# Topic: Greedy Approximations: Set Cover and Min Makespan Date: 1/30/06

Save this PDF as:

Size: px
Start display at page:

Download "Topic: Greedy Approximations: Set Cover and Min Makespan Date: 1/30/06"

## Transcription

1 CS880: Approximations Algorithms Scribe: Matt Elder Lecturer: Shuchi Chawla Topic: Greedy Approximations: Set Cover and Min Makespan Date: 1/30/ Set Cover The Set Cover problem is: Given a set of elements E = {e 1,e 2,...,e n } and a set of m subsets of E, S = {S 1,S 2,...,S n }, find a least cost collection C of sets from S such that C covers all elements in E. That is, Si CS i = E. Set Cover comes in two flavors, unweighted and weighted. In unweighted Set Cover, the cost of a collection C is number of sets contained in it. In weighted Set Cover, there is a nonnegative weight function w : S R, and the cost of C is defined to be its total weight, i.e., S i C w S i). First, we will deal with the unweighted Set Cover problem. The following algorithm is an extension of the greedy vertex cover algorithm that we discussed in Lecture 1. Algorithm Set CoverE, S): 1. C. 2. While E contains elements not covered by C: a) Pick an element e E not covered by C. b) Add all sets S i containing e to C. To analyze Algorithm 3.1.1, we will need the following definition: Definition A set E of elements in E is independent if, for all e 1,e 2 E, there is no S i C such that e 1,e 2 S i. Now, we shall determine how strong an approximation Algorithm is. Say that the frequency of an element is the number of sets that contain that element. Let F denote the maximum frequency across all elements. Thus, F is the largest number of sets from S that we might add to our cover C at any step in the algorithm. It is clear that the elements selected by the algorithm form an independent set, so the algorithm selects no more than F E elements, where E is the set of elements picked in Step 2a. That is, ALG F E. Because every element is covered by some subset in an optimal set cover, we know that E OPT for any independent set E. Thus, ALG F OPT, and Algorithm is therefore an F approximation. Theorem Algorithm is an F approximation to Set Cover. Algorithm is a good approximation if F is guaranteed to be small. In general, however, there could be some element contained in every set of S, and Algorithm would be a very poor approximation. So, we consider a different unweighted Set Cover approximation algorithm which uses the greedy strategy to yield a ln n approximation. 1

2 Algorithm Set CoverE, S): 1. C. 2. While E contains elements not covered by C: a) Find the set S i containing the greatest number of uncovered elements. b) Add S i to C. Theorem Algorithm is a ln n OPT approximation. Proof: Let k = OPT, and let E t be the set of elements not yet covered after step i, with E 0 = E. OPT covers every E t with no more than k sets. ALG always picks the largest set over E t in step t + 1. The size of this largest set must cover at least E t /k in E t ; if it covered fewer elements, no way of picking sets would be able to cover E t in k sets, which contradicts the existence of OPT. So, E t+1 E t E t /k, and, inductively, E t n 1 1/k) t. When E t < 1, we know we are done, so we solve for this t: 1 1 ) t < 1 k n ) k t n < k 1 ln n t ln ) k 1 t k ln n = OPTln n. Algorithm finishes within OPTlnn steps, so it uses no more than that many sets. We can get a better analysis for this approximation by considering when E t < k, as follows: n 1 k) 1 t = k t k n 1 e t/k = k because 1 x)1/x 1 e e t/k = n k t = k ln n k. for all x). Thus, after k ln n k steps there remain only k elements. Each subsequent step removes at least one element, so ALG OPT ln n OPT + 1). Theorem If all sets are of size B, then there exists a ln B + 1) approximation to unweighted Set Cover. Proof: If all sets have size no greater than B, then k n/b. So, B n/k, and Algorithm gives a ln B + 1) approximation. 2

