Analysis of Approximation Algorithms for kset Cover using FactorRevealing Linear Programs


 Chrystal Higgins
 2 years ago
 Views:
Transcription
1 Analysis of Approximation Algorithms for kset Cover using FactorRevealing Linear Programs Stavros Athanassopoulos, Ioannis Caragiannis, and Christos Kaklamanis Research Academic Computer Technology Institute & Department of Computer Engineering and Informatics University of Patras, Rio, Greece Abstract. We present new combinatorial approximation algorithms for kset cover. Previous approaches are based on extending the greedy algorithm by efficiently handling small sets. The new algorithms further extend them by utilizing the natural idea of computing large packings of elements into sets of large size. Our results improve the previously best approximation bounds for the kset cover problem for all values of k 6. The analysis technique could be of independent interest; the upper bound on the approximation factor is obtained by bounding the objective value of a factorrevealing linear program. Introduction Set cover is a fundamental combinatorial optimization problem with many applications. Instances of the problem consist of a set of elements V and a collection S of subsets of V and the objective is to select a subset of S of minimum cardinality so that every element is covered, i.e., it is contained in at least one of the selected sets. The natural greedy algorithm starts with an empty solution and augments it until all elements are covered by selecting a set that contains the maximum number of elements that are not contained in any of the previously selected sets. Denoting by n the number of elements, it is known by the seminal papers of Johnson [0], Lovasz [3], and Chvátal [] that the greedy algorithm has approximation ratio H n. The tighter analysis of Slavík [4] improves the upper bound on the approximation ratio to ln n ln ln n + O(. Asymptotically, these bounds are tight due to a famous inapproximability result of Feige [3] which states that there is no ( ɛ ln napproximation algorithm for set cover unless all problems in NP have deterministic algorithms running in subexponential time O ( n polylog(n. An interesting variant is kset cover where every set of S has size at most k. Without loss of generality, we may assume that S is closed under subsets. In this case, the greedy algorithm can be equivalently expressed as follows: This work was partially supported by the European Union under IST FET Integrated Project AEOLUS.
2 Greedy phases: For i = k down to do: Choose a maximal collection of disjoint isets. An iset is a set that contains exactly i previously uncovered elements and a collection T of disjoint isets is called maximal if any other iset intersects some of the sets in T. A tight bound of H k on the approximation ratio of the greedy algorithm is well known in this case. Since the problem has many applications for particular values of k and due to its interest from a complexitytheoretic viewpoint, designing algorithms with improved second order terms in their approximation ratio has received much attention. Currently, there are algorithms with approximation ratio H k c where c is a constant. Goldschmidt et al. [4] were the first to present a modified greedy algorithm with c = /6. This value was improved to /3 by Halldórsson [6] and to /2 by Duh and Fürer [2]. Recently, Levin [2] further improved the constant to 98/ for k 4. On the negative side, Trevisan [5] has shown that, unless subexponentialtime deterministic algorithms for NP exist, no polynomialtime algorithm has an approximation ratio of ln k Ω(ln ln k. The main idea that has been used in order to improve the performance of the greedy algorithm is to efficiently handle small sets. The algorithm of Goldschmidt et al. [4] uses a matching computation to accommodate as many elements as possible in sets of size 2 when no set of size at least 3 contains new elements. The algorithms of Halldórsson [5, 6] and Duh and Fürer [2] handle efficiently sets of size 3. The algorithm of [2] is based on a semilocal optimization technique. Levin s improvement [2] extends the algorithm of [2] by efficiently handling of sets of size 4. A natural but completely different idea is to replace the phases of the greedy algorithm associated with large sets with setpacking phases that also aim to maximize the number of new elements covered by large maximal sets. The approximation factor is not getting worse (due to the maximality condition while it has been left as an open problem in [2] whether it leads to any improvement in the approximation bound. This is the aim of the current paper: we show that by substituting the greedy phases in the algorithms of Duh and Fürer with packing phases, we obtain improved approximation bounds for every k 6 which approaches H k for large values of k. In particular, we will use algorithms for the kset packing problem which is defined as follows. An instance of kset packing consists of a set of elements V and a collection S of subsets of V each containing exactly k elements. The objective is to select as many as possible disjoint sets from S. When k = 2, the problem is equivalent to maximum matching in graphs and, hence, it is solvable in polynomial time. For k 3, the problem is APXhard []; the best known inapproximability bound for large k is asymptotically O ( log k k [7]. Note that any maximal collection of disjoint subsets yields a /kapproximate solution. The best known algorithms have approximation ratio 2 ɛ k for any ɛ > 0 [8] and are based on local search; these are the algorithms used by the packing phases of our algorithms.
3 Our analysis is based on the concept of factorrevealing LPs which has been introduced in a different context in [9] for the analysis of approximation algorithms for facility location. We show that the approximation factor is upperbounded by the maximum objective value of a factorrevealing linear program. Hence, no explicit reasoning about the structure of the solution computed by the algorithms is required. Instead, the performance guarantees of the several phases are used as black boxes in the definition of the constraints of the LP. The rest of the paper is structured as follows. We present the algorithms of Duh and Fürer [2] as well as our modifications in Section 2. The analysis technique is discussed in Section 3 where we present the factorrevealing LP lemmas. Then, in Section 4, we present a part of the proofs of our main results; proofs that have been omitted from this extended abstract will appear in the final version of the paper. We conclude in Section 5. 2 Algorithm description In this section we present the algorithms considered in this paper. We start by giving an overview of the related results in [2]; then, we present our algorithms and main statements. Besides the greedy algorithm, local search algorithms have been used for the kcover problem, in particular for small values of k. Pure local search starts with any cover and works in steps. In each step, the current solution is improved by replacing a constant number of sets with a (hopefully smaller number of other sets in order to obtain a new cover. Duh and Fürer introduced the technique of semilocal optimization which extends pure local search. In terms of 3set cover, the main idea behind semilocal optimization is that once the sets of size 3 have been selected, computing the minimum number of sets of size 2 and in order to complete the covering can be done in polynomial time by a matching computation. Hence, a semilocal (s, timprovement step for 3set cover consists of the deletion of up to t 3sets from the current cover and the insertion of up to s 3sets and the minimum necessary 2sets and sets that complete the cover. The quality of an improvement is defined by the total number of sets in the cover while in case of two covers of the same size, the one with the smallest number of sets is preferable. Semilocal optimization for k 4 is much similar; local improvements are now defined on sets of size at least 3 while 2sets and sets are globally changed. The analysis of [2] shows that the best choice of the parameters (s, t is (2,. Theorem (Duh and Fürer [2]. Consider an instance of kset cover whose optimal solution has a i isets. Then, the semilocal (2, optimization algorithm has cost at most a + a 2 + k i+ 3 a i. Proof (outline. The proof of [2] proceeds as follows. Let b i be the number of i sets in the solution. First observe that k i= ib i = k i= ia i. Then, the following two properties of semilocal (2, optimization are proved: b a and b +b 2 k i= a i. The theorem follows by summing the three inequalities.
