Partial Vertex Cover

Size: px
Start display at page:

Download "Partial Vertex Cover"

Transcription

1 Partial Vertex Cover Joshua Wetzel Department of Computer Science Rutgers University Camden April 2, 2009 Joshua Wetzel Partial Vertex Cover / 48

2 Vertex Cover Input: Given G = (V, E) Non-negative weights on vertices Objective: Find a least-weight collection of vertices such that each edge in G in incident on at least one vertex in the collection Joshua Wetzel Partial Vertex Cover 2 / 48

3 Vertex Cover: Example COST = 97 COST = 08 Joshua Wetzel Partial Vertex Cover / 48

4 Vertex Cover: IP Formulation x v if v is in our cover, 0 otherwise min w v x v s.t. v V x a + x b, e = (a, b) x v {0, }, v V Joshua Wetzel Partial Vertex Cover 4 / 48

5 LP Relaxation Integer programs have been shown to be NP-hard Relax the integrality constraints x v {0, }, v V min s.t. w v x v v V x a + x b, e = (a, b) x v 0, v V Joshua Wetzel Partial Vertex Cover 5 / 48

6 Constructing the Dual LP Primal LP: min s.t. w v x v v V x a + x b, e = (a, b) (y e ) x v 0, v V Joshua Wetzel Partial Vertex Cover 6 / 48

7 Primal LP and Dual LP Primal LP: Dual LP: min s.t. w v x max v v V x a + x b, e = (a, b) x v 0, v V s.t. e E y e y e w v, v V e : e hits v y e 0, e E Joshua Wetzel Partial Vertex Cover 7 / 48

8 Primal-Dual Method Dual Feasible Dual OPT = Primal OPT Primal OPT OPT IP Construct the dual LP Construct an algorithm that manually tightens dual constraints to obtain a maximal dual solution Joshua Wetzel Partial Vertex Cover 8 / 48

9 Clarkson s Algorithm Inititally all edges are uncovered. While an uncovered edge in G: raise y e for all uncovered edges simultaneouslty until a vertex, v, becomes full (i.e y e = w v ) e:e hits v C C {v} any e that touches v is covered. Return C as our vertex cover Joshua Wetzel Partial Vertex Cover 9 / 48

10 Clarkson s Algorithm: Example y e w v e:e hits v Raise each y e uniformly until a vertex is full. Joshua Wetzel Partial Vertex Cover 0 / 48

11 Clarkson s Algorithm: Example e:e hits v y e w v Joshua Wetzel Partial Vertex Cover / 48

12 Clarkson s Algorithm: Example e:e hits v y e w v Joshua Wetzel Partial Vertex Cover / 48

13 Clarkson s Algorithm: Example e:e hits v y e w v Joshua Wetzel Partial Vertex Cover / 48

14 Clarkson s Algorithm: Example y e w v e:e hits v COST = 8 Joshua Wetzel Partial Vertex Cover 4 / 48

15 Clarkson s Algorithm: Analysis Dual Obj. Fn: max e y e y e w v e:e hits v Our Cost = wt(red vertices) 2 e hits red 2 e = 2DFS y e 2OPT y e Joshua Wetzel Partial Vertex Cover / 48

16 Clarkson s Algorithm: Tight Example 6 6 COST OPT = 6 COST Clarkson = Joshua Wetzel Partial Vertex Cover 6 / 48

17 Partial Vertex Cover Input: Graph, G = (V, E) Non-negative integer weights for vertices Integer, k Objective: Find the least cost set of vertices in G that will cover at least k edges. Joshua Wetzel Partial Vertex Cover 7 / 48

18 Key Issue In full vertex cover OPT covers all edges and hence we know which edges to cover. In partial vertex cover, we do not know which k edges OPT covers. When k is part of the input, the techniques for full-coverage do not directly apply. Joshua Wetzel Partial Vertex Cover 8 / 48

19 Clarkson s Algorithm Fails Input: k = 5/6 5/6 5 5/6 5 5/6 5/6 5/6 COST OPT = COST Clarkson = 5 Joshua Wetzel Partial Vertex Cover 9 / 48

20 Related Work Bshouty & Burroughs 998: solve the LP, modify it and then round the modified solution. 2-approximation for partial vertex cover. Hochbaum 998: 2-approximation for partial vertex cover. Bar-Yehuda 999: local ratio method, 2-approximation for partial vertex cover. Mestre 2005: 2-approximation primal-dual algorithm for partial vertex cover with improved running time Joshua Wetzel Partial Vertex Cover 20 / 48

21 Vertex Cover: IP Formulation x v if v is in our cover, 0 otherwise min w v x v s.t. v V x a + x b, e = (a, b) x v {0, }, v V Joshua Wetzel Partial Vertex Cover 2 / 48

22 Partial Vertex Cover: IP formulation x v if vertex v is chosen in the cover, 0 otherwise. y e if edge e is not covered, 0 otherwise. min w v x v s.t. v V y e + x a + x b, e = (a, b) y e m k e E x v {0, }, v V y e {0, }, e E Joshua Wetzel Partial Vertex Cover 22 / 48

23 Patial Vertex Cover: LP formulation Relax the integrality constraints. x v {0, } x v 0, v V y e {0, } y e 0, e E Joshua Wetzel Partial Vertex Cover 2 / 48

24 Constructing the Dual LP min s.t. w v x v v V y e + x a + x b, e = (a, b) (u e ) y e (m k) (z) e E x v 0, v V y e 0, e E Joshua Wetzel Partial Vertex Cover 24 / 48

25 Primal LP and Dual LP Primal LP: Dual LP: min s.t. w v x v v V y e + x a + x b, e y e m k e E x v 0, v V y e 0, e E max s.t. u e z(m k) e E u e w v, v V e : e hits v u e z, e E u e 0, e E z 0 Joshua Wetzel Partial Vertex Cover 25 / 48

