Analysis of Approximation Algorithms for kset Cover using FactorRevealing Linear Programs


 Chrystal Higgins
 2 years ago
 Views:
Transcription
1 Analysis of Approximation Algorithms for kset Cover using FactorRevealing Linear Programs Stavros Athanassopoulos, Ioannis Caragiannis, and Christos Kaklamanis Research Academic Computer Technology Institute & Department of Computer Engineering and Informatics University of Patras, Rio, Greece Abstract. We present new combinatorial approximation algorithms for kset cover. Previous approaches are based on extending the greedy algorithm by efficiently handling small sets. The new algorithms further extend them by utilizing the natural idea of computing large packings of elements into sets of large size. Our results improve the previously best approximation bounds for the kset cover problem for all values of k 6. The analysis technique could be of independent interest; the upper bound on the approximation factor is obtained by bounding the objective value of a factorrevealing linear program. Introduction Set cover is a fundamental combinatorial optimization problem with many applications. Instances of the problem consist of a set of elements V and a collection S of subsets of V and the objective is to select a subset of S of minimum cardinality so that every element is covered, i.e., it is contained in at least one of the selected sets. The natural greedy algorithm starts with an empty solution and augments it until all elements are covered by selecting a set that contains the maximum number of elements that are not contained in any of the previously selected sets. Denoting by n the number of elements, it is known by the seminal papers of Johnson [0], Lovasz [3], and Chvátal [] that the greedy algorithm has approximation ratio H n. The tighter analysis of Slavík [4] improves the upper bound on the approximation ratio to ln n ln ln n + O(. Asymptotically, these bounds are tight due to a famous inapproximability result of Feige [3] which states that there is no ( ɛ ln napproximation algorithm for set cover unless all problems in NP have deterministic algorithms running in subexponential time O ( n polylog(n. An interesting variant is kset cover where every set of S has size at most k. Without loss of generality, we may assume that S is closed under subsets. In this case, the greedy algorithm can be equivalently expressed as follows: This work was partially supported by the European Union under IST FET Integrated Project AEOLUS.
2 Greedy phases: For i = k down to do: Choose a maximal collection of disjoint isets. An iset is a set that contains exactly i previously uncovered elements and a collection T of disjoint isets is called maximal if any other iset intersects some of the sets in T. A tight bound of H k on the approximation ratio of the greedy algorithm is well known in this case. Since the problem has many applications for particular values of k and due to its interest from a complexitytheoretic viewpoint, designing algorithms with improved second order terms in their approximation ratio has received much attention. Currently, there are algorithms with approximation ratio H k c where c is a constant. Goldschmidt et al. [4] were the first to present a modified greedy algorithm with c = /6. This value was improved to /3 by Halldórsson [6] and to /2 by Duh and Fürer [2]. Recently, Levin [2] further improved the constant to 98/ for k 4. On the negative side, Trevisan [5] has shown that, unless subexponentialtime deterministic algorithms for NP exist, no polynomialtime algorithm has an approximation ratio of ln k Ω(ln ln k. The main idea that has been used in order to improve the performance of the greedy algorithm is to efficiently handle small sets. The algorithm of Goldschmidt et al. [4] uses a matching computation to accommodate as many elements as possible in sets of size 2 when no set of size at least 3 contains new elements. The algorithms of Halldórsson [5, 6] and Duh and Fürer [2] handle efficiently sets of size 3. The algorithm of [2] is based on a semilocal optimization technique. Levin s improvement [2] extends the algorithm of [2] by efficiently handling of sets of size 4. A natural but completely different idea is to replace the phases of the greedy algorithm associated with large sets with setpacking phases that also aim to maximize the number of new elements covered by large maximal sets. The approximation factor is not getting worse (due to the maximality condition while it has been left as an open problem in [2] whether it leads to any improvement in the approximation bound. This is the aim of the current paper: we show that by substituting the greedy phases in the algorithms of Duh and Fürer with packing phases, we obtain improved approximation bounds for every k 6 which approaches H k for large values of k. In particular, we will use algorithms for the kset packing problem which is defined as follows. An instance of kset packing consists of a set of elements V and a collection S of subsets of V each containing exactly k elements. The objective is to select as many as possible disjoint sets from S. When k = 2, the problem is equivalent to maximum matching in graphs and, hence, it is solvable in polynomial time. For k 3, the problem is APXhard []; the best known inapproximability bound for large k is asymptotically O ( log k k [7]. Note that any maximal collection of disjoint subsets yields a /kapproximate solution. The best known algorithms have approximation ratio 2 ɛ k for any ɛ > 0 [8] and are based on local search; these are the algorithms used by the packing phases of our algorithms.
3 Our analysis is based on the concept of factorrevealing LPs which has been introduced in a different context in [9] for the analysis of approximation algorithms for facility location. We show that the approximation factor is upperbounded by the maximum objective value of a factorrevealing linear program. Hence, no explicit reasoning about the structure of the solution computed by the algorithms is required. Instead, the performance guarantees of the several phases are used as black boxes in the definition of the constraints of the LP. The rest of the paper is structured as follows. We present the algorithms of Duh and Fürer [2] as well as our modifications in Section 2. The analysis technique is discussed in Section 3 where we present the factorrevealing LP lemmas. Then, in Section 4, we present a part of the proofs of our main results; proofs that have been omitted from this extended abstract will appear in the final version of the paper. We conclude in Section 5. 2 Algorithm description In this section we present the algorithms considered in this paper. We start by giving an overview of the related results in [2]; then, we present our algorithms and main statements. Besides the greedy algorithm, local search algorithms have been used for the kcover problem, in particular for small values of k. Pure local search starts with any cover and works in steps. In each step, the current solution is improved by replacing a constant number of sets with a (hopefully smaller number of other sets in order to obtain a new cover. Duh and Fürer introduced the technique of semilocal optimization which extends pure local search. In terms of 3set cover, the main idea behind semilocal optimization is that once the sets of size 3 have been selected, computing the minimum number of sets of size 2 and in order to complete the covering can be done in polynomial time by a matching computation. Hence, a semilocal (s, timprovement step for 3set cover consists of the deletion of up to t 3sets from the current cover and the insertion of up to s 3sets and the minimum necessary 2sets and sets that complete the cover. The quality of an improvement is defined by the total number of sets in the cover while in case of two covers of the same size, the one with the smallest number of sets is preferable. Semilocal optimization for k 4 is much similar; local improvements are now defined on sets of size at least 3 while 2sets and sets are globally changed. The analysis of [2] shows that the best choice of the parameters (s, t is (2,. Theorem (Duh and Fürer [2]. Consider an instance of kset cover whose optimal solution has a i isets. Then, the semilocal (2, optimization algorithm has cost at most a + a 2 + k i+ 3 a i. Proof (outline. The proof of [2] proceeds as follows. Let b i be the number of i sets in the solution. First observe that k i= ib i = k i= ia i. Then, the following two properties of semilocal (2, optimization are proved: b a and b +b 2 k i= a i. The theorem follows by summing the three inequalities.