3 Now we extend Algorithm to the weighted case. Here, instead of selecting sets by their number of uncovered elements, we select sets by the efficiency of their uncovered elements, or the number of uncovered elements per unit weight. Algorithm Weighted Set CoverS, C, E, w): 1. C, and E E. 2. While E contains uncovered elements: a) s argmax X S X E /wx). b) C C s, S S \ {s}, and E E \ S. Algorithm was first analyzed in [5]. Theorem Algorithm achieves a ln n approximation to Weighted Set Cover. Proof: For every picked set S j, define θ j as S j E /ws j ) at the time that S j was picked. For each element e, let S j be the first picked set that covers it, and define coste) = 1/θ j. Notice that coste) = ALG. e E Let us order the elments in the order that they were picked, breaking ties arbitrarily. At the time that the i th element call it e i ) was picked, E contained at least n i + 1 elements. At that point, the per-element cost of OPT is at most OPT/n i + 1). Thus, for at least one of the sets in OPT, we know that S E ws) n i + 1 OPT. Therefore, for the set S j picked by the algorithm, we have θ j n i + 1)/OPT. So, coste i ) OPT n i + 1. Over the execution of Algorithm 3.1.7, the value of i goes from n to 1. Thus, the total cost of each element that the algorithm removes is at most n i=1 OPT OPTln n. n i + 1 Thus, Algorithm is a ln n approximation to Weighted Set Cover. The above analysis is tight, which we can see by the following example: 3

4 The dots are elements, and the loops represent the sets of S. Each set has weight 1. The optimal solution is to take the two long sets, with a total cost of 2. If Algorithm instead selects the leftmost thick set at first, then it will take at least 5 sets. This example generalizes to a family of examples each with 2 k elements, and shows that no analysis of Algorithm will make it better than a Oln n) approximation. A ln n approximation to Set Cover can also be obtained by other techniques, including LP-rounding. However, Feige showed that no improvement, even by a constant factor, is likely: Theorem There is no 1 ɛ) ln n approximation to Weighted Set Cover unless NP DTIMEn log log n ). [1] 3.2 Min Makespan Scheduling The Min Makespan Problem is: given n jobs to schedule on m machines, where job i has size s i, schedule the jobs to minimize their makespan. Definition The makespan of a schedule is the earliest time when all machines have stopped doing work. This problem is NP-hard, as can be seen by a reduction from Partition. The following algorithm due to Ron Graham yields a 2 approximation. Algorithm Graham s List Scheduling) [2] Given a set of n jobs and a set of m empty machine queues, 1. Order the jobs arbitrarily. 2. Until the job list is empty, move the next job in the list to the end of the shortest machine queue. Theorem Graham s List Scheduling is a 2 approximation. Proof: Let S j denote the size of job j. Suppose job i is the last job to finish in a Graham s List schedule, and let t i be the time it starts. When job i was placed, its queue was no longer than any other queue, so every queue is full until t i. Thus, ALG = S i + t i S i + P n j=1 S j) S i 1 m = m n j=1 S j + 1 1/m)S i. It s easy to see that S i OPT and that 1 m n j=1 S j OPT. So, we conclude that ALG 2 1/m)OPT, which yields a 2 approximation. This analysis is tight. Suppose that after the jobs are arbitrarily ordered, the job list contains mm 1) unit-length jobs, followed by one m-length job. The algorithm yields a schedule completing in 2m 1 units while the optimal schedule has length m. This algorithm can be improved. For example, by ordering the job list by increasing duration instead of arbitrarily, we get a 4/3) approximation, a result proved in [3]. Also, this problem has a polytime approximation scheme PTAS), given in [4]. However, a notable property of Algorithm is that it is an online algorithm, i.e., even if the jobs arrive one after another, and we have no information about what jobs may arrive in the furture, we can still use this algorithm to obtain a 2 approximation. 4

5 References [1] Uriel Feige. A Threshold of lnn for Approximating Set Cover. In J. ACM 454), pp ) [2] Graham, R. Bounds for Certain Multiprocessing Anomalies. In Bell System Tech. J., 45, pp ) [3] Ronald L. Graham. Bounds on Multiprocessing Timing Anomalies. In SIAM Journal of Applied Mathematics, 172), pp ) [4] Dorit S. Hochbaum, David B. Shmoys. A Polynomial Approximation Scheme for Scheduling on Uniform Processors: Using the Dual Approximation Approach. In SIAM J. Comput. 173), pp ) [5] D. S. Johnson. Approximation Algorithms for Combinatorial Problems. In Journal of Computer and System Sciences, 9, pp ) Preliminary version in Proc. of the 5th Ann. ACM Symp. on Theory of Computing, pp ) 5

### Chapter 11. 11.1 Load Balancing. Approximation Algorithms. Load Balancing. Load Balancing on 2 Machines. Load Balancing: Greedy Scheduling

Approximation Algorithms Chapter Approximation Algorithms Q. Suppose I need to solve an NP-hard problem. What should I do? A. Theory says you're unlikely to find a poly-time algorithm. Must sacrifice one

### ! Solve problem to optimality. ! Solve problem in poly-time. ! Solve arbitrary instances of the problem. #-approximation algorithm.