26 Intuition for Primal-Dual Input: k = 5/6 5/6 5 5/6 5 5/6 5/6 5/6 COST OPT = COST Clarkson = 5 In last iteration, Clarkson s Alg. may choose more edges than we need at a very high cost We must somehow bound the cost of last vertex chosen Joshua Wetzel Partial Vertex Cover 26 / 48

27 Primal-Dual Algorithm For each vertex, v, in G Guess v to be the heaviest vertex in OPT, called v h C v {v h } Raise weight of all heavier vertices in G to Remove all edges touching v h from G k k deg(v h ) Run Clarkson on this instance until k edges are covered. C choices C choices C V Return the lowest cost cover, C Joshua Wetzel Partial Vertex Cover 27 / 48

28 Primal-Dual Algorithm: Example Input: G = (V, E), k = 8 Joshua Wetzel Partial Vertex Cover 28 / 48

29 Primal-Dual Algorithm: Example u e w v e:e hits v V h k = 6 Joshua Wetzel Partial Vertex Cover 29 / 48

30 Primal-Dual Algorithm: Example e:e hits v u e w v V h Joshua Wetzel Partial Vertex Cover 0 / 48

31 Primal-Dual Algorithm: Example e:e hits v u e w v V h Joshua Wetzel Partial Vertex Cover / 48

32 Primal-Dual Algorithm: Example e:e hits v u e w v 6 0 V h Joshua Wetzel Partial Vertex Cover 2 / 48

33 Primal-Dual Algorithm: Example u e w v e:e hits v 6 0 V h COST = Joshua Wetzel Partial Vertex Cover / 48

34 Primal-Dual Algorithm: Example u e w v e:e hits v 0 0 V h COST = Joshua Wetzel Partial Vertex Cover 4 / 48

35 Primal-Dual Algorithm: Example u e w v e:e hits v V h 4 COST = 69 Joshua Wetzel Partial Vertex Cover 5 / 48

36 Primal-Dual Algorithm: Example u e w v e:e hits v 6 0 V h COST = Joshua Wetzel Partial Vertex Cover 6 / 48

37 Primal-Dual Algorithm: Example e:e hits v u e w v 0 V h COST = Joshua Wetzel Partial Vertex Cover 7 / 48

38 Primal-Dual Algorithm: Example u e w v e:e hits v 8 7 V h COST = 60 Joshua Wetzel Partial Vertex Cover 8 / 48

39 Primal-Dual Algorithm: Example u e w v e:e hits v 24 V h COST = 76 Joshua Wetzel Partial Vertex Cover 9 / 48

40 Primal-Dual Algorithm: Example u e w v e:e hits v V h COST = 80 Joshua Wetzel Partial Vertex Cover 40 / 48

41 Primal-Dual Algorithm: Example Heaviest Vertex Cost Return cover with cost of 60 Joshua Wetzel Partial Vertex Cover 4 / 48

42 Analysis: Cost of OPT I h : inst. in which we correctly guess heaviest vertex in OPT V h 7 OPT I h OPT = OPT(I h ) + w(v h ) Joshua Wetzel Partial Vertex Cover 42 / 48

43 Analysis: Our Cost OPT = OPT(I h ) + w(v h ) V h 7 V h OPT(I h ) + w(v h ) = 45 COST(I h ) + w(v h ) = 60 Joshua Wetzel Partial Vertex Cover 4 / 48

44 Analysis: What is z? V l 8 V h 7 0 Z Z Z V l 8 V h 7 0 I h u e z, e z = Num of edges for which u e = z is at least m k Joshua Wetzel Partial Vertex Cover 44 / 48

45 Analysis: Our Cost OPT = OPT(I h ) + w(v h ) Z Z Z V l 8 V h 7 0 Our Cost Cost(I h ) + w(v h ) = w(redvert) + w(v l ) + w(v h ) w(redvert) + 2w(v h ) 2 u e + 2w(v h ) e hits red 2[ u e z(m k )] + 2w(v h ) e I h 2DFS(I h ) + 2w(v h ) 2OPT(I h ) + 2w(v h ) 2OPT Joshua Wetzel Partial Vertex Cover 45 / 48

46 Primal LP and Dual LP Primal LP: Dual LP: min s.t. w v x v v V y e + x a + x b, e y e m k e E x v 0, v V y e 0, e E max s.t. u e z(m k) e E u e w v, v V e : e hits v u e z, e E u e 0, e E z 0 Joshua Wetzel Partial Vertex Cover 46 / 48

47 Reference K. L. Clarkson. A modification of the greedy algorithm for the vertex cover. Information Processing Letters 6:2-25, 98. R. Gandhi, S. Khuller, and A. Srinivasan. Approximation Algorithms for Partial Covering Problems. Journal of Algorithms, 5():55-84, October Joshua Wetzel Partial Vertex Cover 47 / 48

48 Thank You. Joshua Wetzel Partial Vertex Cover 48 / 48

Chapter 11. 11.1 Load Balancing. Approximation Algorithms. Load Balancing. Load Balancing on 2 Machines. Load Balancing: Greedy Scheduling

Chapter 11. 11.1 Load Balancing. Approximation Algorithms. Load Balancing. Load Balancing on 2 Machines. Load Balancing: Greedy Scheduling Approximation Algorithms Chapter Approximation Algorithms Q. Suppose I need to solve an NP-hard problem. What should I do? A. Theory says you're unlikely to find a poly-time algorithm. Must sacrifice one

More information

! Solve problem to optimality. ! Solve problem in poly-time. ! Solve arbitrary instances of the problem. #-approximation algorithm.

! Solve problem to optimality. ! Solve problem in poly-time. ! Solve arbitrary instances of the problem. #-approximation algorithm. Approximation Algorithms 11 Approximation Algorithms Q Suppose I need to solve an NP-hard problem What should I do? A Theory says you're unlikely to find a poly-time algorithm Must sacrifice one of three

More information

! Solve problem to optimality. ! Solve problem in poly-time. ! Solve arbitrary instances of the problem. !-approximation algorithm.