4 This algorithm has been used as a basis for the following algorithms that approximate kset cover. We will call them GSLI k,l and GRSLI k,l, respectively. Algorithm GSLI k,l. Greedy phases: For i = k down to l + do: Choose a maximal collection of isets. Semilocal optimization phase: Run the semilocal (2, optimization algorithm on the remaining instance. Theorem 2 (Duh and Fürer [2]. Algorithm GSLI k,4 has approximation ratio H k 5/2. Algorithm GRSLI k,l Greedy phases: For i = k down to l + do: Choose a maximal collection of isets. Restricted phases: For i = l down to 4 do: Choose a maximal collection of disjoint isets so that the choice of these isets does not increase the number of sets in the final solution. Semilocal optimization phase: Run the semilocal optimization algorithm on the remaining instance. Theorem 3 (Duh and Fürer [2]. Algorithm GRSLI k,5 ratio H k /2. has approximation We will modify the algorithms above by replacing each greedy phase with a packing phase for handling sets of not very small size. We use the local search algorithms of Hurkens and Schrijver [8] in each packing phase. The modified algorithms are called PSLI k,l and PRSLI k,l, respectively. A local search algorithm for set packing uses a constant parameter p (informally, this is an upper bound on the number of local improvements performed at each step and, starting with an empty packing Π, repeatedly updates Π by replacing any set of s < p sets of Π with s + sets so that feasibility is maintained and until no replacement is possible. Clearly, the algorithm runs in polynomial time. It has been analyzed in [8] (see also [5] for related investigations. Theorem 4 (Hurkens and Schrijver [8]. The local search tset packing algorithm that performs at most p local improvements at each step has approximation ratio ρ t 2(t r t t(t r t, if p = 2r and ρ t 2(t r 2 t(t r 2, if p = 2r. As a corollary, for any constant ɛ > 0, we obtain a 2 ɛ t approximation algorithm for tset packing by using p = O(log t /ɛ local improvements. Our algorithms PSLI k,l and PRSLI k,l simply replace each of the greedy phases of the algorithms GSLI k,l and GRSLI k,l, respectively, with the following packing phase: Packing phases: For i = k down to l + do: Select a maximal collection of disjoint isets using a 2 ɛ i approximation local search iset packing algorithm.
5 Our first main result (Theorem 5 is a statement on the performance of algorithm PSLI k,l (for l = 4 which is the best choice. Theorem 5. For any constant ɛ > 0, algorithm PSLI k,4 has approximation ratio at most H k/ ɛ for even k 6, at most 2H k H k ɛ for k {5, 7, 9,, 3}, and at most H k k k + ɛ for odd k 5. Algorithm PSLI k,4 outperforms algorithm GSLI k,4 for k 5, algorithm GRSLI k,5 for k 9, as well as the improvement of Levin [2] for k 2. For large values of k, the approximation bound approaches H k c with c = ln 2 / Algorithm PSLI k,l has been mainly included here in order to introduce the analysis technique. As we will see in the next section, the factorrevealing LP is simpler in this case. Algorithm PRSLI k,l is even better; its performance (for l = 5 is stated in the following. Theorem 6. For any constant ɛ > 0, algorithm PRSLI k,5 has approximation ratio at most 2H k H k ɛ for odd k 7, at most ɛ for k = 6, and at most 2H k H k/ k k + ɛ for even k 8. Algorithm PRSLI k,5 achieves better approximation ratio than the algorithm of Levin [2] for every k 6. For example, the approximation ratio of for 6set cover improves the previous bound of H For large values of k, the approximation bound approaches H k c with c = 77/60 ln See Table for a comparison between the algorithms discussed in this section. Table. Comparison of the approximation ratio of the algorithms GSLI k,4, PSLI k,4, GRSLI k,5, the algorithm in [2] and algorithm PRSLI k,5 for several values of k. k GSLI k,4 [2] PSLI k,4 GRSLI k,5 [2] [2] PRSLI k, large k H k H k H k 0.5 H k H k
6 3 Analysis through factorrevealing LPs Our proofs on the approximation guarantee of our algorithms essentially follow by computing upper bounds on the objective value of factorrevealing linear programs whose constraints capture simple invariants maintained in the phases of the algorithms. Consider an instance (V, S of kset cover. For any phase of the algorithms associated with i (i = l,..., k for algorithm PSLI k,l and i = 3,..., k for algorithm PRSLI k,l, consider the instance (V i, S i where V i contains the elements in V that have not been covered in previous phases and S i contains the sets of S which contain only elements in V i. Denote by OPT i an optimal solution of instance (V i, S i ; we also denote the optimal solution OPT k of (V k, S k = (V, S by OPT. Since S is closed under subsets, without loss of generality, we may assume that OPT i contains disjoint sets. Furthermore, it is clear that OPT i OPT i for i k, i.e., OPT i OPT. For a phase of algorithm PSLI k,l or PRSLI k,l associated with i, denote by a i,j the ratio of the number of jsets in OPT i over OPT. Since OPT i OPT, we obtain that a i,j. ( The iset packing algorithm executed on packing phase associated with i includes in isets the elements in V i \V i. Since V i V i, their number is i V i \V i = V i V i = ja i,j OPT. (2 ja i,j Denote by ρ i the approximation ratio of the iset packing algorithm executed on the phase associated with i. Since at the beginning of the packing phase associated with i, there exist at least a i,i OPT isets, the iset packing algorithm computes at least ρ i a i,i OPT isets, i.e., covering at least iρ i a i,i OPT elements from sets in OPT i. Hence, V i \V i iρ i a i,i OPT, and (2 yields i i ja i,j ja i,j i( ρ i a i,i 0. (3 So far, we have defined all constraints for the factorrevealing LP of algorithm PSLI k,l. Next, we bound from above the number of sets computed by algorithm PSLI k,l as follows. Let t i be the number of isets computed by the iset packing algorithm executed at the packing phase associated with i l +. Clearly, t i = i V i\v i = ja i,j i ja i,j OPT. (4 i i