Approximation Algorithms 11 Approximation Algorithms Q Suppose I need to solve an NP-hard problem What should I do? A Theory says you're unlikely to find a poly-time algorithm Must sacrifice one of three

### ! Solve problem to optimality. ! Solve problem in poly-time. ! Solve arbitrary instances of the problem. !-approximation algorithm.

Approximation Algorithms Chapter Approximation Algorithms Q Suppose I need to solve an NP-hard problem What should I do? A Theory says you're unlikely to find a poly-time algorithm Must sacrifice one of

### Algorithm Design and Analysis

Algorithm Design and Analysis LECTURE 27 Approximation Algorithms Load Balancing Weighted Vertex Cover Reminder: Fill out SRTEs online Don t forget to click submit Sofya Raskhodnikova 12/6/2011 S. Raskhodnikova;

### Approximation Algorithms

Approximation Algorithms or: How I Learned to Stop Worrying and Deal with NP-Completeness Ong Jit Sheng, Jonathan (A0073924B) March, 2012 Overview Key Results (I) General techniques: Greedy algorithms

### 1 Approximating Set Cover

CS 05: Algorithms (Grad) Feb 2-24, 2005 Approximating Set Cover. Definition An Instance (X, F ) of the set-covering problem consists of a finite set X and a family F of subset of X, such that every elemennt

### 8.1 Makespan Scheduling

600.469 / 600.669 Approximation Algorithms Lecturer: Michael Dinitz Topic: Dynamic Programing: Min-Makespan and Bin Packing Date: 2/19/15 Scribe: Gabriel Kaptchuk 8.1 Makespan Scheduling Consider an instance

### Load balancing of temporary tasks in the l p norm

Load balancing of temporary tasks in the l p norm Yossi Azar a,1, Amir Epstein a,2, Leah Epstein b,3 a School of Computer Science, Tel Aviv University, Tel Aviv, Israel. b School of Computer Science, The

### Approximated Distributed Minimum Vertex Cover Algorithms for Bounded Degree Graphs

Approximated Distributed Minimum Vertex Cover Algorithms for Bounded Degree Graphs Yong Zhang 1.2, Francis Y.L. Chin 2, and Hing-Fung Ting 2 1 College of Mathematics and Computer Science, Hebei University,

### Applied Algorithm Design Lecture 5

Applied Algorithm Design Lecture 5 Pietro Michiardi Eurecom Pietro Michiardi (Eurecom) Applied Algorithm Design Lecture 5 1 / 86 Approximation Algorithms Pietro Michiardi (Eurecom) Applied Algorithm Design

### 11. APPROXIMATION ALGORITHMS

11. APPROXIMATION ALGORITHMS load balancing center selection pricing method: vertex cover LP rounding: vertex cover generalized load balancing knapsack problem Lecture slides by Kevin Wayne Copyright 2005

### CSC2420 Spring 2015: Lecture 3

CSC2420 Spring 2015: Lecture 3 Allan Borodin January 22, 2015 1 / 1 Announcements and todays agenda Assignment 1 due next Thursday. I may add one or two additional questions today or tomorrow. Todays agenda

### Distributed Load Balancing for Machines Fully Heterogeneous

Internship Report 2 nd of June - 22 th of August 2014 Distributed Load Balancing for Machines Fully Heterogeneous Nathanaël Cheriere nathanael.cheriere@ens-rennes.fr ENS Rennes Academic Year 2013-2014