! Solve problem to optimality. ! Solve problem in poly-time. ! Solve arbitrary instances of the problem. !-approximation algorithm. Approximation Algorithms Chapter Approximation Algorithms Q Suppose I need to solve an NP-hard problem What should I do? A Theory says you're unlikely to find a poly-time algorithm Must sacrifice one of

More information

Algorithm Design and Analysis

Algorithm Design and Analysis Algorithm Design and Analysis LECTURE 27 Approximation Algorithms Load Balancing Weighted Vertex Cover Reminder: Fill out SRTEs online Don t forget to click submit Sofya Raskhodnikova 12/6/2011 S. Raskhodnikova;

More information

Approximation Algorithms

Approximation Algorithms Approximation Algorithms or: How I Learned to Stop Worrying and Deal with NP-Completeness Ong Jit Sheng, Jonathan (A0073924B) March, 2012 Overview Key Results (I) General techniques: Greedy algorithms

More information

9th Max-Planck Advanced Course on the Foundations of Computer Science (ADFOCS) Primal-Dual Algorithms for Online Optimization: Lecture 1

9th Max-Planck Advanced Course on the Foundations of Computer Science (ADFOCS) Primal-Dual Algorithms for Online Optimization: Lecture 1 9th Max-Planck Advanced Course on the Foundations of Computer Science (ADFOCS) Primal-Dual Algorithms for Online Optimization: Lecture 1 Seffi Naor Computer Science Dept. Technion Haifa, Israel Introduction

More information

Combinatorial Algorithms for Data Migration to Minimize Average Completion Time

Combinatorial Algorithms for Data Migration to Minimize Average Completion Time Combinatorial Algorithms for Data Migration to Minimize Average Completion Time Rajiv Gandhi 1 and Julián Mestre 1 Department of Computer Science, Rutgers University-Camden, Camden, NJ 0810. Research partially

More information

Applied Algorithm Design Lecture 5

Applied Algorithm Design Lecture 5 Applied Algorithm Design Lecture 5 Pietro Michiardi Eurecom Pietro Michiardi (Eurecom) Applied Algorithm Design Lecture 5 1 / 86 Approximation Algorithms Pietro Michiardi (Eurecom) Applied Algorithm Design

More information

Nan Kong, Andrew J. Schaefer. Department of Industrial Engineering, Univeristy of Pittsburgh, PA 15261, USA

Nan Kong, Andrew J. Schaefer. Department of Industrial Engineering, Univeristy of Pittsburgh, PA 15261, USA A Factor 1 2 Approximation Algorithm for Two-Stage Stochastic Matching Problems Nan Kong, Andrew J. Schaefer Department of Industrial Engineering, Univeristy of Pittsburgh, PA 15261, USA Abstract We introduce

More information

CSC2420 Spring 2015: Lecture 3

CSC2420 Spring 2015: Lecture 3 CSC2420 Spring 2015: Lecture 3 Allan Borodin January 22, 2015 1 / 1 Announcements and todays agenda Assignment 1 due next Thursday. I may add one or two additional questions today or tomorrow. Todays agenda

More information

11. APPROXIMATION ALGORITHMS

11. APPROXIMATION ALGORITHMS 11. APPROXIMATION ALGORITHMS load balancing center selection pricing method: vertex cover LP rounding: vertex cover generalized load balancing knapsack problem Lecture slides by Kevin Wayne Copyright 2005

More information

4.6 Linear Programming duality

4.6 Linear Programming duality 4.6 Linear Programming duality To any minimization (maximization) LP we can associate a closely related maximization (minimization) LP. Different spaces and objective functions but in general same optimal

More information

Primal-Dual Schema for Capacitated Covering Problems

Primal-Dual Schema for Capacitated Covering Problems Primal-Dual Schema for Capacitated Covering Problems Tim Carnes and David Shmoys Cornell University, Ithaca NY 14853, USA Abstract. Primal-dual algorithms have played an integral role in recent developments

More information

Dantzig-Wolfe bound and Dantzig-Wolfe cookbook

Dantzig-Wolfe bound and Dantzig-Wolfe cookbook Dantzig-Wolfe bound and Dantzig-Wolfe cookbook thst@man.dtu.dk DTU-Management Technical University of Denmark 1 Outline LP strength of the Dantzig-Wolfe The exercise from last week... The Dantzig-Wolfe

More information

ARTICLE IN PRESS. European Journal of Operational Research xxx (2004) xxx xxx. Discrete Optimization. Nan Kong, Andrew J.

ARTICLE IN PRESS. European Journal of Operational Research xxx (2004) xxx xxx. Discrete Optimization. Nan Kong, Andrew J. A factor 1 European Journal of Operational Research xxx (00) xxx xxx Discrete Optimization approximation algorithm for two-stage stochastic matching problems Nan Kong, Andrew J. Schaefer * Department of

More information

Approximated Distributed Minimum Vertex Cover Algorithms for Bounded Degree Graphs

Approximated Distributed Minimum Vertex Cover Algorithms for Bounded Degree Graphs Approximated Distributed Minimum Vertex Cover Algorithms for Bounded Degree Graphs Yong Zhang 1.2, Francis Y.L. Chin 2, and Hing-Fung Ting 2 1 College of Mathematics and Computer Science, Hebei University,

More information

Definition 11.1. Given a graph G on n vertices, we define the following quantities:

Definition 11.1. Given a graph G on n vertices, we define the following quantities: Lecture 11 The Lovász ϑ Function 11.1 Perfect graphs We begin with some background on perfect graphs. graphs. First, we define some quantities on Definition 11.1. Given a graph G on n vertices, we define

More information

Proximal mapping via network optimization

Proximal mapping via network optimization L. Vandenberghe EE236C (Spring 23-4) Proximal mapping via network optimization minimum cut and maximum flow problems parametric minimum cut problem application to proximal mapping Introduction this lecture:

More information

Linear Programming. Widget Factory Example. Linear Programming: Standard Form. Widget Factory Example: Continued.

