroscopy Theory behind NMR: In the late 1940 s, physical chemists originally developed NMR spectroscopy to study different properties of atomic nuclei,

More information

In the box below, draw the Lewis electron-dot structure for the compound formed from magnesium and oxygen. [Include any charges or partial charges.

In the box below, draw the Lewis electron-dot structure for the compound formed from magnesium and oxygen. [Include any charges or partial charges. Name: 1) Which molecule is nonpolar and has a symmetrical shape? A) NH3 B) H2O C) HCl D) CH4 7222-1 - Page 1 2) When ammonium chloride crystals are dissolved in water, the temperature of the water decreases.

More information

Nuclear Magnetic Resonance notes

Nuclear Magnetic Resonance notes Reminder: These notes are meant to supplement, not replace, the laboratory manual. Nuclear Magnetic Resonance notes Nuclear Magnetic Resonance (NMR) is a spectrometric technique which provides information

More information

Chapter 5 Classification of Organic Compounds by Solubility

Chapter 5 Classification of Organic Compounds by Solubility Chapter 5 Classification of Organic Compounds by Solubility Deductions based upon interpretation of simple solubility tests can be extremely useful in organic structure determination. Both solubility and

More information

How to Quickly Solve Spectrometry Problems

How to Quickly Solve Spectrometry Problems How to Quickly Solve Spectrometry Problems You should be looking for: Mass Spectrometry (MS) Chemical Formula DBE Infrared Spectroscopy (IR) Important Functional Groups o Alcohol O-H o Carboxylic Acid

More information

PROTON NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY (H-NMR)

PROTON NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY (H-NMR) PROTON NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY (H-NMR) WHAT IS H-NMR SPECTROSCOPY? References: Bruice 14.1, 14.2 Introduction NMR or nuclear magnetic resonance spectroscopy is a technique used to determine

More information

CHEMISTRY BONDING REVIEW

CHEMISTRY BONDING REVIEW Answer the following questions. CHEMISTRY BONDING REVIEW 1. What are the three kinds of bonds which can form between atoms? The three types of Bonds are Covalent, Ionic and Metallic. Name Date Block 2.

More information

3/5/2014. iclicker Participation Question: A. MgS < AlP < NaCl B. MgS < NaCl < AlP C. NaCl < AlP < MgS D. NaCl < MgS < AlP

3/5/2014. iclicker Participation Question: A. MgS < AlP < NaCl B. MgS < NaCl < AlP C. NaCl < AlP < MgS D. NaCl < MgS < AlP Today: Ionic Bonding vs. Covalent Bonding Strengths of Covalent Bonds: Bond Energy Diagrams Bond Polarities: Nonpolar Covalent vs. Polar Covalent vs. Ionic Electronegativity Differences Dipole Moments

More information

EXPERIMENT 1: Survival Organic Chemistry: Molecular Models

EXPERIMENT 1: Survival Organic Chemistry: Molecular Models EXPERIMENT 1: Survival Organic Chemistry: Molecular Models Introduction: The goal in this laboratory experience is for you to easily and quickly move between empirical formulas, molecular formulas, condensed

More information

Chapter 2: The Chemical Context of Life

Chapter 2: The Chemical Context of Life Chapter 2: The Chemical Context of Life Name Period This chapter covers the basics that you may have learned in your chemistry class. Whether your teacher goes over this chapter, or assigns it for you

More information

Spectroscopy. Biogeochemical Methods OCN 633. Rebecca Briggs

Spectroscopy. Biogeochemical Methods OCN 633. Rebecca Briggs Spectroscopy Biogeochemical Methods OCN 633 Rebecca Briggs Definitions of Spectrometry Defined by the method used to prepare the sample 1. Optical spectrometry Elements are converted to gaseous atoms or

More information

The Experiment Some nuclei have nuclear magnetic moments; just as importantly, some do not

The Experiment Some nuclei have nuclear magnetic moments; just as importantly, some do not Chemistry 2600 Lecture Notes Chapter 15 Nuclear Magnetic Resonance Spectroscopy Page 1 of 23 Structure Determination in Organic Chemistry: NMR Spectroscopy Three main techniques are used to determine the