### Analysis of Approximation Algorithms for k-set Cover using Factor-Revealing Linear Programs

Analysis of Approximation Algorithms for k-set Cover using Factor-Revealing Linear Programs Stavros Athanassopoulos, Ioannis Caragiannis, and Christos Kaklamanis Research Academic Computer Technology Institute

### Scheduling Parallel Jobs with Monotone Speedup 1

Scheduling Parallel Jobs with Monotone Speedup 1 Alexander Grigoriev, Marc Uetz Maastricht University, Quantitative Economics, P.O.Box 616, 6200 MD Maastricht, The Netherlands, {a.grigoriev@ke.unimaas.nl,

### 2.3 Scheduling jobs on identical parallel machines

2.3 Scheduling jobs on identical parallel machines There are jobs to be processed, and there are identical machines (running in parallel) to which each job may be assigned Each job = 1,,, must be processed

### Online Scheduling with Bounded Migration

Online Scheduling with Bounded Migration Peter Sanders, Naveen Sivadasan, and Martin Skutella Max-Planck-Institut für Informatik, Saarbrücken, Germany, {sanders,ns,skutella}@mpi-sb.mpg.de Abstract. Consider

### 8.1 Min Degree Spanning Tree

CS880: Approximations Algorithms Scribe: Siddharth Barman Lecturer: Shuchi Chawla Topic: Min Degree Spanning Tree Date: 02/15/07 In this lecture we give a local search based algorithm for the Min Degree

### The Online Set Cover Problem

The Online Set Cover Problem Noga Alon Baruch Awerbuch Yossi Azar Niv Buchbinder Joseph Seffi Naor ABSTRACT Let X = {, 2,..., n} be a ground set of n elements, and let S be a family of subsets of X, S

### Scheduling Parallel Jobs with Linear Speedup

Scheduling Parallel Jobs with Linear Speedup Alexander Grigoriev and Marc Uetz Maastricht University, Quantitative Economics, P.O.Box 616, 6200 MD Maastricht, The Netherlands. Email: {a.grigoriev,m.uetz}@ke.unimaas.nl

### A2 1 10-Approximation Algorithm for a Generalization of the Weighted Edge-Dominating Set Problem

Journal of Combinatorial Optimization, 5, 317 326, 2001 c 2001 Kluwer Academic Publishers. Manufactured in The Netherlands. A2 1 -Approximation Algorithm for a Generalization of the Weighted Edge-Dominating

### Definition 11.1. Given a graph G on n vertices, we define the following quantities:

Lecture 11 The Lovász ϑ Function 11.1 Perfect graphs We begin with some background on perfect graphs. graphs. First, we define some quantities on Definition 11.1. Given a graph G on n vertices, we define

### Duplicating and its Applications in Batch Scheduling

Duplicating and its Applications in Batch Scheduling Yuzhong Zhang 1 Chunsong Bai 1 Shouyang Wang 2 1 College of Operations Research and Management Sciences Qufu Normal University, Shandong 276826, China

### Exponential time algorithms for graph coloring

Exponential time algorithms for graph coloring Uriel Feige Lecture notes, March 14, 2011 1 Introduction Let [n] denote the set {1,..., k}. A k-labeling of vertices of a graph G(V, E) is a function V [k].

### Classification - Examples

Lecture 2 Scheduling 1 Classification - Examples 1 r j C max given: n jobs with processing times p 1,...,p n and release dates r 1,...,r n jobs have to be scheduled without preemption on one machine taking

### Classification - Examples -1- 1 r j C max given: n jobs with processing times p 1,..., p n and release dates

Lecture 2 Scheduling 1 Classification - Examples -1-1 r j C max given: n jobs with processing times p 1,..., p n and release dates r 1,..., r n jobs have to be scheduled without preemption on one machine

### Ecient approximation algorithm for minimizing makespan. on uniformly related machines. Chandra Chekuri. November 25, 1997.