Linear Programming. Widget Factory Example. Linear Programming: Standard Form. Widget Factory Example: Continued. Linear Programming Widget Factory Example Learning Goals. Introduce Linear Programming Problems. Widget Example, Graphical Solution. Basic Theory:, Vertices, Existence of Solutions. Equivalent formulations.

More information

Efficient and Robust Allocation Algorithms in Clouds under Memory Constraints

Efficient and Robust Allocation Algorithms in Clouds under Memory Constraints Efficient and Robust Allocation Algorithms in Clouds under Memory Constraints Olivier Beaumont,, Paul Renaud-Goud Inria & University of Bordeaux Bordeaux, France 9th Scheduling for Large Scale Systems

More information

Online Adwords Allocation

Online Adwords Allocation Online Adwords Allocation Shoshana Neuburger May 6, 2009 1 Overview Many search engines auction the advertising space alongside search results. When Google interviewed Amin Saberi in 2004, their advertisement

More information

5 INTEGER LINEAR PROGRAMMING (ILP) E. Amaldi Fondamenti di R.O. Politecnico di Milano 1

5 INTEGER LINEAR PROGRAMMING (ILP) E. Amaldi Fondamenti di R.O. Politecnico di Milano 1 5 INTEGER LINEAR PROGRAMMING (ILP) E. Amaldi Fondamenti di R.O. Politecnico di Milano 1 General Integer Linear Program: (ILP) min c T x Ax b x 0 integer Assumption: A, b integer The integrality condition

More information

Bicolored Shortest Paths in Graphs with Applications to Network Overlay Design

Bicolored Shortest Paths in Graphs with Applications to Network Overlay Design Bicolored Shortest Paths in Graphs with Applications to Network Overlay Design Hongsik Choi and Hyeong-Ah Choi Department of Electrical Engineering and Computer Science George Washington University Washington,

More information

Lecture 3. Linear Programming. 3B1B Optimization Michaelmas 2015 A. Zisserman. Extreme solutions. Simplex method. Interior point method

Lecture 3. Linear Programming. 3B1B Optimization Michaelmas 2015 A. Zisserman. Extreme solutions. Simplex method. Interior point method Lecture 3 3B1B Optimization Michaelmas 2015 A. Zisserman Linear Programming Extreme solutions Simplex method Interior point method Integer programming and relaxation The Optimization Tree Linear Programming

More information

A Branch and Bound Algorithm for Solving the Binary Bi-level Linear Programming Problem

A Branch and Bound Algorithm for Solving the Binary Bi-level Linear Programming Problem A Branch and Bound Algorithm for Solving the Binary Bi-level Linear Programming Problem John Karlof and Peter Hocking Mathematics and Statistics Department University of North Carolina Wilmington Wilmington,

More information

Topic: Greedy Approximations: Set Cover and Min Makespan Date: 1/30/06

Topic: Greedy Approximations: Set Cover and Min Makespan Date: 1/30/06 CS880: Approximations Algorithms Scribe: Matt Elder Lecturer: Shuchi Chawla Topic: Greedy Approximations: Set Cover and Min Makespan Date: 1/30/06 3.1 Set Cover The Set Cover problem is: Given a set of

More information

Improved Results for Data Migration and Open Shop Scheduling

Improved Results for Data Migration and Open Shop Scheduling Improved Results for Data Migration and Open Shop Scheduling Rajiv Gandhi 1, Magnús M. Halldórsson, Guy Kortsarz 1, and Hadas Shachnai 3 1 Department of Computer Science, Rutgers University, Camden, NJ

More information

Steiner Tree Approximation via IRR. Randomized Rounding

Steiner Tree Approximation via IRR. Randomized Rounding Steiner Tree Approximation via Iterative Randomized Rounding Graduate Program in Logic, Algorithms and Computation μπλ Network Algorithms and Complexity June 18, 2013 Overview 1 Introduction Scope Related

More information

LECTURE 5: DUALITY AND SENSITIVITY ANALYSIS. 1. Dual linear program 2. Duality theory 3. Sensitivity analysis 4. Dual simplex method

LECTURE 5: DUALITY AND SENSITIVITY ANALYSIS. 1. Dual linear program 2. Duality theory 3. Sensitivity analysis 4. Dual simplex method LECTURE 5: DUALITY AND SENSITIVITY ANALYSIS 1. Dual linear program 2. Duality theory 3. Sensitivity analysis 4. Dual simplex method Introduction to dual linear program Given a constraint matrix A, right

More information

Scheduling Home Health Care with Separating Benders Cuts in Decision Diagrams

Scheduling Home Health Care with Separating Benders Cuts in Decision Diagrams Scheduling Home Health Care with Separating Benders Cuts in Decision Diagrams André Ciré University of Toronto John Hooker Carnegie Mellon University INFORMS 2014 Home Health Care Home health care delivery

More information

The Design of Approximation Algorithms

The Design of Approximation Algorithms The Design of Approximation Algorithms David P. Williamson David B. Shmoys Copyright c 2010 by David P. Williamson and David B. Shmoys. All rights reserved. To be published by Cambridge University Press.