7 By Theorem, we have that t l a l, + a l,2 + l j + 3 a l,j OPT. (5 j=3 Hence, by (4 and (5, it follows that the approximation guarantee of algorithm PSLI k,l is k i=4 t i OPT = k i=l+ i i ja i,j ja k,j + + l l + a l,2 + k i=l+ i(i + l ( j + 3 j=3 ja i,j + a l, + a l,2 + ja i,j + l l + a l, j l + l j=3 j + 3 a l,j a l,j (6 Hence, an upper bound on the approximation ratio of algorithm PSLI k,l follows by maximizing the right part of (6 subject to the constraints ( for i = l,..., k and (3 for i = l +,..., k with variables a i,j 0 for i = l,..., k and j =,..., i. Formally, we have proved the following statement. Lemma. The approximation ratio of algorithm PSLI k,l when a ρ i approximation iset packing algorithm is used at phase i for i = l +,..., k is upperbounded by the maximum objective value of the following linear program: maximize k subject to ja k,j + + l l + a l,2 + k i=l+ i(i + l ( j + 3 j=3 a i,j, i = l,..., k ja i,j + l l + a l, j l + a l,j i i ja i,j ja i,j i( ρ i a i,i 0, i = l +,..., k a i,j 0, i = l,..., k, j =,..., i Each packing or restricted phase of algorithm PRSLI k,l satisfies (3; a restricted phase associated with i = 4,..., l computes a maximal iset packing and, hence, ρ i = /i in this case. In addition, the restricted phases impose extra constraints. Denote by b, b 2, and b 3 the ratio of the number of sets, 2sets, and 3sets computed by the
8 semilocal optimization phase over OPT, respectively. The restricted phases guarantee that the number of the sets in the final solution does not increase, and, hence, b a i,, for i = 3,..., l. (7 Following the proof of Theorem, we obtain b + b 2 a 3, + a 3,2 + a 3,3 while it is clear that b + 2b 2 + 3b 3 = a 3, + 2a 3,2 + 3a 3,3. We obtain that the number t 3 of sets computed during the semilocal optimization phase of algorithm PRSLI k,l is t 3 = (b + b 2 + b 3 OPT ( b 3 + b + b 2 + b + 2b 2 + 3b ( 3 b a 3, + a 3, a 3,3 OPT OPT. (8 Reasoning as before, we obtain that (4 gives the number t i of isets computed during the packing or restricted phase associated with i = 4,..., k. By (4 and (8, we obtain that the performance guarantee of algorithm PRSLI k,l is k t i OPT = k i=4 i i ja i,j ja i,j k ja k,j + i(i + i= a 3, + a 3, a 3,3 + 3 b ja i,j a 3, + 2 a 3, a 3,3 + 3 b (9 Hence, an upper bound on the approximation ratio of algorithm PRSLI k,l follows by maximizing the right part of (9 subject to the constraints ( for i = 3,..., k, (3 for i = 4,..., k, and (7, with variables a i,j 0 for i = 3,..., k and j =,..., i, and b 0. Formally, we have proved the following statement. Lemma 2. The approximation ratio of algorithm PRSLI k,l when a ρ i approximation iset packing algorithm is used at phase i for i = l +,..., k is upperbounded by the maximum objective value of the following linear program: maximize k subject to k ja k,j + i(i + i=4 a i,j, i = 3,..., k ja i,j a 3, + 2 a 3, a 3,3 + 3 b i i ja i,j ja i,j i( ρ i a i,i 0, i = l +,..., k
9 i i ja i,j ja i,j (i a i,i 0, i = 4,..., l b a i, 0, i = 3,..., l a i,j 0, i = 3,..., k, j =,..., i b 0 4 Proofs of main theorems We are now ready to prove our main results. We can show that the maximum objective values of the factorrevealing LPs for algorithms PSLI k,4 and PRSLI k,5 are upperbounded by the values stated in Theorems 5 and 6. In order to prove this, it suffices to find feasible solutions to the dual LPs that have these values as objective values. In the following, we prove Theorem 5 by considering the case when k is even. The proof for odd k as well as the proof of Theorem 6 (which is slightly more complicated will appear in the final version of the paper. Proof of Theorem 5. The dual of the factorrevealing LP of algorithm PSLI k,4 is: minimize i=4 β i subject to β 4 + γ β 4 + 2γ β 4 + 3γ 5 5 β 4 + 4γ β i + jγ i+ jγ i j, i = 5,..., k, j =,..., i i(i + β i + iγ i+ (i 2 + ɛγ i, i = 5,..., k i + β k jγ k j, j =,..., k k β k (k 2 + ɛγ k β i 0, i = 4,..., k γ i 0, i = 5,..., k We consider only the case of even k. We set γ k = k(k and γ k = 0. If k 8, we set γ i = γ i i(i+(i+2 for i = 5,..., k 2. We also set β k = + (k 2 + ɛγ k, β 4 = 3 5 4γ 5 and β i = i + iγ i+ + (i 2 + ɛγ i
10 for i = 5,..., k. We will show that all the constraints of the dual LP are satisfied. Clearly, γ i 0 for i = 5,..., k. Observe that γ k +γ k = k(k. If k 8, by the definition of γ i for i = 5,..., k 2, we have that and, hence, γ i + γ i+ i(i + = γ 2 i+ + γ i+2 + i(i + (i + 2 i(i + = γ i+ + γ i+2 (i + (i + 2 γ i + γ i+ i(i + = γ k + γ k k(k = 0, i.e., γ i + γ i+ = i(i+ for i = 5,..., k. Now, the definition of β i s yields β i = i + iγ i+ + (i 2 + ɛγ i = i i(i + (i γ i+ + (i γ i + ɛγ i (0 j i(i + jγ i+ + jγ i 0 for i = 5,..., k and j =,..., i. Hence, all the constraints on β i i = 5,..., k are satisfied. The constraints on β k are also maintainted. Since γ k = k(k k for we have that β k = + (k 2 + ɛγ k k k + (k γ k + ɛγ k j k + jγ k 0 for j =,..., k. It remains to show that the constraints on β 4 are also satisfied. It suffices to show that γ 5 /45. This is clear when k = 6. If k 8, consider the equalities γ i + γ i+ = i(i+ for odd i = 5,..., k 3 and γ i γ i+ = i(i+ for even i = 6,..., k 2. Summing them, and since γ k = 0, we obtain that γ 5 = = = k/2 k/2 k/2 ( = k/ i(2i 2i(2i + ( 2i 2i 2i + 2i + ( 2i + k/2 2i + i 2 2i + k H k/
11 = 5 + 2H k 2 H k/ k H k/ = 2H k 2 2H k/2 + k ln /45 The first inequality follows since 2H k 2 2H k/2 + k is increasing on k (this can be easily seen by examining the original definition of γ 5 and since lim t H t / ln t =. We have shown that all the constraints of the dual LP are satisfied, i.e., the solution is feasible. In order to compute the objective value, we use the definition of β i s and equality (0. We obtain i=4 k/2 β i = β 4 + β 5 + (β 2i + β 2i+ + β k = 3 5 4γ γ 5 4γ 6 + k/2 ( 2i + 2iγ 2i+ + (2i 2γ 2i 2i + (2i + (2i + 2 2iγ 2i+2 + 2iγ 2i+ + + (k 2γ k + ɛ k/2 k/2 = 2 + i + 4γ 6 + ((2i 2γ 2i 2iγ 2i+2 + (k 2γ k +ɛ i=5 γ i H k/2 + /6 + ɛ where the last inequality follows since k i=5 γ i k i=5 i(i = k i=5 /4 /k. By duality, k the factorrevealing LP. The theorem follows by Lemma. ( i=5 γ i i i i=4 β i is an upper bound on the maximum objective value of = 5 Extensions We have experimentally verified using Matlab that our upper bounds are tight in the sense that they are the maximum objective values of the factorrevealing LPs (ignoring the ɛ term in the approximation bound. Our analysis technique can also be used to provide simpler proofs of the results in [2] (i.e., Theorems 2 and 3; this is left as an exercise to the reader. The several cases that are considered in the proofs of [2] are actually included as constraints in the factorrevealing