Ecient approximation algorithm for minimizing makespan on uniformly related machines Chandra Chekuri November 25, 1997 Abstract We obtain a new ecient approximation algorithm for scheduling precedence

### Connected Identifying Codes for Sensor Network Monitoring

Connected Identifying Codes for Sensor Network Monitoring Niloofar Fazlollahi, David Starobinski and Ari Trachtenberg Dept. of Electrical and Computer Engineering Boston University, Boston, MA 02215 Email:

### Approximability of Two-Machine No-Wait Flowshop Scheduling with Availability Constraints

Approximability of Two-Machine No-Wait Flowshop Scheduling with Availability Constraints T.C. Edwin Cheng 1, and Zhaohui Liu 1,2 1 Department of Management, The Hong Kong Polytechnic University Kowloon,

### Completion Time Scheduling and the WSRPT Algorithm

Completion Time Scheduling and the WSRPT Algorithm Bo Xiong, Christine Chung Department of Computer Science, Connecticut College, New London, CT {bxiong,cchung}@conncoll.edu Abstract. We consider the online

### CS5314 Randomized Algorithms. Lecture 16: Balls, Bins, Random Graphs (Random Graphs, Hamiltonian Cycles)

CS5314 Randomized Algorithms Lecture 16: Balls, Bins, Random Graphs (Random Graphs, Hamiltonian Cycles) 1 Objectives Introduce Random Graph Model used to define a probability space for all graphs with

### Approximation Algorithms. Scheduling. Approximation algorithms. Scheduling jobs on a single machine

Approximation algorithms Approximation Algorithms Fast. Cheap. Reliable. Choose two. NP-hard problems: choose 2 of optimal polynomial time all instances Approximation algorithms. Trade-off between time

### 9th Max-Planck Advanced Course on the Foundations of Computer Science (ADFOCS) Primal-Dual Algorithms for Online Optimization: Lecture 1

9th Max-Planck Advanced Course on the Foundations of Computer Science (ADFOCS) Primal-Dual Algorithms for Online Optimization: Lecture 1 Seffi Naor Computer Science Dept. Technion Haifa, Israel Introduction

### Online and Offline Selling in Limit Order Markets

Online and Offline Selling in Limit Order Markets Kevin L. Chang 1 and Aaron Johnson 2 1 Yahoo Inc. klchang@yahoo-inc.com 2 Yale University ajohnson@cs.yale.edu Abstract. Completely automated electronic

### 2.1 Complexity Classes

15-859(M): Randomized Algorithms Lecturer: Shuchi Chawla Topic: Complexity classes, Identity checking Date: September 15, 2004 Scribe: Andrew Gilpin 2.1 Complexity Classes In this lecture we will look

### Mathematical induction & Recursion

CS 441 Discrete Mathematics for CS Lecture 15 Mathematical induction & Recursion Milos Hauskrecht milos@cs.pitt.edu 5329 Sennott Square Proofs Basic proof methods: Direct, Indirect, Contradiction, By Cases,

### Improved Algorithms for Data Migration

Improved Algorithms for Data Migration Samir Khuller 1, Yoo-Ah Kim, and Azarakhsh Malekian 1 Department of Computer Science, University of Maryland, College Park, MD 20742. Research supported by NSF Award

### CSL851: Algorithmic Graph Theory Semester I Lecture 4: August 5

CSL851: Algorithmic Graph Theory Semester I 2013-14 Lecture 4: August 5 Lecturer: Naveen Garg Scribes: Utkarsh Ohm Note: LaTeX template courtesy of UC Berkeley EECS dept. Disclaimer: These notes have not

### Single machine parallel batch scheduling with unbounded capacity

Workshop on Combinatorics and Graph Theory 21th, April, 2006 Nankai University Single machine parallel batch scheduling with unbounded capacity Yuan Jinjiang Department of mathematics, Zhengzhou University

### CS268: Geometric Algorithms Handout #5 Design and Analysis Original Handout #15 Stanford University Tuesday, 25 February 1992

CS268: Geometric Algorithms Handout #5 Design and Analysis Original Handout #15 Stanford University Tuesday, 25 February 1992 Original Lecture #6: 28 January 1991 Topics: Triangulating Simple Polygons

### Lecture Notes 12: Scheduling - Cont.

Online Algorithms 18.1.2012 Professor: Yossi Azar Lecture Notes 12: Scheduling - Cont. Scribe:Inna Kalp 1 Introduction In this Lecture we discuss 2 scheduling models. We review the scheduling over time

### The multi-integer set cover and the facility terminal cover problem

The multi-integer set cover and the facility teral cover problem Dorit S. Hochbaum Asaf Levin December 5, 2007 Abstract The facility teral cover problem is a generalization of the vertex cover problem.