More information

Dynamic programming. Doctoral course Optimization on graphs - Lecture 4.1. Giovanni Righini. January 17 th, 2013

Dynamic programming. Doctoral course Optimization on graphs - Lecture 4.1. Giovanni Righini. January 17 th, 2013 Dynamic programming Doctoral course Optimization on graphs - Lecture.1 Giovanni Righini January 1 th, 201 Implicit enumeration Combinatorial optimization problems are in general NP-hard and we usually

More information

On the effect of forwarding table size on SDN network utilization

On the effect of forwarding table size on SDN network utilization IBM Haifa Research Lab On the effect of forwarding table size on SDN network utilization Rami Cohen IBM Haifa Research Lab Liane Lewin Eytan Yahoo Research, Haifa Seffi Naor CS Technion, Israel Danny Raz

More information

Energy Efficient Monitoring in Sensor Networks

Energy Efficient Monitoring in Sensor Networks Energy Efficient Monitoring in Sensor Networks Amol Deshpande, Samir Khuller, Azarakhsh Malekian, Mohammed Toossi Computer Science Department, University of Maryland, A.V. Williams Building, College Park,

More information

1 Approximating Set Cover

1 Approximating Set Cover CS 05: Algorithms (Grad) Feb 2-24, 2005 Approximating Set Cover. Definition An Instance (X, F ) of the set-covering problem consists of a finite set X and a family F of subset of X, such that every elemennt

More information

THE PROBLEM WORMS (1) WORMS (2) THE PROBLEM OF WORM PROPAGATION/PREVENTION THE MINIMUM VERTEX COVER PROBLEM

THE PROBLEM WORMS (1) WORMS (2) THE PROBLEM OF WORM PROPAGATION/PREVENTION THE MINIMUM VERTEX COVER PROBLEM 1 THE PROBLEM OF WORM PROPAGATION/PREVENTION I.E. THE MINIMUM VERTEX COVER PROBLEM Prof. Tiziana Calamoneri Network Algorithms A.y. 2014/15 2 THE PROBLEM WORMS (1)! A computer worm is a standalone malware

More information

8.1 Min Degree Spanning Tree

8.1 Min Degree Spanning Tree CS880: Approximations Algorithms Scribe: Siddharth Barman Lecturer: Shuchi Chawla Topic: Min Degree Spanning Tree Date: 02/15/07 In this lecture we give a local search based algorithm for the Min Degree

More information

Scheduling Shop Scheduling. Tim Nieberg

Scheduling Shop Scheduling. Tim Nieberg Scheduling Shop Scheduling Tim Nieberg Shop models: General Introduction Remark: Consider non preemptive problems with regular objectives Notation Shop Problems: m machines, n jobs 1,..., n operations

More information

Approximating Minimum Bounded Degree Spanning Trees to within One of Optimal

Approximating Minimum Bounded Degree Spanning Trees to within One of Optimal Approximating Minimum Bounded Degree Spanning Trees to within One of Optimal ABSTACT Mohit Singh Tepper School of Business Carnegie Mellon University Pittsburgh, PA USA mohits@andrew.cmu.edu In the MINIMUM

More information

A2 1 10-Approximation Algorithm for a Generalization of the Weighted Edge-Dominating Set Problem

A2 1 10-Approximation Algorithm for a Generalization of the Weighted Edge-Dominating Set Problem Journal of Combinatorial Optimization, 5, 317 326, 2001 c 2001 Kluwer Academic Publishers. Manufactured in The Netherlands. A2 1 -Approximation Algorithm for a Generalization of the Weighted Edge-Dominating

More information

QoS optimization for an. on-demand transportation system via a fractional linear objective function

QoS optimization for an. on-demand transportation system via a fractional linear objective function QoS optimization for an Load charge ratio on-demand transportation system via a fractional linear objective function Thierry Garaix, University of Avignon (France) Column Generation 2008 QoS optimization

More information

1 Solving LPs: The Simplex Algorithm of George Dantzig

1 Solving LPs: The Simplex Algorithm of George Dantzig Solving LPs: The Simplex Algorithm of George Dantzig. Simplex Pivoting: Dictionary Format We illustrate a general solution procedure, called the simplex algorithm, by implementing it on a very simple example.

More information

Online Matching and Ad Allocation. Contents

Online Matching and Ad Allocation. Contents Foundations and Trends R in Theoretical Computer Science Vol. 8, No. 4 (2012) 265 368 c 2013 A. Mehta DOI: 10.1561/0400000057 Online Matching and Ad Allocation By Aranyak Mehta Contents 1 Introduction

More information

Linear Programming for Optimization. Mark A. Schulze, Ph.D. Perceptive Scientific Instruments, Inc.

Linear Programming for Optimization. Mark A. Schulze, Ph.D. Perceptive Scientific Instruments, Inc. 1. Introduction Linear Programming for Optimization Mark A. Schulze, Ph.D. Perceptive Scientific Instruments, Inc. 1.1 Definition Linear programming is the name of a branch of applied mathematics that

More information

Optimal Monitoring in Multi-Channel Multi-Radio Wireless Mesh Networks

Optimal Monitoring in Multi-Channel Multi-Radio Wireless Mesh Networks Optimal Monitoring in Multi-Channel Multi-Radio Wireless Mesh Networks Dong-Hoon Shin and Saurabh Bagchi Dependable Computing Systems Lab School of Electrical and Computer Engineering Purdue University

More information

Analysis of Approximation Algorithms for k-set Cover using Factor-Revealing Linear Programs

Analysis of Approximation Algorithms for k-set Cover using Factor-Revealing Linear Programs Analysis of Approximation Algorithms for k-set Cover using Factor-Revealing Linear Programs Stavros Athanassopoulos, Ioannis Caragiannis, and Christos Kaklamanis Research Academic Computer Technology Institute

More information

Max Flow, Min Cut, and Matchings (Solution)

Max Flow, Min Cut, and Matchings (Solution) Max Flow, Min Cut, and Matchings (Solution) 1. The figure below shows a flow network on which an s-t flow is shown. The capacity of each edge appears as a label next to the edge, and the numbers in boxes

More information

Guessing Game: NP-Complete?