4 This algorithm has been used as a basis for the following algorithms that approximate kset cover. We will call them GSLI k,l and GRSLI k,l, respectively. Algorithm GSLI k,l. Greedy phases: For i = k down to l + do: Choose a maximal collection of isets. Semilocal optimization phase: Run the semilocal (2, optimization algorithm on the remaining instance. Theorem 2 (Duh and Fürer [2]. Algorithm GSLI k,4 has approximation ratio H k 5/2. Algorithm GRSLI k,l Greedy phases: For i = k down to l + do: Choose a maximal collection of isets. Restricted phases: For i = l down to 4 do: Choose a maximal collection of disjoint isets so that the choice of these isets does not increase the number of sets in the final solution. Semilocal optimization phase: Run the semilocal optimization algorithm on the remaining instance. Theorem 3 (Duh and Fürer [2]. Algorithm GRSLI k,5 ratio H k /2. has approximation We will modify the algorithms above by replacing each greedy phase with a packing phase for handling sets of not very small size. We use the local search algorithms of Hurkens and Schrijver [8] in each packing phase. The modified algorithms are called PSLI k,l and PRSLI k,l, respectively. A local search algorithm for set packing uses a constant parameter p (informally, this is an upper bound on the number of local improvements performed at each step and, starting with an empty packing Π, repeatedly updates Π by replacing any set of s < p sets of Π with s + sets so that feasibility is maintained and until no replacement is possible. Clearly, the algorithm runs in polynomial time. It has been analyzed in [8] (see also [5] for related investigations. Theorem 4 (Hurkens and Schrijver [8]. The local search tset packing algorithm that performs at most p local improvements at each step has approximation ratio ρ t 2(t r t t(t r t, if p = 2r and ρ t 2(t r 2 t(t r 2, if p = 2r. As a corollary, for any constant ɛ > 0, we obtain a 2 ɛ t approximation algorithm for tset packing by using p = O(log t /ɛ local improvements. Our algorithms PSLI k,l and PRSLI k,l simply replace each of the greedy phases of the algorithms GSLI k,l and GRSLI k,l, respectively, with the following packing phase: Packing phases: For i = k down to l + do: Select a maximal collection of disjoint isets using a 2 ɛ i approximation local search iset packing algorithm.
5 Our first main result (Theorem 5 is a statement on the performance of algorithm PSLI k,l (for l = 4 which is the best choice. Theorem 5. For any constant ɛ > 0, algorithm PSLI k,4 has approximation ratio at most H k/ ɛ for even k 6, at most 2H k H k ɛ for k {5, 7, 9,, 3}, and at most H k k k + ɛ for odd k 5. Algorithm PSLI k,4 outperforms algorithm GSLI k,4 for k 5, algorithm GRSLI k,5 for k 9, as well as the improvement of Levin [2] for k 2. For large values of k, the approximation bound approaches H k c with c = ln 2 / Algorithm PSLI k,l has been mainly included here in order to introduce the analysis technique. As we will see in the next section, the factorrevealing LP is simpler in this case. Algorithm PRSLI k,l is even better; its performance (for l = 5 is stated in the following. Theorem 6. For any constant ɛ > 0, algorithm PRSLI k,5 has approximation ratio at most 2H k H k ɛ for odd k 7, at most ɛ for k = 6, and at most 2H k H k/ k k + ɛ for even k 8. Algorithm PRSLI k,5 achieves better approximation ratio than the algorithm of Levin [2] for every k 6. For example, the approximation ratio of for 6set cover improves the previous bound of H For large values of k, the approximation bound approaches H k c with c = 77/60 ln See Table for a comparison between the algorithms discussed in this section. Table. Comparison of the approximation ratio of the algorithms GSLI k,4, PSLI k,4, GRSLI k,5, the algorithm in [2] and algorithm PRSLI k,5 for several values of k. k GSLI k,4 [2] PSLI k,4 GRSLI k,5 [2] [2] PRSLI k, large k H k H k H k 0.5 H k H k
6 3 Analysis through factorrevealing LPs Our proofs on the approximation guarantee of our algorithms essentially follow by computing upper bounds on the objective value of factorrevealing linear programs whose constraints capture simple invariants maintained in the phases of the algorithms. Consider an instance (V, S of kset cover. For any phase of the algorithms associated with i (i = l,..., k for algorithm PSLI k,l and i = 3,..., k for algorithm PRSLI k,l, consider the instance (V i, S i where V i contains the elements in V that have not been covered in previous phases and S i contains the sets of S which contain only elements in V i. Denote by OPT i an optimal solution of instance (V i, S i ; we also denote the optimal solution OPT k of (V k, S k = (V, S by OPT. Since S is closed under subsets, without loss of generality, we may assume that OPT i contains disjoint sets. Furthermore, it is clear that OPT i OPT i for i k, i.e., OPT i OPT. For a phase of algorithm PSLI k,l or PRSLI k,l associated with i, denote by a i,j the ratio of the number of jsets in OPT i over OPT. Since OPT i OPT, we obtain that a i,j. ( The iset packing algorithm executed on packing phase associated with i includes in isets the elements in V i \V i. Since V i V i, their number is i V i \V i = V i V i = ja i,j OPT. (2 ja i,j Denote by ρ i the approximation ratio of the iset packing algorithm executed on the phase associated with i. Since at the beginning of the packing phase associated with i, there exist at least a i,i OPT isets, the iset packing algorithm computes at least ρ i a i,i OPT isets, i.e., covering at least iρ i a i,i OPT elements from sets in OPT i. Hence, V i \V i iρ i a i,i OPT, and (2 yields i i ja i,j ja i,j i( ρ i a i,i 0. (3 So far, we have defined all constraints for the factorrevealing LP of algorithm PSLI k,l. Next, we bound from above the number of sets computed by algorithm PSLI k,l as follows. Let t i be the number of isets computed by the iset packing algorithm executed at the packing phase associated with i l +. Clearly, t i = i V i\v i = ja i,j i ja i,j OPT. (4 i i