12 LPs which are much simpler than the ones for algorithms PSLI k,l and PRSLI k,l. Furthermore, note that we have not combined our techniques with the recent algorithm of Levin [2] that handles sets of size 4 using a restricted local search phase. It is tempting to conjecture that further improvements are possible. References. V. Chvátal. A greedy hueristic for the setcovering problem. Mathematics of Operations Research, 4, pp , R. Duh and M. Fürer. Approximation of kset cover by semi local optimization. In Proceedings of the 29th Annual ACM Symposium on Theory of Computing (STOC 97, pp , U. Feige. A threshold of ln n for approximating set cover. Journal of the ACM, 45(4, pp , O. Goldschmidt, D. Hochbaum, and G. Yu. A modified greedy heuristic for the set covering problem with improved worst case bound. Information Processing Letters, 48, pp , M. M. Halldórsson. Approximating discrete collections via local improvements. In Proceedings of the 6th Annual ACM/SIAM Symposium on Discrete Algorithms (SODA 95, pp , M. M. Halldórsson. Approximating kset cover and complementary graph coloring. In Proceedings of the 5th Conference on Integer Programming and Combinatorial Optimization (IPCO 96, LNCS 084, Springer, pp. 83, E. Hazan, S. Safra, and O. Schwartz. On the complexity of approximating kset packing. Computational Complexity, 5(, pp , C. A. J. Hurkens and A. Schrijver. On the size of systems of sets every t of which have an SDR, with an application to the worstcase ratio of heuristics for packing problems. SIAM Journal on Discrete Mathematics, 2(, pp , K. Jain, M. Mahdian, E. Markakis, A. Saberi, and V. V. Vazirani. Greedy facility location algorithms analyzed using dual fitting with factorrevealing LP. Journal of the ACM, 50(6, pp , D. S. Johnson. Approximation algorithms for combinatorial problems. Journal of Computer and System Sciences, 9, pp , V. Kann. Maximum bounded 3dimensional matching is MAX SNPcomplete. Information Processing Letters, 37, pp , A. Levin. Approximating the unweighted kset cover problem: greedy meets local search. In Proceedings of the 4th International Workshop on Approximation and Online Algorithms (WAOA 06, LNCS 4368, Springer, pp , L. Lovász. On the ratio of optimal integral and fractional covers. Discrete Mathematics, 3, pp , P. Slavík. A tight analysis of the greedy algorithm for set cover. Journal of Algorithms, 25, pp , L. Trevisan. Nonapproximability results for optimization problems on bounded degree instances. In Proceedings of the 33rd Annual ACM Symposium on Theory of Computing (STOC 0, pp , 200.
Energyefficient communication in multiinterface wireless networks
Energyefficient communication in multiinterface wireless networks Stavros Athanassopoulos, Ioannis Caragiannis, Christos Kaklamanis, and Evi Papaioannou Research Academic Computer Technology Institute
More informationNew Bounds on the Competitiveness of Randomized Online Call Control in Cellular Networks
New Bounds on the Competitiveness of Randomized Online Call Control in Cellular Networks Ioannis Caragiannis, Christos Kaklamanis, and Evi Papaioannou Research Academic Computer Technology Institute and
More informationTight Bounds for Selfish and Greedy Load Balancing
Tight Bounds for Selfish and Greedy Load Balancing Ioannis Caragiannis 1, Michele Flammini, Christos Kaklamanis 1, Panagiotis Kanellopoulos 1, and Luca Moscardelli 1 Research Academic Computer Technology
More informationAnalysis of the Greedy Approach in Problems of Maximum kcoverage
Analysis of the Greedy Approach in Problems of Maximum kcoverage Dorit S. Hochbaum, 1 Anu Pathria 2 1 Department of Industrial Engineering and Operations Research and Walter A. Haas School of Business,
More informationDefinition 11.1. Given a graph G on n vertices, we define the following quantities:
Lecture 11 The Lovász ϑ Function 11.1 Perfect graphs We begin with some background on perfect graphs. graphs. First, we define some quantities on Definition 11.1. Given a graph G on n vertices, we define
More informationCompetitive Analysis of On line Randomized Call Control in Cellular Networks
Competitive Analysis of On line Randomized Call Control in Cellular Networks Ioannis Caragiannis Christos Kaklamanis Evi Papaioannou Abstract In this paper we address an important communication issue arising
More informationLecture 12: Steiner Tree Problems
Advanced Approximation Algorithms (CMU 15854B, Spring 008) Lecture 1: Steiner Tree Problems February 1, 008 Lecturer: Anupam Gupta Scribe: Michael Dinitz 1 Finishing up Group Steiner Tree Hardness Last
More information1. Lecture notes on bipartite matching
Massachusetts Institute of Technology Handout 3 18.433: Combinatorial Optimization February 9th, 2009 Michel X. Goemans 1. Lecture notes on bipartite matching Matching problems are among the fundamental
More informationThe Online Set Cover Problem
The Online Set Cover Problem Noga Alon Baruch Awerbuch Yossi Azar Niv Buchbinder Joseph Seffi Naor ABSTRACT Let X = {, 2,..., n} be a ground set of n elements, and let S be a family of subsets of X, S
More informationClass constrained bin covering
Class constrained bin covering Leah Epstein Csanád Imreh Asaf Levin Abstract We study the following variant of the bin covering problem. We are given a set of unit sized items, where each item has a color
More informationGeneralizing Vertex Cover, an Introduction to LPs
CS5234: Combinatorial and Graph Algorithms Lecture 2 Generalizing Vertex Cover, an Introduction to LPs Lecturer: Seth Gilbert August 19, 2014 Abstract Today we consider two generalizations of vertex cover:
More informationCSC Linear Programming and Combinatorial Optimization Lecture 12: Approximation Algorithms using Tools from LP