Guessing Game: NP-Complete? Guessing Game: NP-Complete? 1. LONGEST-PATH: Given a graph G = (V, E), does there exists a simple path of length at least k edges? YES 2. SHORTEST-PATH: Given a graph G = (V, E), does there exists a simple

More information

Arrangements And Duality

Arrangements And Duality Arrangements And Duality 3.1 Introduction 3 Point configurations are tbe most basic structure we study in computational geometry. But what about configurations of more complicated shapes? For example,

More information

Chapter 13: Binary and Mixed-Integer Programming

Chapter 13: Binary and Mixed-Integer Programming Chapter 3: Binary and Mixed-Integer Programming The general branch and bound approach described in the previous chapter can be customized for special situations. This chapter addresses two special situations:

More information

How To Solve The Online Advertising Problem

How To Solve The Online Advertising Problem Frequency Capping in Online Advertising Niv Buchbinder Moran Feldman Arpita Ghosh Joseph (Seffi) Naor July 2, 2014 Abstract We study the following online problem. There are n advertisers. Each advertiser

More information

Constant Factor Approximation Algorithm for the Knapsack Median Problem

Constant Factor Approximation Algorithm for the Knapsack Median Problem Constant Factor Approximation Algorithm for the Knapsack Median Problem Amit Kumar Abstract We give a constant factor approximation algorithm for the following generalization of the k-median problem. We

More information

CHAPTER 9. Integer Programming

CHAPTER 9. Integer Programming CHAPTER 9 Integer Programming An integer linear program (ILP) is, by definition, a linear program with the additional constraint that all variables take integer values: (9.1) max c T x s t Ax b and x integral

More information

Minimal Cost Reconfiguration of Data Placement in a Storage Area Network

Minimal Cost Reconfiguration of Data Placement in a Storage Area Network Minimal Cost Reconfiguration of Data Placement in a Storage Area Network Hadas Shachnai Gal Tamir Tami Tamir Abstract Video-on-Demand (VoD) services require frequent updates in file configuration on the

More information

Linear Programming. March 14, 2014

Linear Programming. March 14, 2014 Linear Programming March 1, 01 Parts of this introduction to linear programming were adapted from Chapter 9 of Introduction to Algorithms, Second Edition, by Cormen, Leiserson, Rivest and Stein [1]. 1

More information

5.1 Bipartite Matching

5.1 Bipartite Matching CS787: Advanced Algorithms Lecture 5: Applications of Network Flow In the last lecture, we looked at the problem of finding the maximum flow in a graph, and how it can be efficiently solved using the Ford-Fulkerson

More information

Branch-and-Price Approach to the Vehicle Routing Problem with Time Windows

Branch-and-Price Approach to the Vehicle Routing Problem with Time Windows TECHNISCHE UNIVERSITEIT EINDHOVEN Branch-and-Price Approach to the Vehicle Routing Problem with Time Windows Lloyd A. Fasting May 2014 Supervisors: dr. M. Firat dr.ir. M.A.A. Boon J. van Twist MSc. Contents

More information

1 Linear Programming. 1.1 Introduction. Problem description: motivate by min-cost flow. bit of history. everything is LP. NP and conp. P breakthrough.

1 Linear Programming. 1.1 Introduction. Problem description: motivate by min-cost flow. bit of history. everything is LP. NP and conp. P breakthrough. 1 Linear Programming 1.1 Introduction Problem description: motivate by min-cost flow bit of history everything is LP NP and conp. P breakthrough. general form: variables constraints: linear equalities

More information

Multi-layer MPLS Network Design: the Impact of Statistical Multiplexing

Multi-layer MPLS Network Design: the Impact of Statistical Multiplexing Multi-layer MPLS Network Design: the Impact of Statistical Multiplexing Pietro Belotti, Antonio Capone, Giuliana Carello, Federico Malucelli Tepper School of Business, Carnegie Mellon University, Pittsburgh

More information

Sensitivity Analysis with Excel

Sensitivity Analysis with Excel Sensitivity Analysis with Excel 1 Lecture Outline Sensitivity Analysis Effects on the Objective Function Value (OFV): Changing the Values of Decision Variables Looking at the Variation in OFV: Excel One-

More information

ONLINE DEGREE-BOUNDED STEINER NETWORK DESIGN. Sina Dehghani Saeed Seddighin Ali Shafahi Fall 2015

ONLINE DEGREE-BOUNDED STEINER NETWORK DESIGN. Sina Dehghani Saeed Seddighin Ali Shafahi Fall 2015 ONLINE DEGREE-BOUNDED STEINER NETWORK DESIGN Sina Dehghani Saeed Seddighin Ali Shafahi Fall 2015 ONLINE STEINER FOREST PROBLEM An initially given graph G. s 1 s 2 A sequence of demands (s i, t i ) arriving

More information

Lecture 11: 0-1 Quadratic Program and Lower Bounds

Lecture 11: 0-1 Quadratic Program and Lower Bounds Lecture : - Quadratic Program and Lower Bounds (3 units) Outline Problem formulations Reformulation: Linearization & continuous relaxation Branch & Bound Method framework Simple bounds, LP bound and semidefinite

More information

A simpler and better derandomization of an approximation algorithm for Single Source Rent-or-Buy

A simpler and better derandomization of an approximation algorithm for Single Source Rent-or-Buy A simpler and better derandomization of an approximation algorithm for Single Source Rent-or-Buy David P. Williamson Anke van Zuylen School of Operations Research and Industrial Engineering, Cornell University,

More information

An Approximation Algorithm for Bounded Degree Deletion

An Approximation Algorithm for Bounded Degree Deletion An Approximation Algorithm for Bounded Degree Deletion Tomáš Ebenlendr Petr Kolman Jiří Sgall Abstract Bounded Degree Deletion is the following generalization of Vertex Cover. Given an undirected graph

More information

Resource Optimization of Spatial TDMA in Ad Hoc Radio Networks: A Column Generation Approach

Resource Optimization of Spatial TDMA in Ad Hoc Radio Networks: A Column Generation Approach Resource Optimization of Spatial TDMA in Ad Hoc Radio Networks: A Column Generation Approach Patrik Björklund, Peter Värbrand and Di Yuan Department of Science and Technology, Linköping University SE-601