7 By Theorem, we have that t l a l, + a l,2 + l j + 3 a l,j OPT. (5 j=3 Hence, by (4 and (5, it follows that the approximation guarantee of algorithm PSLI k,l is k i=4 t i OPT = k i=l+ i i ja i,j ja k,j + + l l + a l,2 + k i=l+ i(i + l ( j + 3 j=3 ja i,j + a l, + a l,2 + ja i,j + l l + a l, j l + l j=3 j + 3 a l,j a l,j (6 Hence, an upper bound on the approximation ratio of algorithm PSLI k,l follows by maximizing the right part of (6 subject to the constraints ( for i = l,..., k and (3 for i = l +,..., k with variables a i,j 0 for i = l,..., k and j =,..., i. Formally, we have proved the following statement. Lemma. The approximation ratio of algorithm PSLI k,l when a ρ i approximation iset packing algorithm is used at phase i for i = l +,..., k is upperbounded by the maximum objective value of the following linear program: maximize k subject to ja k,j + + l l + a l,2 + k i=l+ i(i + l ( j + 3 j=3 a i,j, i = l,..., k ja i,j + l l + a l, j l + a l,j i i ja i,j ja i,j i( ρ i a i,i 0, i = l +,..., k a i,j 0, i = l,..., k, j =,..., i Each packing or restricted phase of algorithm PRSLI k,l satisfies (3; a restricted phase associated with i = 4,..., l computes a maximal iset packing and, hence, ρ i = /i in this case. In addition, the restricted phases impose extra constraints. Denote by b, b 2, and b 3 the ratio of the number of sets, 2sets, and 3sets computed by the
8 semilocal optimization phase over OPT, respectively. The restricted phases guarantee that the number of the sets in the final solution does not increase, and, hence, b a i,, for i = 3,..., l. (7 Following the proof of Theorem, we obtain b + b 2 a 3, + a 3,2 + a 3,3 while it is clear that b + 2b 2 + 3b 3 = a 3, + 2a 3,2 + 3a 3,3. We obtain that the number t 3 of sets computed during the semilocal optimization phase of algorithm PRSLI k,l is t 3 = (b + b 2 + b 3 OPT ( b 3 + b + b 2 + b + 2b 2 + 3b ( 3 b a 3, + a 3, a 3,3 OPT OPT. (8 Reasoning as before, we obtain that (4 gives the number t i of isets computed during the packing or restricted phase associated with i = 4,..., k. By (4 and (8, we obtain that the performance guarantee of algorithm PRSLI k,l is k t i OPT = k i=4 i i ja i,j ja i,j k ja k,j + i(i + i= a 3, + a 3, a 3,3 + 3 b ja i,j a 3, + 2 a 3, a 3,3 + 3 b (9 Hence, an upper bound on the approximation ratio of algorithm PRSLI k,l follows by maximizing the right part of (9 subject to the constraints ( for i = 3,..., k, (3 for i = 4,..., k, and (7, with variables a i,j 0 for i = 3,..., k and j =,..., i, and b 0. Formally, we have proved the following statement. Lemma 2. The approximation ratio of algorithm PRSLI k,l when a ρ i approximation iset packing algorithm is used at phase i for i = l +,..., k is upperbounded by the maximum objective value of the following linear program: maximize k subject to k ja k,j + i(i + i=4 a i,j, i = 3,..., k ja i,j a 3, + 2 a 3, a 3,3 + 3 b i i ja i,j ja i,j i( ρ i a i,i 0, i = l +,..., k
9 i i ja i,j ja i,j (i a i,i 0, i = 4,..., l b a i, 0, i = 3,..., l a i,j 0, i = 3,..., k, j =,..., i b 0 4 Proofs of main theorems We are now ready to prove our main results. We can show that the maximum objective values of the factorrevealing LPs for algorithms PSLI k,4 and PRSLI k,5 are upperbounded by the values stated in Theorems 5 and 6. In order to prove this, it suffices to find feasible solutions to the dual LPs that have these values as objective values. In the following, we prove Theorem 5 by considering the case when k is even. The proof for odd k as well as the proof of Theorem 6 (which is slightly more complicated will appear in the final version of the paper. Proof of Theorem 5. The dual of the factorrevealing LP of algorithm PSLI k,4 is: minimize i=4 β i subject to β 4 + γ β 4 + 2γ β 4 + 3γ 5 5 β 4 + 4γ β i + jγ i+ jγ i j, i = 5,..., k, j =,..., i i(i + β i + iγ i+ (i 2 + ɛγ i, i = 5,..., k i + β k jγ k j, j =,..., k k β k (k 2 + ɛγ k β i 0, i = 4,..., k γ i 0, i = 5,..., k We consider only the case of even k. We set γ k = k(k and γ k = 0. If k 8, we set γ i = γ i i(i+(i+2 for i = 5,..., k 2. We also set β k = + (k 2 + ɛγ k, β 4 = 3 5 4γ 5 and β i = i + iγ i+ + (i 2 + ɛγ i
10 for i = 5,..., k. We will show that all the constraints of the dual LP are satisfied. Clearly, γ i 0 for i = 5,..., k. Observe that γ k +γ k = k(k. If k 8, by the definition of γ i for i = 5,..., k 2, we have that and, hence, γ i + γ i+ i(i + = γ 2 i+ + γ i+2 + i(i + (i + 2 i(i + = γ i+ + γ i+2 (i + (i + 2 γ i + γ i+ i(i + = γ k + γ k k(k = 0, i.e., γ i + γ i+ = i(i+ for i = 5,..., k. Now, the definition of β i s yields β i = i + iγ i+ + (i 2 + ɛγ i = i i(i + (i γ i+ + (i γ i + ɛγ i (0 j i(i + jγ i+ + jγ i 0 for i = 5,..., k and j =,..., i. Hence, all the constraints on β i i = 5,..., k are satisfied. The constraints on β k are also maintainted. Since γ k = k(k k for we have that β k = + (k 2 + ɛγ k k k + (k γ k + ɛγ k j k + jγ k 0 for j =,..., k. It remains to show that the constraints on β 4 are also satisfied. It suffices to show that γ 5 /45. This is clear when k = 6. If k 8, consider the equalities γ i + γ i+ = i(i+ for odd i = 5,..., k 3 and γ i γ i+ = i(i+ for even i = 6,..., k 2. Summing them, and since γ k = 0, we obtain that γ 5 = = = k/2 k/2 k/2 ( = k/ i(2i 2i(2i + ( 2i 2i 2i + 2i + ( 2i + k/2 2i + i 2 2i + k H k/