S2411  Linear Programming and ombinatorial Optimization Lecture 12: Approximation Algorithms using Tools from LP Notes taken by Matei David April 12, 2005 Summary: In this lecture, we give three example
More informationStanford University CS261: Optimization Handout 7 Luca Trevisan January 25, 2011
Stanford University CS261: Optimization Handout 7 Luca Trevisan January 25, 2011 Lecture 7 In which we show how to use linear programming to approximate the vertex cover problem. 1 Linear Programming Relaxations
More informationA Combinatorial Algorithm for Computing a Maximum Independent Set in a tperfect Graph
A Combinatorial Algorithm for Computing a Maximum Independent Set in a tperfect Graph Friedrich Eisenbrand Stefan Funke Naveen Garg Jochen Könemann Abstract We present a combinatorial polynomial time
More informationOnline Coloring Cointerval Graphs
Online Coloring Cointerval Graphs Hamid ZarrabiZadeh School of Computer Science, University of Waterloo Waterloo, Ontario, Canada, N2L 3G1 hzarrabi@uwaterloo.ca Abstract We study the problem of online
More informationLecture 6: Approximation via LP Rounding
Lecture 6: Approximation via LP Rounding Let G = (V, E) be an (undirected) graph. A subset C V is called a vertex cover for G if for every edge (v i, v j ) E we have v i C or v j C (or both). In other
More informationarxiv: v1 [cs.cc] 29 Mar 2011
On the Complexity of Edge Packing and Vertex Packing Parvathy K. N., Sameera Muhamed Salam, Sudeep K. S., K. Murali Krishnan Department of Computer Science and Engineering, National Institute of Technology
More informationGraph Coloring (1994, 1998; Karger, Motwani, Sudan)
Graph Coloring (1994, 1998; Karger, Motwani, Sudan) Michael Langberg, The Open University of Israel, www.openu.ac.il entry editor: Chandra Chekuri INDEX TERMS: Graph coloring, approximation algorithms,
More informationThe Generalized Assignment Problem with Minimum Quantities
The Generalized Assignment Problem with Minimum Quantities Sven O. Krumke a, Clemens Thielen a, a University of Kaiserslautern, Department of Mathematics PaulEhrlichStr. 14, D67663 Kaiserslautern, Germany
More informationApproximated Distributed Minimum Vertex Cover Algorithms for Bounded Degree Graphs
Approximated Distributed Minimum Vertex Cover Algorithms for Bounded Degree Graphs Yong Zhang 1.2, Francis Y.L. Chin 2, and HingFung Ting 2 1 College of Mathematics and Computer Science, Hebei University,
More informationLPbased solution methods for the asymmetric TSP
LPbased solution methods for the asymmetric TSP Vardges Melkonian Department of Mathematics, Ohio Universtiy, Athens, Ohio 45701, USA vardges@math.ohiou.edu Abstract We consider an LP relaxation for ATSP.
More informationA greedy heuristic for a generalized set covering problem
R u t c o r Research R e p o r t A greedy heuristic for a generalized set covering problem Peter Chen a Guoli Ding b RRR 162008, RUTCOR Rutgers Center for Operations Research Rutgers University 640 Bartholomew
More informationINSTITUT FÜR INFORMATIK
INSTITUT FÜR INFORMATIK A simple OPT + 1 algorithm for cutting stock under the modified integer roundup property assumption Klaus Jansen Roberto SolisOba Bericht Nr. 1009 September 2010 CHRISTIANALBRECHTSUNIVERSITÄT
More information18 Minimum Bandwidth Problem
Our goal in the next three lectures will be to study the notion of Volume Respecting Embeddings. In this lecture we develop the basic framework and see how this idea is used to obtain a nontrivial approximation
More informationCS 583: Approximation Algorithms Lecture date: February 3, 2016 Instructor: Chandra Chekuri
CS 583: Approximation Algorithms Lecture date: February 3, 2016 Instructor: Chandra Chekuri Scribe: CC Notes updated from Spring 2011. In the previous lecture we discussed the Knapsack problem. In this
More information1 The Minimum Spanning Tree (MST) Problem
IEOR269: Lecture 3 1 Integer Programming and Combinatorial Optimization Lecture #3 IEOR 269 Feb 5, 2010 Lecturer: Dorit Hochbaum Scribe: Dogan Bilguvar Handouts: Game of Fiver and Fire Station Problems
More informationApproximation Algorithms
Approximation Algorithms or: How I Learned to Stop Worrying and Deal with NPCompleteness Ong Jit Sheng, Jonathan (A0073924B) March, 2012 Overview Key Results (I) General techniques: Greedy algorithms
More informationTopic: Greedy Approximations: Set Cover and Min Makespan Date: 1/30/06
CS880: Approximations Algorithms Scribe: Matt Elder Lecturer: Shuchi Chawla Topic: Greedy Approximations: Set Cover and Min Makespan Date: 1/30/06 3.1 Set Cover The Set Cover problem is: Given a set of
More informationTopic: Bin Packing and Euclidean TSP Date: 2/6/2007
CS880: Approximations Algorithms Scribe: Tom Watson Lecturer: Shuchi Chawla Topic: Bin Packing and Euclidean TSP Date: 2/6/2007 In the previous lecture, we saw how dynamic programming could be employed
More information7. Lecture notes on the ellipsoid algorithm
Massachusetts Institute of Technology Handout 19 18.433: Combinatorial Optimization May 4th, 009 Michel X. Goemans 7. Lecture notes on the ellipsoid algorithm The simplex algorithm was the first algorithm
More informationShort Cycles make Whard problems hard: FPT algorithms for Whard Problems in Graphs with no short Cycles
Short Cycles make Whard problems hard: FPT algorithms for Whard Problems in Graphs with no short Cycles Venkatesh Raman and Saket Saurabh The Institute of Mathematical Sciences, Chennai 600 113. {vraman
More informationA PROOF OF NP P. Viktor V. Ivanov
A PROOF OF NP P Viktor V. Ivanov Abstract. A proof (on about 7 pages) is based on better estimates of lower bounds on time complexity that hold for all solution algorithms. Almost no special knowledge
More informationOptimization (2MMD10/2DME20) TU/e, fall 2015 Problem set for weeks 4 and 5
Optimization (2MMD10/2DME20) TU/e, fall 2015 Problem set for weeks 4 and 5 Exercise 69. State for each of the following decision problems whether you think that it is contained in NP and/or conp. If you
More informationZeroSum Games Public Strategies Minimax Theorem and Nash Equilibria Appendix. ZeroSum Games. Algorithmic Game Theory.