More information

Discrete Optimization

Discrete Optimization Discrete Optimization [Chen, Batson, Dang: Applied integer Programming] Chapter 3 and 4.1-4.3 by Johan Högdahl and Victoria Svedberg Seminar 2, 2015-03-31 Todays presentation Chapter 3 Transforms using

More information

Recovery of primal solutions from dual subgradient methods for mixed binary linear programming; a branch-and-bound approach

Recovery of primal solutions from dual subgradient methods for mixed binary linear programming; a branch-and-bound approach MASTER S THESIS Recovery of primal solutions from dual subgradient methods for mixed binary linear programming; a branch-and-bound approach PAULINE ALDENVIK MIRJAM SCHIERSCHER Department of Mathematical

More information

Linear Programming Notes V Problem Transformations

Linear Programming Notes V Problem Transformations Linear Programming Notes V Problem Transformations 1 Introduction Any linear programming problem can be rewritten in either of two standard forms. In the first form, the objective is to maximize, the material

More information

Permutation Betting Markets: Singleton Betting with Extra Information

Permutation Betting Markets: Singleton Betting with Extra Information Permutation Betting Markets: Singleton Betting with Extra Information Mohammad Ghodsi Sharif University of Technology ghodsi@sharif.edu Hamid Mahini Sharif University of Technology mahini@ce.sharif.edu

More information

26 Linear Programming

26 Linear Programming The greatest flood has the soonest ebb; the sorest tempest the most sudden calm; the hottest love the coldest end; and from the deepest desire oftentimes ensues the deadliest hate. Th extremes of glory

More information

Principles of demand management Airline yield management Determining the booking limits. » A simple problem» Stochastic gradients for general problems

Principles of demand management Airline yield management Determining the booking limits. » A simple problem» Stochastic gradients for general problems Demand Management Principles of demand management Airline yield management Determining the booking limits» A simple problem» Stochastic gradients for general problems Principles of demand management Issues:»

More information

Can linear programs solve NP-hard problems?

Can linear programs solve NP-hard problems? Can linear programs solve NP-hard problems? p. 1/9 Can linear programs solve NP-hard problems? Ronald de Wolf Linear programs Can linear programs solve NP-hard problems? p. 2/9 Can linear programs solve

More information

3. Evaluate the objective function at each vertex. Put the vertices into a table: Vertex P=3x+2y (0, 0) 0 min (0, 5) 10 (15, 0) 45 (12, 2) 40 Max

3. Evaluate the objective function at each vertex. Put the vertices into a table: Vertex P=3x+2y (0, 0) 0 min (0, 5) 10 (15, 0) 45 (12, 2) 40 Max SOLUTION OF LINEAR PROGRAMMING PROBLEMS THEOREM 1 If a linear programming problem has a solution, then it must occur at a vertex, or corner point, of the feasible set, S, associated with the problem. Furthermore,

More information

How To Solve A K Path In Time (K)

How To Solve A K Path In Time (K) What s next? Reductions other than kernelization Dániel Marx Humboldt-Universität zu Berlin (with help from Fedor Fomin, Daniel Lokshtanov and Saket Saurabh) WorKer 2010: Workshop on Kernelization Nov

More information

Duality in General Programs. Ryan Tibshirani Convex Optimization 10-725/36-725

Duality in General Programs. Ryan Tibshirani Convex Optimization 10-725/36-725 Duality in General Programs Ryan Tibshirani Convex Optimization 10-725/36-725 1 Last time: duality in linear programs Given c R n, A R m n, b R m, G R r n, h R r : min x R n c T x max u R m, v R r b T

More information

Problem Set 7 Solutions

Problem Set 7 Solutions 8 8 Introduction to Algorithms May 7, 2004 Massachusetts Institute of Technology 6.046J/18.410J Professors Erik Demaine and Shafi Goldwasser Handout 25 Problem Set 7 Solutions This problem set is due in

More information

Linear Programming. Solving LP Models Using MS Excel, 18

Linear Programming. Solving LP Models Using MS Excel, 18 SUPPLEMENT TO CHAPTER SIX Linear Programming SUPPLEMENT OUTLINE Introduction, 2 Linear Programming Models, 2 Model Formulation, 4 Graphical Linear Programming, 5 Outline of Graphical Procedure, 5 Plotting

More information

An Introduction on SemiDefinite Program

An Introduction on SemiDefinite Program An Introduction on SemiDefinite Program from the viewpoint of computation Hayato Waki Institute of Mathematics for Industry, Kyushu University 2015-10-08 Combinatorial Optimization at Work, Berlin, 2015

More information

Linear Programming I

Linear Programming I Linear Programming I November 30, 2003 1 Introduction In the VCR/guns/nuclear bombs/napkins/star wars/professors/butter/mice problem, the benevolent dictator, Bigus Piguinus, of south Antarctica penguins

More information

RELAXATION HEURISTICS FOR THE SET COVERING PROBLEM

RELAXATION HEURISTICS FOR THE SET COVERING PROBLEM Journal of the Operations Research Society of Japan 2007, Vol. 50, No. 4, 350-375 RELAXATION HEURISTICS FOR THE SET COVERING PROBLEM Shunji Umetani University of Electro-Communications Mutsunori Yagiura

More information

Nonlinear Optimization: Algorithms 3: Interior-point methods

Nonlinear Optimization: Algorithms 3: Interior-point methods Nonlinear Optimization: Algorithms 3: Interior-point methods INSEAD, Spring 2006 Jean-Philippe Vert Ecole des Mines de Paris Jean-Philippe.Vert@mines.org Nonlinear optimization c 2006 Jean-Philippe Vert,

More information

Routing in Line Planning for Public Transport

Routing in Line Planning for Public Transport Konrad-Zuse-Zentrum für Informationstechnik Berlin Takustraße 7 D-14195 Berlin-Dahlem Germany MARC E. PFETSCH RALF BORNDÖRFER Routing in Line Planning for Public Transport Supported by the DFG Research