11 = 5 + 2H k 2 H k/ k H k/ = 2H k 2 2H k/2 + k ln /45 The first inequality follows since 2H k 2 2H k/2 + k is increasing on k (this can be easily seen by examining the original definition of γ 5 and since lim t H t / ln t =. We have shown that all the constraints of the dual LP are satisfied, i.e., the solution is feasible. In order to compute the objective value, we use the definition of β i s and equality (0. We obtain i=4 k/2 β i = β 4 + β 5 + (β 2i + β 2i+ + β k = 3 5 4γ γ 5 4γ 6 + k/2 ( 2i + 2iγ 2i+ + (2i 2γ 2i 2i + (2i + (2i + 2 2iγ 2i+2 + 2iγ 2i+ + + (k 2γ k + ɛ k/2 k/2 = 2 + i + 4γ 6 + ((2i 2γ 2i 2iγ 2i+2 + (k 2γ k +ɛ i=5 γ i H k/2 + /6 + ɛ where the last inequality follows since k i=5 γ i k i=5 i(i = k i=5 /4 /k. By duality, k the factorrevealing LP. The theorem follows by Lemma. ( i=5 γ i i i i=4 β i is an upper bound on the maximum objective value of = 5 Extensions We have experimentally verified using Matlab that our upper bounds are tight in the sense that they are the maximum objective values of the factorrevealing LPs (ignoring the ɛ term in the approximation bound. Our analysis technique can also be used to provide simpler proofs of the results in [2] (i.e., Theorems 2 and 3; this is left as an exercise to the reader. The several cases that are considered in the proofs of [2] are actually included as constraints in the factorrevealing
12 LPs which are much simpler than the ones for algorithms PSLI k,l and PRSLI k,l. Furthermore, note that we have not combined our techniques with the recent algorithm of Levin [2] that handles sets of size 4 using a restricted local search phase. It is tempting to conjecture that further improvements are possible. References. V. Chvátal. A greedy hueristic for the setcovering problem. Mathematics of Operations Research, 4, pp , R. Duh and M. Fürer. Approximation of kset cover by semi local optimization. In Proceedings of the 29th Annual ACM Symposium on Theory of Computing (STOC 97, pp , U. Feige. A threshold of ln n for approximating set cover. Journal of the ACM, 45(4, pp , O. Goldschmidt, D. Hochbaum, and G. Yu. A modified greedy heuristic for the set covering problem with improved worst case bound. Information Processing Letters, 48, pp , M. M. Halldórsson. Approximating discrete collections via local improvements. In Proceedings of the 6th Annual ACM/SIAM Symposium on Discrete Algorithms (SODA 95, pp , M. M. Halldórsson. Approximating kset cover and complementary graph coloring. In Proceedings of the 5th Conference on Integer Programming and Combinatorial Optimization (IPCO 96, LNCS 084, Springer, pp. 83, E. Hazan, S. Safra, and O. Schwartz. On the complexity of approximating kset packing. Computational Complexity, 5(, pp , C. A. J. Hurkens and A. Schrijver. On the size of systems of sets every t of which have an SDR, with an application to the worstcase ratio of heuristics for packing problems. SIAM Journal on Discrete Mathematics, 2(, pp , K. Jain, M. Mahdian, E. Markakis, A. Saberi, and V. V. Vazirani. Greedy facility location algorithms analyzed using dual fitting with factorrevealing LP. Journal of the ACM, 50(6, pp , D. S. Johnson. Approximation algorithms for combinatorial problems. Journal of Computer and System Sciences, 9, pp , V. Kann. Maximum bounded 3dimensional matching is MAX SNPcomplete. Information Processing Letters, 37, pp , A. Levin. Approximating the unweighted kset cover problem: greedy meets local search. In Proceedings of the 4th International Workshop on Approximation and Online Algorithms (WAOA 06, LNCS 4368, Springer, pp , L. Lovász. On the ratio of optimal integral and fractional covers. Discrete Mathematics, 3, pp , P. Slavík. A tight analysis of the greedy algorithm for set cover. Journal of Algorithms, 25, pp , L. Trevisan. Nonapproximability results for optimization problems on bounded degree instances. In Proceedings of the 33rd Annual ACM Symposium on Theory of Computing (STOC 0, pp , 200.
Energyefficient communication in multiinterface wireless networks
Energyefficient communication in multiinterface wireless networks Stavros Athanassopoulos, Ioannis Caragiannis, Christos Kaklamanis, and Evi Papaioannou Research Academic Computer Technology Institute
More informationTight Bounds for Selfish and Greedy Load Balancing
Tight Bounds for Selfish and Greedy Load Balancing Ioannis Caragiannis 1, Michele Flammini, Christos Kaklamanis 1, Panagiotis Kanellopoulos 1, and Luca Moscardelli 1 Research Academic Computer Technology
More informationCompetitive Analysis of On line Randomized Call Control in Cellular Networks
Competitive Analysis of On line Randomized Call Control in Cellular Networks Ioannis Caragiannis Christos Kaklamanis Evi Papaioannou Abstract In this paper we address an important communication issue arising
More informationDefinition 11.1. Given a graph G on n vertices, we define the following quantities:
Lecture 11 The Lovász ϑ Function 11.1 Perfect graphs We begin with some background on perfect graphs. graphs. First, we define some quantities on Definition 11.1. Given a graph G on n vertices, we define
More informationClass constrained bin covering
Class constrained bin covering Leah Epstein Csanád Imreh Asaf Levin Abstract We study the following variant of the bin covering problem. We are given a set of unit sized items, where each item has a color
More informationApproximated Distributed Minimum Vertex Cover Algorithms for Bounded Degree Graphs
Approximated Distributed Minimum Vertex Cover Algorithms for Bounded Degree Graphs Yong Zhang 1.2, Francis Y.L. Chin 2, and HingFung Ting 2 1 College of Mathematics and Computer Science, Hebei University,
More informationThe Online Set Cover Problem
The Online Set Cover Problem Noga Alon Baruch Awerbuch Yossi Azar Niv Buchbinder Joseph Seffi Naor ABSTRACT Let X = {, 2,..., n} be a ground set of n elements, and let S be a family of subsets of X, S
More informationApproximation Algorithms
Approximation Algorithms or: How I Learned to Stop Worrying and Deal with NPCompleteness Ong Jit Sheng, Jonathan (A0073924B) March, 2012 Overview Key Results (I) General techniques: Greedy algorithms
More informationThe Generalized Assignment Problem with Minimum Quantities
The Generalized Assignment Problem with Minimum Quantities Sven O. Krumke a, Clemens Thielen a, a University of Kaiserslautern, Department of Mathematics PaulEhrlichStr. 14, D67663 Kaiserslautern, Germany
More informationNan Kong, Andrew J. Schaefer. Department of Industrial Engineering, Univeristy of Pittsburgh, PA 15261, USA