Public Strategies Minimax Theorem and Nash Equilibria Appendix 2012 Public Strategies Minimax Theorem and Nash Equilibria Appendix Definition For consistency with literature we here consider utility functions
More informationWeek 10. c T x + d T y. Ax + Dy = b. x integer.
Week 10 1 Integer Linear Programg So far we considered LP s with continuous variables. However sometimes decisions are intrinsically restricted to integer numbers. E.g., in the long term planning, decision
More informationAnalysis of a Greedy Heuristic for Finding Small Dominating Sets in Graphs
February 1991 LIDSP2018 Analysis of a Greedy Heuristic for Finding Small Dominating Sets in Graphs Abhay K. Parekh Laboratory For Information and Decision Systems, M.I.T., Cambridge, MA 02139, USA Abstract
More informationInteger Programming Theory
Integer Programming Theory Laura Galli November 11, 2014 In the following we assume all functions are linear, hence we often drop the term linear. In discrete optimization, we seek to find a solution x
More informationLocal search for the minimum label spanning tree problem with bounded color classes
Available online at www.sciencedirect.com Operations Research Letters 31 (003) 195 01 Operations Research Letters www.elsevier.com/locate/dsw Local search for the minimum label spanning tree problem with
More informationAn Approximation Algorithm for Bounded Degree Deletion
An Approximation Algorithm for Bounded Degree Deletion Tomáš Ebenlendr Petr Kolman Jiří Sgall Abstract Bounded Degree Deletion is the following generalization of Vertex Cover. Given an undirected graph
More informationOn Allocations that Maximize Fairness
On Allocations that Maximize Fairness Uriel Feige Abstract We consider a problem known as the restricted assignment version of the maxmin allocation problem with indivisible goods. There are n items of
More informationThe Conference Call Search Problem in Wireless Networks
The Conference Call Search Problem in Wireless Networks Leah Epstein 1, and Asaf Levin 2 1 Department of Mathematics, University of Haifa, 31905 Haifa, Israel. lea@math.haifa.ac.il 2 Department of Statistics,
More informationA2 1 10Approximation Algorithm for a Generalization of the Weighted EdgeDominating Set Problem
Journal of Combinatorial Optimization, 5, 317 326, 2001 c 2001 Kluwer Academic Publishers. Manufactured in The Netherlands. A2 1 Approximation Algorithm for a Generalization of the Weighted EdgeDominating
More informationA Note on Maximum Independent Sets in Rectangle Intersection Graphs
A Note on Maximum Independent Sets in Rectangle Intersection Graphs Timothy M. Chan School of Computer Science University of Waterloo Waterloo, Ontario N2L 3G1, Canada tmchan@uwaterloo.ca September 12,
More informationScheduling to Minimize Power Consumption using Submodular Functions
Scheduling to Minimize Power Consumption using Submodular Functions Erik D. Demaine MIT edemaine@mit.edu Morteza Zadimoghaddam MIT morteza@mit.edu ABSTRACT We develop logarithmic approximation algorithms
More informationNan Kong, Andrew J. Schaefer. Department of Industrial Engineering, Univeristy of Pittsburgh, PA 15261, USA
A Factor 1 2 Approximation Algorithm for TwoStage Stochastic Matching Problems Nan Kong, Andrew J. Schaefer Department of Industrial Engineering, Univeristy of Pittsburgh, PA 15261, USA Abstract We introduce
More informationResource Minimization Job Scheduling
Resource Minimization Job Scheduling Julia Chuzhoy 1 and Paolo Codenotti 2 1 Toyota Technological Institute, Chicago, IL 60637 Supported in part by NSF CAREER award CCF0844872 cjulia@ttic.org 2 Department
More information2.3 Scheduling jobs on identical parallel machines
2.3 Scheduling jobs on identical parallel machines There are jobs to be processed, and there are identical machines (running in parallel) to which each job may be assigned Each job = 1,,, must be processed
More informationThe multiinteger set cover and the facility terminal cover problem
The multiinteger set cover and the facility teral cover problem Dorit S. Hochbaum Asaf Levin December 5, 2007 Abstract The facility teral cover problem is a generalization of the vertex cover problem.
More informationDiscrete Applied Mathematics. The firefighter problem with more than one firefighter on trees
Discrete Applied Mathematics 161 (2013) 899 908 Contents lists available at SciVerse ScienceDirect Discrete Applied Mathematics journal homepage: www.elsevier.com/locate/dam The firefighter problem with
More information2stage stochastic linear programming
2stage stochastic linear programming Yesterday, we considered problems that were modelling an extreme form of uncertainty. The decision maker, just knows the sort of problem he is going to be solved,
More informationThe Nodeweighted Steiner Problem in Graphs of Restricted Node Weights
The Nodeweighted Steiner Problem in Graphs of Restricted Node Weights Spyros Angelopoulos David R. Cheriton School of Computer Science, University of Waterloo Waterloo ON N2L 3G1, Canada sangelop@cs.uwaterloo.ca
More informationThe Knapsack Problem and Fully Polynomial Time Approximation Schemes (FPTAS)
The Knapsack Problem and Fully Polynomial Time Approximation Schemes FPTAS) Katherine Lai 18.434: Seminar in Theoretical Computer Science Prof. M. X. Goemans March 10, 2006 1 The Knapsack Problem In the
More information9th MaxPlanck Advanced Course on the Foundations of Computer Science (ADFOCS) PrimalDual Algorithms for Online Optimization: Lecture 1
9th MaxPlanck Advanced Course on the Foundations of Computer Science (ADFOCS) PrimalDual Algorithms for Online Optimization: Lecture 1 Seffi Naor Computer Science Dept. Technion Haifa, Israel Introduction
More informationCollege of Computer & Information Science Fall 2007 Northeastern University 9 October 2007
College of Computer & Information Science Fall 2007 Northeastern University 9 October 2007 CS G399: Algorithmic Power Tools I Scribe: Laura Poplawski Lecture Outline: Network Design Steiner Forest (primaldual
More informationWeighted Sum Coloring in Batch Scheduling of Conflicting Jobs
Weighted Sum Coloring in Batch Scheduling of Conflicting Jobs Leah Epstein Magnús M. Halldórsson Asaf Levin Hadas Shachnai Abstract Motivated by applications in batch scheduling of jobs in manufacturing
More informationOnline Bipartite Matching Made Simple
Online Bipartite Matching Made Simple Benjamin Birnbaum Claire Mathieu Abstract We examine the classic online bipartite matching problem studied by Karp, Vazirani, and Vazirani [8] and provide a simple
More informationNew PrimalDual Algorithms for Steiner Tree Problems
New PrimalDual Algorithms for Steiner Tree Problems Vardges Melkonian Department of Mathematics, Ohio Universtiy, Athens, Ohio 45701, USA vardges@math.ohiou.edu Abstract We present new primaldual algorithms
More informationOnline Scheduling with Bounded Migration
Online Scheduling with Bounded Migration Peter Sanders, Naveen Sivadasan, and Martin Skutella MaxPlanckInstitut für Informatik, Saarbrücken, Germany, {sanders,ns,skutella}@mpisb.mpg.de Abstract. Consider
More informationChance Constrained Knapsack Problem with Random Item Sizes
Chance Constrained Knapsack Problem with Random Item Sizes Vineet Goyal R. Ravi September 14, 2009 Abstract We consider a stochastic knapsack problem where each item has a known profit but a random size.