More information

Nuclear Magnetic Resonance Spectroscopy

Nuclear Magnetic Resonance Spectroscopy Nuclear Magnetic Resonance Spectroscopy Introduction NMR is the most powerful tool available for organic structure determination. It is used to study a wide variety of nuclei: 1 H 13 C 15 N 19 F 31 P 2

More information

Chapter 10 Molecular Geometry and Chemical Bonding Theory

Chapter 10 Molecular Geometry and Chemical Bonding Theory Chem 1: Chapter 10 Page 1 Chapter 10 Molecular Geometry and Chemical Bonding Theory I) VSEPR Model Valence-Shell Electron-Pair Repulsion Model A) Model predicts Predicts electron arrangement and molecular

More information

The Four Questions to Ask While Interpreting Spectra. 1. How many different environments are there?

The Four Questions to Ask While Interpreting Spectra. 1. How many different environments are there? 1 H NMR Spectroscopy (#1c) The technique of 1 H NMR spectroscopy is central to organic chemistry and other fields involving analysis of organic chemicals, such as forensics and environmental science. It

More information

Survival Organic Chemistry Part I: Molecular Models

Survival Organic Chemistry Part I: Molecular Models Survival Organic Chemistry Part I: Molecular Models The goal in this laboratory experience is to get you so you can easily and quickly move between empirical formulas, molecular formulas, condensed formulas,

More information

Proton Nuclear Magnetic Resonance Spectroscopy

Proton Nuclear Magnetic Resonance Spectroscopy CHEM 334L Organic Chemistry Laboratory Revision 2.0 Proton Nuclear Magnetic Resonance Spectroscopy In this laboratory exercise we will learn how to use the Chemistry Department's Nuclear Magnetic Resonance

More information

3. Electronic Spectroscopy of Molecules I - Absorption Spectroscopy

3. Electronic Spectroscopy of Molecules I - Absorption Spectroscopy 3. Electronic Spectroscopy of Molecules I - Absorption Spectroscopy 3.1. Vibrational coarse structure of electronic spectra. The Born Oppenheimer Approximation introduced in the last chapter can be extended

More information

Amount of Substance. http://www.avogadro.co.uk/definitions/elemcompmix.htm

Amount of Substance. http://www.avogadro.co.uk/definitions/elemcompmix.htm Page 1 of 14 Amount of Substance Key terms in this chapter are: Element Compound Mixture Atom Molecule Ion Relative Atomic Mass Avogadro constant Mole Isotope Relative Isotopic Mass Relative Molecular

More information

Name Class Date. In the space provided, write the letter of the term or phrase that best completes each statement or best answers each question.

Name Class Date. In the space provided, write the letter of the term or phrase that best completes each statement or best answers each question. Assessment Chapter Test A Chapter: States of Matter In the space provided, write the letter of the term or phrase that best completes each statement or best answers each question. 1. The kinetic-molecular

More information

CHAPTER 6 Chemical Bonding

CHAPTER 6 Chemical Bonding CHAPTER 6 Chemical Bonding SECTION 1 Introduction to Chemical Bonding OBJECTIVES 1. Define Chemical bond. 2. Explain why most atoms form chemical bonds. 3. Describe ionic and covalent bonding.. 4. Explain

More information

Experiment #5: Qualitative Absorption Spectroscopy

Experiment #5: Qualitative Absorption Spectroscopy Experiment #5: Qualitative Absorption Spectroscopy One of the most important areas in the field of analytical chemistry is that of spectroscopy. In general terms, spectroscopy deals with the interactions

More information

List the 3 main types of subatomic particles and indicate the mass and electrical charge of each.