A Factor 1 2 Approximation Algorithm for TwoStage Stochastic Matching Problems Nan Kong, Andrew J. Schaefer Department of Industrial Engineering, Univeristy of Pittsburgh, PA 15261, USA Abstract We introduce
More informationTopic: Greedy Approximations: Set Cover and Min Makespan Date: 1/30/06
CS880: Approximations Algorithms Scribe: Matt Elder Lecturer: Shuchi Chawla Topic: Greedy Approximations: Set Cover and Min Makespan Date: 1/30/06 3.1 Set Cover The Set Cover problem is: Given a set of
More information2.3 Scheduling jobs on identical parallel machines
2.3 Scheduling jobs on identical parallel machines There are jobs to be processed, and there are identical machines (running in parallel) to which each job may be assigned Each job = 1,,, must be processed
More informationThe Conference Call Search Problem in Wireless Networks
The Conference Call Search Problem in Wireless Networks Leah Epstein 1, and Asaf Levin 2 1 Department of Mathematics, University of Haifa, 31905 Haifa, Israel. lea@math.haifa.ac.il 2 Department of Statistics,
More informationWeighted Sum Coloring in Batch Scheduling of Conflicting Jobs
Weighted Sum Coloring in Batch Scheduling of Conflicting Jobs Leah Epstein Magnús M. Halldórsson Asaf Levin Hadas Shachnai Abstract Motivated by applications in batch scheduling of jobs in manufacturing
More informationScheduling to Minimize Power Consumption using Submodular Functions
Scheduling to Minimize Power Consumption using Submodular Functions Erik D. Demaine MIT edemaine@mit.edu Morteza Zadimoghaddam MIT morteza@mit.edu ABSTRACT We develop logarithmic approximation algorithms
More informationA2 1 10Approximation Algorithm for a Generalization of the Weighted EdgeDominating Set Problem
Journal of Combinatorial Optimization, 5, 317 326, 2001 c 2001 Kluwer Academic Publishers. Manufactured in The Netherlands. A2 1 Approximation Algorithm for a Generalization of the Weighted EdgeDominating
More informationLocal search for the minimum label spanning tree problem with bounded color classes
Available online at www.sciencedirect.com Operations Research Letters 31 (003) 195 01 Operations Research Letters www.elsevier.com/locate/dsw Local search for the minimum label spanning tree problem with
More informationThe Relative Worst Order Ratio for OnLine Algorithms
The Relative Worst Order Ratio for OnLine Algorithms Joan Boyar 1 and Lene M. Favrholdt 2 1 Department of Mathematics and Computer Science, University of Southern Denmark, Odense, Denmark, joan@imada.sdu.dk
More informationShort Cycles make Whard problems hard: FPT algorithms for Whard Problems in Graphs with no short Cycles
Short Cycles make Whard problems hard: FPT algorithms for Whard Problems in Graphs with no short Cycles Venkatesh Raman and Saket Saurabh The Institute of Mathematical Sciences, Chennai 600 113. {vraman
More informationOnline Scheduling with Bounded Migration
Online Scheduling with Bounded Migration Peter Sanders, Naveen Sivadasan, and Martin Skutella MaxPlanckInstitut für Informatik, Saarbrücken, Germany, {sanders,ns,skutella}@mpisb.mpg.de Abstract. Consider
More informationDiscrete Applied Mathematics. The firefighter problem with more than one firefighter on trees
Discrete Applied Mathematics 161 (2013) 899 908 Contents lists available at SciVerse ScienceDirect Discrete Applied Mathematics journal homepage: www.elsevier.com/locate/dam The firefighter problem with
More informationA Note on Maximum Independent Sets in Rectangle Intersection Graphs
A Note on Maximum Independent Sets in Rectangle Intersection Graphs Timothy M. Chan School of Computer Science University of Waterloo Waterloo, Ontario N2L 3G1, Canada tmchan@uwaterloo.ca September 12,
More information9th MaxPlanck Advanced Course on the Foundations of Computer Science (ADFOCS) PrimalDual Algorithms for Online Optimization: Lecture 1
9th MaxPlanck Advanced Course on the Foundations of Computer Science (ADFOCS) PrimalDual Algorithms for Online Optimization: Lecture 1 Seffi Naor Computer Science Dept. Technion Haifa, Israel Introduction
More informationThe multiinteger set cover and the facility terminal cover problem
The multiinteger set cover and the facility teral cover problem Dorit S. Hochbaum Asaf Levin December 5, 2007 Abstract The facility teral cover problem is a generalization of the vertex cover problem.
More informationAn Approximation Algorithm for Bounded Degree Deletion
An Approximation Algorithm for Bounded Degree Deletion Tomáš Ebenlendr Petr Kolman Jiří Sgall Abstract Bounded Degree Deletion is the following generalization of Vertex Cover. Given an undirected graph
More informationARTICLE IN PRESS. European Journal of Operational Research xxx (2004) xxx xxx. Discrete Optimization. Nan Kong, Andrew J.
A factor 1 European Journal of Operational Research xxx (00) xxx xxx Discrete Optimization approximation algorithm for twostage stochastic matching problems Nan Kong, Andrew J. Schaefer * Department of
More informationWeighted Sum Coloring in Batch Scheduling of Conflicting Jobs
Weighted Sum Coloring in Batch Scheduling of Conflicting Jobs Leah Epstein Magnús M. Halldórsson Asaf Levin Hadas Shachnai Abstract Motivated by applications in batch scheduling of jobs in manufacturing
More information! Solve problem to optimality. ! Solve problem in polytime. ! Solve arbitrary instances of the problem. #approximation algorithm.
Approximation Algorithms 11 Approximation Algorithms Q Suppose I need to solve an NPhard problem What should I do? A Theory says you're unlikely to find a polytime algorithm Must sacrifice one of three
More informationLoad balancing of temporary tasks in the l p norm
Load balancing of temporary tasks in the l p norm Yossi Azar a,1, Amir Epstein a,2, Leah Epstein b,3 a School of Computer Science, Tel Aviv University, Tel Aviv, Israel. b School of Computer Science, The
More informationEcient approximation algorithm for minimizing makespan. on uniformly related machines. Chandra Chekuri. November 25, 1997.