More information

Data Migration in Heterogeneous Storage Systems

Data Migration in Heterogeneous Storage Systems 011 31st International Conference on Distributed Computing Systems Data Migration in Heterogeneous Storage Systems Chadi Kari Department of Computer Science and Engineering University of Connecticut Storrs,

More information

The Generalized Assignment Problem with Minimum Quantities

The Generalized Assignment Problem with Minimum Quantities The Generalized Assignment Problem with Minimum Quantities Sven O. Krumke a, Clemens Thielen a, a University of Kaiserslautern, Department of Mathematics Paul-Ehrlich-Str. 14, D-67663 Kaiserslautern, Germany

More information

Improved Algorithms for Data Migration

Improved Algorithms for Data Migration Improved Algorithms for Data Migration Samir Khuller 1, Yoo-Ah Kim, and Azarakhsh Malekian 1 Department of Computer Science, University of Maryland, College Park, MD 20742. Research supported by NSF Award

More information

Discrete Applied Mathematics. The firefighter problem with more than one firefighter on trees

Discrete Applied Mathematics. The firefighter problem with more than one firefighter on trees Discrete Applied Mathematics 161 (2013) 899 908 Contents lists available at SciVerse ScienceDirect Discrete Applied Mathematics journal homepage: www.elsevier.com/locate/dam The firefighter problem with

More information

CHAPTER 11: BASIC LINEAR PROGRAMMING CONCEPTS

CHAPTER 11: BASIC LINEAR PROGRAMMING CONCEPTS Linear programming is a mathematical technique for finding optimal solutions to problems that can be expressed using linear equations and inequalities. If a real-world problem can be represented accurately

More information

CMPSCI611: Approximating MAX-CUT Lecture 20

CMPSCI611: Approximating MAX-CUT Lecture 20 CMPSCI611: Approximating MAX-CUT Lecture 20 For the next two lectures we ll be seeing examples of approximation algorithms for interesting NP-hard problems. Today we consider MAX-CUT, which we proved to

More information

Online Learning and Competitive Analysis: a Unified Approach

Online Learning and Competitive Analysis: a Unified Approach Online Learning and Competitive Analysis: a Unified Approach Shahar Chen Online Learning and Competitive Analysis: a Unified Approach Research Thesis Submitted in partial fulfillment of the requirements

More information

Weighted Sum Coloring in Batch Scheduling of Conflicting Jobs

Weighted Sum Coloring in Batch Scheduling of Conflicting Jobs Weighted Sum Coloring in Batch Scheduling of Conflicting Jobs Leah Epstein Magnús M. Halldórsson Asaf Levin Hadas Shachnai Abstract Motivated by applications in batch scheduling of jobs in manufacturing

More information

3.1 Solving Systems Using Tables and Graphs

3.1 Solving Systems Using Tables and Graphs Algebra 2 Chapter 3 3.1 Solve Systems Using Tables & Graphs 3.1 Solving Systems Using Tables and Graphs A solution to a system of linear equations is an that makes all of the equations. To solve a system

More information

Chapter 6: Sensitivity Analysis

Chapter 6: Sensitivity Analysis Chapter 6: Sensitivity Analysis Suppose that you have just completed a linear programming solution which will have a major impact on your company, such as determining how much to increase the overall production

More information

A Network Flow Approach in Cloud Computing

A Network Flow Approach in Cloud Computing 1 A Network Flow Approach in Cloud Computing Soheil Feizi, Amy Zhang, Muriel Médard RLE at MIT Abstract In this paper, by using network flow principles, we propose algorithms to address various challenges

More information

Equilibrium computation: Part 1

Equilibrium computation: Part 1 Equilibrium computation: Part 1 Nicola Gatti 1 Troels Bjerre Sorensen 2 1 Politecnico di Milano, Italy 2 Duke University, USA Nicola Gatti and Troels Bjerre Sørensen ( Politecnico di Milano, Italy, Equilibrium

More information

1 Introduction. Linear Programming. Questions. A general optimization problem is of the form: choose x to. max f(x) subject to x S. where.

1 Introduction. Linear Programming. Questions. A general optimization problem is of the form: choose x to. max f(x) subject to x S. where. Introduction Linear Programming Neil Laws TT 00 A general optimization problem is of the form: choose x to maximise f(x) subject to x S where x = (x,..., x n ) T, f : R n R is the objective function, S

More information

Solving NP Hard problems in practice lessons from Computer Vision and Computational Biology

Solving NP Hard problems in practice lessons from Computer Vision and Computational Biology Solving NP Hard problems in practice lessons from Computer Vision and Computational Biology Yair Weiss School of Computer Science and Engineering The Hebrew University of Jerusalem www.cs.huji.ac.il/ yweiss

More information

Zachary Monaco Georgia College Olympic Coloring: Go For The Gold

Zachary Monaco Georgia College Olympic Coloring: Go For The Gold Zachary Monaco Georgia College Olympic Coloring: Go For The Gold Coloring the vertices or edges of a graph leads to a variety of interesting applications in graph theory These applications include various

More information

Network Algorithms for Homeland Security

Network Algorithms for Homeland Security Network Algorithms for Homeland Security Mark Goldberg and Malik Magdon-Ismail Rensselaer Polytechnic Institute September 27, 2004. Collaborators J. Baumes, M. Krishmamoorthy, N. Preston, W. Wallace. Partially

More information

Online Primal-Dual Algorithms for Maximizing Ad-Auctions Revenue

Online Primal-Dual Algorithms for Maximizing Ad-Auctions Revenue Online Primal-Dual Algorithms for Maximizing Ad-Auctions Revenue Niv Buchbinder 1, Kamal Jain 2, and Joseph (Seffi) Naor 1 1 Computer Science Department, Technion, Haifa, Israel. 2 Microsoft Research,

More information

Linear programming and reductions

Linear programming and reductions Chapter 7 Linear programming and reductions Many of the problems for which we want algorithms are optimization tasks: the shortest path, the cheapest spanning tree, the longest increasing subsequence,

More information