More information1 Approximation Algorithms
LECTURES 7, 8 and 9 1 Approximation Algorithms NPhardness of many combinatorial optimisation problems gives very little hope that we can ever develop an efficient algorithm for their solution. There are
More informationOn the Covering Steiner Problem
On the Covering Steiner Problem Anupam Gupta 1 and Aravind Srinivasan 2 1 Department of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15232, USA. anupamg@cs.cmu.edu 2 Department of Computer
More informationThe Design of Competitive Online Algorithms via a Primal Dual Approach. Contents
Foundations and Trends R in Theoretical Computer Science Vol. 3, Nos. 2 3 (2007) 93 263 c 2009 N. Buchbinder and J. (Seffi) Naor DOI: 10.1561/0400000024 The Design of Competitive Online Algorithms via
More informationCS : Algorithms and Uncertainty Lecture 11 Date: 10/5/2016
CS 294128: Algorithms and Uncertainty Lecture 11 Date: 10/5/2016 Instructor: Nikhil Bansal Scribe: Seeun William Umboh 1 Introduction In this lecture, we consider online network design and a new analysis
More informationHomework Assignment #5: Solutions
Advanced Algorithms, Fall 2014 Prof. Bernard Moret Homework Assignment #5: Solutions Question 1. Given a set of points {x 1,...,x n } on the number line, we want to find the smallest set of unitlength
More informationTotally Unimodular Matrices
Totally Unimodular Matrices m constraints, n variables Vertex solution: unique solution of n linearly independent tight inequalities Can be rewritten as: That is: Totally Unimodular Matrices Assuming all
More informationFinding a Maximum Independent Set in a Sparse Random Graph
Finding a Maximum Independent Set in a Sparse Random Graph Uriel Feige Eran Ofek September 15, 2005 Abstract We consider the problem of finding a maximum independent set in a random graph. The random graph
More informationLecture 7,8 (Sep 22 & 24, 2015):Facility Location, KCenter
,8 CMPUT 675: Approximation Algorithms Fall 2015 Lecture 7,8 (Sep 22 & 24, 2015):Facility Location, KCenter Lecturer: Mohammad R. Salavatipour Scribe: Based on older notes 7.1 Uncapacitated Facility Location
More informationVertex Cover. Linear Progamming and Approximation Algorithms. Joshua Wetzel
Linear Progamming and Approximation Algorithms Joshua Wetzel Department of Computer Science Rutgers University Camden wetzeljo@camden.rutgers.edu March 24, 29 Joshua Wetzel / 52 What is Linear Programming?
More informationOn the Complexity of Distributed Graph Coloring
On the Complexity of Distributed Graph Coloring Fabian Kuhn Microsoft Research Silicon Valley 065 La Avenida Mountain View, CA 9404, USA kuhn@microsoft.com Roger Wattenhofer Computer Engineering and Networks
More informationReducing RankMaximal to Maximum Weight Matching
Reducing RankMaximal to Maximum Weight Matching Dimitrios Michail a, a MaxPlanckInstitut für Informatik, Saarbrücken, Germany Abstract Given a bipartite graph G(V, E), V = A B where V = n, E = m and
More informationExponential time algorithms for graph coloring
Exponential time algorithms for graph coloring Uriel Feige Lecture notes, March 14, 2011 1 Introduction Let [n] denote the set {1,..., k}. A klabeling of vertices of a graph G(V, E) is a function V [k].
More informationMinimum Entropy Orientations
Minimum Entropy Orientations Jean Cardinal Samuel Fiorini Gwenaël Joret Abstract We study graph orientations that minimize the entropy of the indegree sequence. The problem of finding such an orientation
More informationApproximating Maximum Weight KColorable Subgraphs in Chordal Graphs
Approximating Maximum Weight KColorable Subgraphs in Chordal Graphs Venkatesan T. Chakaravarthy Sambuddha Roy IBM India Research Lab, New Delhi. {vechakra,sambuddha}@in.ibm.com Abstract We present a 2approximation
More informationOn Competitiveness in Uniform Utility Allocation Markets
On Competitiveness in Uniform Utility Allocation Markets Deeparnab Chakrabarty Department of Combinatorics and Optimization University of Waterloo Nikhil Devanur Microsoft Research, Redmond, Washington,
More informationCSC Linear Programming and Combinatorial Optimization Lecture 7: von Neumann minimax theorem, Yao s minimax Principle, Ellipsoid Algorithm
D CSC2411  Linear Programming and Combinatorial Optimization Lecture : von Neumann minimax theorem, Yao s minimax Principle, Ellipsoid Algorithm Notes taken by Xuming He March 4, 200 Summary: In this
More information1 Total Dual Integrality
CS 598CSC: Combinatorial Optimization Lecture date: February 25, 2010 Instructor: Chandra Chekuri Scribe: Bill Kinnersley 1 Total Dual Integrality Recall that if A is TUM and b, c are integral vectors,
More informationA NOTE ON PACKING PATHS IN PLANAR GRAPHS December, revised; 1994 October
A NOTE ON PACKING PATHS IN PLANAR GRAPHS ANDRÁS FRANK and ZOLTÁN SZIGETI 1993 December, revised; 1994 October ABSTRACT P.D. Seymour proved that the cut criterion is necessary and sufficient for the solvability
More informationThe Relative Worst Order Ratio for OnLine Algorithms
The Relative Worst Order Ratio for OnLine Algorithms Joan Boyar 1 and Lene M. Favrholdt 2 1 Department of Mathematics and Computer Science, University of Southern Denmark, Odense, Denmark, joan@imada.sdu.dk
More informationTHE SCHEDULING OF MAINTENANCE SERVICE
THE SCHEDULING OF MAINTENANCE SERVICE Shoshana Anily Celia A. Glass Refael Hassin Abstract We study a discrete problem of scheduling activities of several types under the constraint that at most a single
More informationFinding and counting given length cycles
Finding and counting given length cycles Noga Alon Raphael Yuster Uri Zwick Abstract We present an assortment of methods for finding and counting simple cycles of a given length in directed and undirected
More informationImproved Algorithms for Data Migration