Ecient approximation algorithm for minimizing makespan on uniformly related machines Chandra Chekuri November 25, 1997 Abstract We obtain a new ecient approximation algorithm for scheduling precedence
More informationOnline Adwords Allocation
Online Adwords Allocation Shoshana Neuburger May 6, 2009 1 Overview Many search engines auction the advertising space alongside search results. When Google interviewed Amin Saberi in 2004, their advertisement
More informationImproved Algorithms for Data Migration
Improved Algorithms for Data Migration Samir Khuller 1, YooAh Kim, and Azarakhsh Malekian 1 Department of Computer Science, University of Maryland, College Park, MD 20742. Research supported by NSF Award
More informationTHE SCHEDULING OF MAINTENANCE SERVICE
THE SCHEDULING OF MAINTENANCE SERVICE Shoshana Anily Celia A. Glass Refael Hassin Abstract We study a discrete problem of scheduling activities of several types under the constraint that at most a single
More informationResource Allocation with Time Intervals
Resource Allocation with Time Intervals Andreas Darmann Ulrich Pferschy Joachim Schauer Abstract We study a resource allocation problem where jobs have the following characteristics: Each job consumes
More informationCSC2420 Fall 2012: Algorithm Design, Analysis and Theory
CSC2420 Fall 2012: Algorithm Design, Analysis and Theory Allan Borodin November 15, 2012; Lecture 10 1 / 27 Randomized online bipartite matching and the adwords problem. We briefly return to online algorithms
More informationMinimum Makespan Scheduling
Minimum Makespan Scheduling Minimum makespan scheduling: Definition and variants Factor 2 algorithm for identical machines PTAS for identical machines Factor 2 algorithm for unrelated machines Martin Zachariasen,
More informationFinding and counting given length cycles
Finding and counting given length cycles Noga Alon Raphael Yuster Uri Zwick Abstract We present an assortment of methods for finding and counting simple cycles of a given length in directed and undirected
More informationPrivate Approximation of Clustering and Vertex Cover
Private Approximation of Clustering and Vertex Cover Amos Beimel, Renen Hallak, and Kobbi Nissim Department of Computer Science, BenGurion University of the Negev Abstract. Private approximation of search
More information1 Introduction. Linear Programming. Questions. A general optimization problem is of the form: choose x to. max f(x) subject to x S. where.
Introduction Linear Programming Neil Laws TT 00 A general optimization problem is of the form: choose x to maximise f(x) subject to x S where x = (x,..., x n ) T, f : R n R is the objective function, S
More informationOn Competitiveness in Uniform Utility Allocation Markets
On Competitiveness in Uniform Utility Allocation Markets Deeparnab Chakrabarty Department of Combinatorics and Optimization University of Waterloo Nikhil Devanur Microsoft Research, Redmond, Washington,
More informationGENERATING LOWDEGREE 2SPANNERS
SIAM J. COMPUT. c 1998 Society for Industrial and Applied Mathematics Vol. 27, No. 5, pp. 1438 1456, October 1998 013 GENERATING LOWDEGREE 2SPANNERS GUY KORTSARZ AND DAVID PELEG Abstract. A kspanner
More informationExponential time algorithms for graph coloring
Exponential time algorithms for graph coloring Uriel Feige Lecture notes, March 14, 2011 1 Introduction Let [n] denote the set {1,..., k}. A klabeling of vertices of a graph G(V, E) is a function V [k].
More informationA constantfactor approximation algorithm for the kmedian problem
A constantfactor approximation algorithm for the kmedian problem Moses Charikar Sudipto Guha Éva Tardos David B. Shmoys July 23, 2002 Abstract We present the first constantfactor approximation algorithm
More informationLecture 7: Approximation via Randomized Rounding
Lecture 7: Approximation via Randomized Rounding Often LPs return a fractional solution where the solution x, which is supposed to be in {0, } n, is in [0, ] n instead. There is a generic way of obtaining
More informationCompletion Time Scheduling and the WSRPT Algorithm
Completion Time Scheduling and the WSRPT Algorithm Bo Xiong, Christine Chung Department of Computer Science, Connecticut College, New London, CT {bxiong,cchung}@conncoll.edu Abstract. We consider the online
More informationOnline DegreeBounded Steiner Network Design
Online DegreeBounded Steiner Network Design The problem of satisfying connectivity demands on a graph while respecting given constraints has been a pillar of the area of network design since the early
More informationCycle transversals in bounded degree graphs
Electronic Notes in Discrete Mathematics 35 (2009) 189 195 www.elsevier.com/locate/endm Cycle transversals in bounded degree graphs M. Groshaus a,2,3 P. Hell b,3 S. Klein c,1,3 L. T. Nogueira d,1,3 F.
More informationCrossLayer Survivability in WDMBased Networks
CrossLayer Survivability in WDMBased Networks Kayi Lee, Member, IEEE, Eytan Modiano, Senior Member, IEEE, HyangWon Lee, Member, IEEE, Abstract In layered networks, a single failure at a lower layer
More informationApproximation Algorithms: LP Relaxation, Rounding, and Randomized Rounding Techniques. My T. Thai
Approximation Algorithms: LP Relaxation, Rounding, and Randomized Rounding Techniques My T. Thai 1 Overview An overview of LP relaxation and rounding method is as follows: 1. Formulate an optimization
More informationPermutation Betting Markets: Singleton Betting with Extra Information
Permutation Betting Markets: Singleton Betting with Extra Information Mohammad Ghodsi Sharif University of Technology ghodsi@sharif.edu Hamid Mahini Sharif University of Technology mahini@ce.sharif.edu
More informationDefinition of a Linear Program
Definition of a Linear Program Definition: A function f(x 1, x,..., x n ) of x 1, x,..., x n is a linear function if and only if for some set of constants c 1, c,..., c n, f(x 1, x,..., x n ) = c 1 x 1
More informationA Constant Factor Approximation Algorithm for the Storage Allocation Problem
A Constant Factor Approximation Algorithm for the Storage Allocation Problem Reuven BarYehuda reuven@cs.technion.ac.il Dror Rawitz rawitz@eng.tau.ac.il Michael Beder bederml@cs.technion.ac.il Abstract
More informationOnline Optimization with Uncertain Information
Online Optimization with Uncertain Information Mohammad Mahdian Yahoo! Research mahdian@yahooinc.com Hamid Nazerzadeh Stanford University hamidnz@stanford.edu Amin Saberi Stanford University saberi@stanford.edu
More informationprinceton univ. F 13 cos 521: Advanced Algorithm Design Lecture 6: Provable Approximation via Linear Programming Lecturer: Sanjeev Arora
princeton univ. F 13 cos 521: Advanced Algorithm Design Lecture 6: Provable Approximation via Linear Programming Lecturer: Sanjeev Arora Scribe: One of the running themes in this course is the notion of
More informationLecture 3: Linear Programming Relaxations and Rounding
Lecture 3: Linear Programming Relaxations and Rounding 1 Approximation Algorithms and Linear Relaxations For the time being, suppose we have a minimization problem. Many times, the problem at hand can
More informationA Nearlinear Time Constant Factor Algorithm for Unsplittable Flow Problem on Line with Bag Constraints
A Nearlinear Time Constant Factor Algorithm for Unsplittable Flow Problem on Line with Bag Constraints Venkatesan T. Chakaravarthy, Anamitra R. Choudhury, and Yogish Sabharwal IBM Research  India, New
More informationJUSTINTIME SCHEDULING WITH PERIODIC TIME SLOTS. Received December May 12, 2003; revised February 5, 2004
Scientiae Mathematicae Japonicae Online, Vol. 10, (2004), 431 437 431 JUSTINTIME SCHEDULING WITH PERIODIC TIME SLOTS Ondřej Čepeka and Shao Chin Sung b Received December May 12, 2003; revised February
More information! Solve problem to optimality. ! Solve problem in polytime. ! Solve arbitrary instances of the problem. !approximation algorithm.