List the 3 main types of subatomic particles and indicate the mass and electrical charge of each. Basic Chemistry Why do we study chemistry in a biology course? All living organisms are composed of chemicals. To understand life, we must understand the structure, function, and properties of the chemicals

More information

Vibrations of Carbon Dioxide and Carbon Disulfide

Vibrations of Carbon Dioxide and Carbon Disulfide Vibrations of Carbon Dioxide and Carbon Disulfide Purpose Vibration frequencies of CO 2 and CS 2 will be measured by Raman and Infrared spectroscopy. The spectra show effects of normal mode symmetries

More information

Problem Set 6 UV-Vis Absorption Spectroscopy. 13-1. Express the following absorbances in terms of percent transmittance:

Problem Set 6 UV-Vis Absorption Spectroscopy. 13-1. Express the following absorbances in terms of percent transmittance: Problem Set 6 UV-Vis Absorption Spectroscopy 13-1. Express the following absorbances in terms of percent transmittance: a 0.051 b 0.918 c 0.379 d 0.261 e 0.485 f 0.072 A = log P o /P = log1/t = - log T

More information

GIANT FREQUENCY SHIFT OF INTRAMOLECULAR VIBRATION BAND IN THE RAMAN SPECTRA OF WATER ON THE SILVER SURFACE. M.E. Kompan

GIANT FREQUENCY SHIFT OF INTRAMOLECULAR VIBRATION BAND IN THE RAMAN SPECTRA OF WATER ON THE SILVER SURFACE. M.E. Kompan GIANT FREQUENCY SHIFT OF INTRAMOLECULAR VIBRATION BAND IN THE RAMAN SPECTRA OF WATER ON THE SILVER SURFACE M.E. Kompan Ioffe Institute, Saint-Peterburg, Russia kompan@mail.ioffe.ru The giant frequency

More information

How to Interpret an IR Spectrum

How to Interpret an IR Spectrum How to Interpret an IR Spectrum Don t be overwhelmed when you first view IR spectra or this document. We have simplified the interpretation by having you only focus on 4/5 regions of the spectrum. Do not

More information

Health Science Chemistry I CHEM-1180 Experiment No. 15 Molecular Models (Revised 05/22/2015)

Health Science Chemistry I CHEM-1180 Experiment No. 15 Molecular Models (Revised 05/22/2015) (Revised 05/22/2015) Introduction In the early 1900s, the chemist G. N. Lewis proposed that bonds between atoms consist of two electrons apiece and that most atoms are able to accommodate eight electrons

More information

Nuclear Magnetic Resonance (NMR) Spectroscopy cont... Recommended Reading:

Nuclear Magnetic Resonance (NMR) Spectroscopy cont... Recommended Reading: Applied Spectroscopy Nuclear Magnetic Resonance (NMR) Spectroscopy cont... Recommended Reading: Banwell and McCash Chapter 7 Skoog, Holler Nieman Chapter 19 Atkins, Chapter 18 Relaxation processes We need

More information

Features of the formation of hydrogen bonds in solutions of polysaccharides during their use in various industrial processes. V.Mank a, O.

Features of the formation of hydrogen bonds in solutions of polysaccharides during their use in various industrial processes. V.Mank a, O. Features of the formation of hydrogen bonds in solutions of polysaccharides during their use in various industrial processes. V.Mank a, O. Melnyk b a National University of life and environmental sciences

More information

Chem 112 Intermolecular Forces Chang From the book (10, 12, 14, 16, 18, 20,84,92,94,102,104, 108, 112, 114, 118 and 134)

Chem 112 Intermolecular Forces Chang From the book (10, 12, 14, 16, 18, 20,84,92,94,102,104, 108, 112, 114, 118 and 134) Chem 112 Intermolecular Forces Chang From the book (10, 12, 14, 16, 18, 20,84,92,94,102,104, 108, 112, 114, 118 and 134) 1. Helium atoms do not combine to form He 2 molecules, What is the strongest attractive

More information

Spectrophotometry and the Beer-Lambert Law: An Important Analytical Technique in Chemistry

Spectrophotometry and the Beer-Lambert Law: An Important Analytical Technique in Chemistry Spectrophotometry and the Beer-Lambert Law: An Important Analytical Technique in Chemistry Jon H. Hardesty, PhD and Bassam Attili, PhD Collin College Department of Chemistry Introduction: In the last lab

More information

Fundamentals of modern UV-visible spectroscopy. Presentation Materials

Fundamentals of modern UV-visible spectroscopy. Presentation Materials Fundamentals of modern UV-visible spectroscopy Presentation Materials The Electromagnetic Spectrum E = hν ν = c / λ 1 Electronic Transitions in Formaldehyde 2 Electronic Transitions and Spectra of Atoms

More information