Improved Algorithms for Data Migration Samir Khuller 1, YooAh Kim, and Azarakhsh Malekian 1 Department of Computer Science, University of Maryland, College Park, MD 20742. Research supported by NSF Award
More informationApproximation Schemes for Scheduling on Parallel Machines with GoS Levels
The Eighth International Symposium on Operations Research and Its Applications (ISORA 09) Zhangjiajie, China, September 20 22, 2009 Copyright 2009 ORSC & APORC, pp. 53 60 Approximation Schemes for Scheduling
More informationApproximation Algorithms for Metric Facility Location and kmedian Problems Using the PrimalDual Schema and Lagrangian Relaxation
Approximation Algorithms for Metric Facility Location and kmedian Problems Using the PrimalDual Schema and Lagrangian Relaxation KAMAL JAIN AND VIJAY V. VAZIRANI Georgia Institute of Technology, Atlanta,
More informationSatisfiability thresholds for kcnf formula with bounded variable intersections arxiv: v1 [cs.dm] 15 Jun 2010
Satisfiability thresholds for kcnf formula with bounded variable intersections arxiv:1006.3030v1 [cs.dm] 15 Jun 2010 Karthekeyan Chandrasekaran Georgia Institute of Technology Bernhard Haeupler Massachusetts
More informationTwo General Methods to Reduce Delay and Change of Enumeration Algorithms
ISSN 13465597 NII Technical Report Two General Methods to Reduce Delay and Change of Enumeration Algorithms Takeaki Uno NII2003004E Apr.2003 Two General Methods to Reduce Delay and Change of Enumeration
More informationMinimum Makespan Scheduling
Minimum Makespan Scheduling Minimum makespan scheduling: Definition and variants Factor 2 algorithm for identical machines PTAS for identical machines Factor 2 algorithm for unrelated machines Martin Zachariasen,
More informationQuadratic programming on graphs without long odd cycles
Quadratic programming on graphs without long odd cycles Marcin Kamiński Department of Computer Science Université Libre de Bruxelles, Belgium Marcin.Kaminski@ulb.ac.be Abstract We introduce a quadratic
More informationChapter 6: Random rounding of semidefinite programs
Chapter 6: Random rounding of semidefinite programs Section 6.1: Semidefinite Programming Section 6.: Finding large cuts Extra (not in book): The max sat problem. Section 6.5: Coloring 3colorabale graphs.
More informationWeighted Sum Coloring in Batch Scheduling of Conflicting Jobs
Weighted Sum Coloring in Batch Scheduling of Conflicting Jobs Leah Epstein Magnús M. Halldórsson Asaf Levin Hadas Shachnai Abstract Motivated by applications in batch scheduling of jobs in manufacturing
More informationLINEAR PROGRAMMING. Vazirani Chapter 12 Introduction to LPDuality. George Alexandridis(NTUA)
LINEAR PROGRAMMING Vazirani Chapter 12 Introduction to LPDuality George Alexandridis(NTUA) gealexan@mail.ntua.gr 1 LINEAR PROGRAMMING What is it? A tool for optimal allocation of scarce resources, among
More informationARTICLE IN PRESS. European Journal of Operational Research xxx (2004) xxx xxx. Discrete Optimization. Nan Kong, Andrew J.
A factor 1 European Journal of Operational Research xxx (00) xxx xxx Discrete Optimization approximation algorithm for twostage stochastic matching problems Nan Kong, Andrew J. Schaefer * Department of
More informationAdmission Control to Minimize Rejections and Online Set Cover with Repetitions
Admission Control to Minimize Rejections and Online Set Cover with Repetitions Noga Alon Schools of Mathematics and Computer Science TelAviv University TelAviv, 69978, Israel noga@math.tau.ac.il Yossi
More information15451/651: Design & Analysis of Algorithms March 28, 2016 Lecture #19 last changed: March 31, 2016
15451/651: Design & Analysis of Algorithms March 28, 2016 Lecture #19 last changed: March 31, 2016 While we have good algorithms for many optimization problems, the previous lecture showed that many others
More informationA constantfactor approximation algorithm for the kmedian problem
A constantfactor approximation algorithm for the kmedian problem Moses Charikar Sudipto Guha Éva Tardos David B. Shmoys July 23, 2002 Abstract We present the first constantfactor approximation algorithm
More informationCMSC 858F: Algorithmic Game Theory Fall 2010 Frugality & Profit Maximization in Mechanism Design
CMSC 858F: Algorithmic Game Theory Fall 200 Frugality & Profit Maximization in Mechanism Design Instructor: Mohammad T. Hajiaghayi Scribe: Barna Saha September 29th, 200 Overview In this lecture, we start
More informationLecture 11: Integer Linear Programs
Lecture 11: Integer Linear Programs 1 Integer Linear Programs Consider the following version of Woody s problem: x 1 = chairs per day, x 2 = tables per day max z = 35x 1 + 60x 2 profits 14x 1 + 26x 2 190
More informationOn the Separation of Rank Inequalities for the Maximum Stable Set Problem
On the Separation of Rank Inequalities for the Maximum Stable Set Problem Stefano Gualandi AntOptima, IDSIA, Lugano, Switzerland Joint work with Stefano Coniglio Lehrstuhl II für Mathematik, RWTH Aachen
More informationAlgorithms for Integer Programming
Algorithms for Integer Programming Laura Galli December 18, 2014 Unlike linear programming problems, integer programming problems are very difficult to solve. In fact, no efficient general algorithm is
More informationPolynomiality of Linear Programming
Chapter 10 Polynomiality of Linear Programming In the previous section, we presented the Simplex Method. This method turns out to be very efficient for solving linear programmes in practice. While it is
More informationStanford University CS261: Optimization Handout 5 Luca Trevisan January 18, 2011
Stanford University CS261: Optimization Handout 5 Luca Trevisan January 18, 2011 Lecture 5 In which we introduce linear programming. 1 Linear Programming A linear program is an optimization problem in
More information