Approximation Algorithms Chapter Approximation Algorithms Q Suppose I need to solve an NPhard problem What should I do? A Theory says you're unlikely to find a polytime algorithm Must sacrifice one of
More informationAdvertisement Allocation for Generalized Second Pricing Schemes
Advertisement Allocation for Generalized Second Pricing Schemes Ashish Goel Mohammad Mahdian Hamid Nazerzadeh Amin Saberi Abstract Recently, there has been a surge of interest in algorithms that allocate
More informationChapter 11. 11.1 Load Balancing. Approximation Algorithms. Load Balancing. Load Balancing on 2 Machines. Load Balancing: Greedy Scheduling
Approximation Algorithms Chapter Approximation Algorithms Q. Suppose I need to solve an NPhard problem. What should I do? A. Theory says you're unlikely to find a polytime algorithm. Must sacrifice one
More informationPermutation Betting Markets: Singleton Betting with Extra Information
Permutation Betting Markets: Singleton Betting with Extra Information Mohammad Ghodsi Sharif University of Technology ghodsi@sharif.edu Hamid Mahini Sharif University of Technology mahini@ce.sharif.edu
More informationThe Approximability of the Binary Paintshop Problem
The Approximability of the Binary Paintshop Problem Anupam Gupta 1, Satyen Kale 2, Viswanath Nagarajan 2, Rishi Saket 2, and Baruch Schieber 2 1 Dept. of Computer Science, Carnegie Mellon University, Pittsburgh
More informationA simpler and better derandomization of an approximation algorithm for Single Source RentorBuy
A simpler and better derandomization of an approximation algorithm for Single Source RentorBuy David P. Williamson Anke van Zuylen School of Operations Research and Industrial Engineering, Cornell University,
More informationOffline sorting buffers on Line
Offline sorting buffers on Line Rohit Khandekar 1 and Vinayaka Pandit 2 1 University of Waterloo, ON, Canada. email: rkhandekar@gmail.com 2 IBM India Research Lab, New Delhi. email: pvinayak@in.ibm.com
More informationAlgorithm Design and Analysis
Algorithm Design and Analysis LECTURE 27 Approximation Algorithms Load Balancing Weighted Vertex Cover Reminder: Fill out SRTEs online Don t forget to click submit Sofya Raskhodnikova 12/6/2011 S. Raskhodnikova;
More informationEnergy Efficient Monitoring in Sensor Networks
Energy Efficient Monitoring in Sensor Networks Amol Deshpande, Samir Khuller, Azarakhsh Malekian, Mohammed Toossi Computer Science Department, University of Maryland, A.V. Williams Building, College Park,
More informationScheduling Shop Scheduling. Tim Nieberg
Scheduling Shop Scheduling Tim Nieberg Shop models: General Introduction Remark: Consider non preemptive problems with regular objectives Notation Shop Problems: m machines, n jobs 1,..., n operations
More informationScheduling Parallel Jobs with Linear Speedup
Scheduling Parallel Jobs with Linear Speedup Alexander Grigoriev and Marc Uetz Maastricht University, Quantitative Economics, P.O.Box 616, 6200 MD Maastricht, The Netherlands. Email: {a.grigoriev,m.uetz}@ke.unimaas.nl
More informationClassification  Examples
Lecture 2 Scheduling 1 Classification  Examples 1 r j C max given: n jobs with processing times p 1,...,p n and release dates r 1,...,r n jobs have to be scheduled without preemption on one machine taking
More informationApproximating the Online Set Multicover Problems Via Randomized Winnowing
Approximating the Online Set Multicover Problems Via Randomized Winnowing Piotr Berman 1 and Bhaskar DasGupta 2 1 Department of Computer Science and Engineering, Pennsylvania State University, University
More informationSurvey of Terrain Guarding and Art Gallery Problems
Survey of Terrain Guarding and Art Gallery Problems Erik Krohn Abstract The terrain guarding problem and art gallery problem are two areas in computational geometry. Different versions of terrain guarding
More informationLOCAL SEARCH HEURISTICS FOR kmedian AND FACILITY LOCATION PROBLEMS
SIAM J. COMPUT. Vol. 33, No. 3, pp. 544 562 c 2004 Society for Industrial and Applied Mathematics LOCAL SEARCH HEURISTICS FOR kmedian AND FACILITY LOCATION PROBLEMS VIJAY ARYA, NAVEEN GARG, ROHIT KHANDEKAR,
More informationFactoring & Primality
Factoring & Primality Lecturer: Dimitris Papadopoulos In this lecture we will discuss the problem of integer factorization and primality testing, two problems that have been the focus of a great amount
More informationA Combinatorial Allocation Mechanism With Penalties For Banner Advertising
A Combinatorial Allocation Mechanism With Penalties For Banner Advertising Uriel Feige Weizmann Institute Rehovot 76100, Israel uriel.feige@weizmann.ac.il Nicole Immorlica Centrum voor Wisunde en Informatica
More informationOnline PrimalDual Algorithms for Maximizing AdAuctions Revenue
Online PrimalDual Algorithms for Maximizing AdAuctions Revenue Niv Buchbinder 1, Kamal Jain 2, and Joseph (Seffi) Naor 1 1 Computer Science Department, Technion, Haifa, Israel. 2 Microsoft Research,
More informationStructural properties of oracle classes
Structural properties of oracle classes Stanislav Živný Computing Laboratory, University of Oxford, Wolfson Building, Parks Road, Oxford, OX1 3QD, UK Abstract Denote by C the class of oracles relative
More informationCSC2420 Spring 2015: Lecture 3
CSC2420 Spring 2015: Lecture 3 Allan Borodin January 22, 2015 1 / 1 Announcements and todays agenda Assignment 1 due next Thursday. I may add one or two additional questions today or tomorrow. Todays agenda
More information20 Selfish Load Balancing
20 Selfish Load Balancing Berthold Vöcking Abstract Suppose that a set of weighted tasks shall be assigned to a set of machines with possibly different speeds such that the load is distributed evenly among
More informationClicker Question. Theorems/Proofs and Computational Problems/Algorithms MC215: MATHEMATICAL REASONING AND DISCRETE STRUCTURES
MC215: MATHEMATICAL REASONING AND DISCRETE STRUCTURES Tuesday, 1/21/14 General course Information Sets Reading: [J] 1.1 Optional: [H] 1.11.7 Exercises: Do before next class; not to hand in [J] pp. 1214:
More informationMathematical finance and linear programming (optimization)
Mathematical finance and linear programming (optimization) Geir Dahl September 15, 2009 1 Introduction The purpose of this short note is to explain how linear programming (LP) (=linear optimization) may
More informationA Turán Type Problem Concerning the Powers of the Degrees of a Graph
A Turán Type Problem Concerning the Powers of the Degrees of a Graph Yair Caro and Raphael Yuster Department of Mathematics University of HaifaORANIM, Tivon 36006, Israel. AMS Subject Classification:
More informationApproximating Minimum Bounded Degree Spanning Trees to within One of Optimal
Approximating Minimum Bounded Degree Spanning Trees to within One of Optimal ABSTACT Mohit Singh Tepper School of Business Carnegie Mellon University Pittsburgh, PA USA mohits@andrew.cmu.edu In the MINIMUM
More information3. Linear Programming and Polyhedral Combinatorics
Massachusetts Institute of Technology Handout 6 18.433: Combinatorial Optimization February 20th, 2009 Michel X. Goemans 3. Linear Programming and Polyhedral Combinatorics Summary of what was seen in the
More informationScheduling Parallel Jobs with Monotone Speedup 1
Scheduling Parallel Jobs with Monotone Speedup 1 Alexander Grigoriev, Marc Uetz Maastricht University, Quantitative Economics, P.O.Box 616, 6200 MD Maastricht, The Netherlands, {a.grigoriev@ke.unimaas.nl,
More informationThe degree, size and chromatic index of a uniform hypergraph
The degree, size and chromatic index of a uniform hypergraph Noga Alon Jeong Han Kim Abstract Let H be a kuniform hypergraph in which no two edges share more than t common vertices, and let D denote the
More informationA General Purpose Local Search Algorithm for Binary Optimization
A General Purpose Local Search Algorithm for Binary Optimization Dimitris Bertsimas, Dan Iancu, Dmitriy Katz Operations Research Center, Massachusetts Institute of Technology, E40147, Cambridge, MA 02139,
More informationCMSC 858T: Randomized Algorithms Spring 2003 Handout 8: The Local Lemma
CMSC 858T: Randomized Algorithms Spring 2003 Handout 8: The Local Lemma Please Note: The references at the end are given for extra reading if you are interested in exploring these ideas further. You are
More informationFrequency Capping in Online Advertising
Frequency Capping in Online Advertising (Extended Abstract) Niv Buchbinder 1, Moran Feldman 2, Arpita Ghosh 3, and Joseph (Seffi) Naor 2 1 Open University, Israel niv.buchbinder@gmail.com 2 Computer Science
More informationMinimize subject to. x S R
Chapter 12 Lagrangian Relaxation This chapter is mostly inspired by Chapter 16 of [1]. In the previous chapters, we have succeeded to find efficient algorithms to solve several important problems such
More informationOnline Bipartite Perfect Matching With Augmentations
Online Bipartite Perfect Matching With Augmentations Kamalika Chaudhuri, Constantinos Daskalakis, Robert D. Kleinberg, and Henry Lin Information Theory and Applications Center, U.C. San Diego Email: kamalika@soe.ucsd.edu
More informationONLINE DEGREEBOUNDED STEINER NETWORK DESIGN. Sina Dehghani Saeed Seddighin Ali Shafahi Fall 2015
ONLINE DEGREEBOUNDED STEINER NETWORK DESIGN Sina Dehghani Saeed Seddighin Ali Shafahi Fall 2015 ONLINE STEINER FOREST PROBLEM An initially given graph G. s 1 s 2 A sequence of demands (s i, t i ) arriving
More informationSHARP BOUNDS FOR THE SUM OF THE SQUARES OF THE DEGREES OF A GRAPH
31 Kragujevac J. Math. 25 (2003) 31 49. SHARP BOUNDS FOR THE SUM OF THE SQUARES OF THE DEGREES OF A GRAPH Kinkar Ch. Das Department of Mathematics, Indian Institute of Technology, Kharagpur 721302, W.B.,
More informationOnline Scheduling for Cloud Computing and Different Service Levels
2012 IEEE 201226th IEEE International 26th International Parallel Parallel and Distributed and Distributed Processing Processing Symposium Symposium Workshops Workshops & PhD Forum Online Scheduling for
More informationMinimal Cost Reconfiguration of Data Placement in a Storage Area Network
Minimal Cost Reconfiguration of Data Placement in a Storage Area Network Hadas Shachnai Gal Tamir Tami Tamir Abstract VideoonDemand (VoD) services require frequent updates in file configuration on the
More informationIntroduction to Algorithms. Part 3: P, NP Hard Problems
Introduction to Algorithms Part 3: P, NP Hard Problems 1) Polynomial Time: P and NP 2) NPCompleteness 3) Dealing with Hard Problems 4) Lower Bounds 5) Books c Wayne Goddard, Clemson University, 2004 Chapter
More informationWhat s next? Reductions other than kernelization
What s next? Reductions other than kernelization Dániel Marx HumboldtUniversität zu Berlin (with help from Fedor Fomin, Daniel Lokshtanov and Saket Saurabh) WorKer 2010: Workshop on Kernelization Nov
More informationFairness in Routing and Load Balancing
Fairness in Routing and Load Balancing Jon Kleinberg Yuval Rabani Éva Tardos Abstract We consider the issue of network routing subject to explicit fairness conditions. The optimization of fairness criteria
More informationInternational Journal of Information Technology, Modeling and Computing (IJITMC) Vol.1, No.3,August 2013
FACTORING CRYPTOSYSTEM MODULI WHEN THE COFACTORS DIFFERENCE IS BOUNDED Omar Akchiche 1 and Omar Khadir 2 1,2 Laboratory of Mathematics, Cryptography and Mechanics, Fstm, University of Hassan II MohammediaCasablanca,
More information1 Approximating Set Cover
CS 05: Algorithms (Grad) Feb 224, 2005 Approximating Set Cover. Definition An Instance (X, F ) of the setcovering problem consists of a finite set X and a family F of subset of X, such that every elemennt
More informationApplication Placement on a Cluster of Servers (extended abstract)
Application Placement on a Cluster of Servers (extended abstract) Bhuvan Urgaonkar, Arnold Rosenberg and Prashant Shenoy Department of Computer Science, University of Massachusetts, Amherst, MA 01003 {bhuvan,
More information