### Class constrained bin covering

Class constrained bin covering Leah Epstein Csanád Imreh Asaf Levin Abstract We study the following variant of the bin covering problem. We are given a set of unit sized items, where each item has a color

### Scheduling Shop Scheduling. Tim Nieberg

Scheduling Shop Scheduling Tim Nieberg Shop models: General Introduction Remark: Consider non preemptive problems with regular objectives Notation Shop Problems: m machines, n jobs 1,..., n operations

### JUST-IN-TIME SCHEDULING WITH PERIODIC TIME SLOTS. Received December May 12, 2003; revised February 5, 2004

Scientiae Mathematicae Japonicae Online, Vol. 10, (2004), 431 437 431 JUST-IN-TIME SCHEDULING WITH PERIODIC TIME SLOTS Ondřej Čepeka and Shao Chin Sung b Received December May 12, 2003; revised February

### Minimum Makespan Scheduling

Minimum Makespan Scheduling Minimum makespan scheduling: Definition and variants Factor 2 algorithm for identical machines PTAS for identical machines Factor 2 algorithm for unrelated machines Martin Zachariasen,

### Cost Model: Work, Span and Parallelism. 1 The RAM model for sequential computation:

CSE341T 08/31/2015 Lecture 3 Cost Model: Work, Span and Parallelism In this lecture, we will look at how one analyze a parallel program written using Cilk Plus. When we analyze the cost of an algorithm

### Graphical degree sequences and realizations

swap Graphical and realizations Péter L. Erdös Alfréd Rényi Institute of Mathematics Hungarian Academy of Sciences MAPCON 12 MPIPKS - Dresden, May 15, 2012 swap Graphical and realizations Péter L. Erdös

### Ronald Graham: Laying the Foundations of Online Optimization

Documenta Math. 239 Ronald Graham: Laying the Foundations of Online Optimization Susanne Albers Abstract. This chapter highlights fundamental contributions made by Ron Graham in the area of online optimization.

### Load Balancing. Load Balancing 1 / 24

Load Balancing Backtracking, branch & bound and alpha-beta pruning: how to assign work to idle processes without much communication? Additionally for alpha-beta pruning: implementing the young-brothers-wait

### 4.1 Introduction - Online Learning Model

Computational Learning Foundations Fall semester, 2010 Lecture 4: November 7, 2010 Lecturer: Yishay Mansour Scribes: Elad Liebman, Yuval Rochman & Allon Wagner 1 4.1 Introduction - Online Learning Model

### Combinatorial Algorithms for Data Migration to Minimize Average Completion Time

Combinatorial Algorithms for Data Migration to Minimize Average Completion Time Rajiv Gandhi 1 and Julián Mestre 1 Department of Computer Science, Rutgers University-Camden, Camden, NJ 0810. Research partially

CS787: Advanced Algorithms Topic: Online Learning Presenters: David He, Chris Hopman 17.3.1 Follow the Perturbed Leader 17.3.1.1 Prediction Problem Recall the prediction problem that we discussed in class.

### CS 598CSC: Combinatorial Optimization Lecture date: 2/4/2010

CS 598CSC: Combinatorial Optimization Lecture date: /4/010 Instructor: Chandra Chekuri Scribe: David Morrison Gomory-Hu Trees (The work in this section closely follows [3]) Let G = (V, E) be an undirected

### Best Monotone Degree Bounds for Various Graph Parameters

Best Monotone Degree Bounds for Various Graph Parameters D. Bauer Department of Mathematical Sciences Stevens Institute of Technology Hoboken, NJ 07030 S. L. Hakimi Department of Electrical and Computer

### The Relative Worst Order Ratio for On-Line Algorithms

The Relative Worst Order Ratio for On-Line Algorithms Joan Boyar 1 and Lene M. Favrholdt 2 1 Department of Mathematics and Computer Science, University of Southern Denmark, Odense, Denmark, joan@imada.sdu.dk

### 1.1 Related work For non-preemptive scheduling on uniformly related machines the rst algorithm with a constant competitive ratio was given by Aspnes e

A Lower Bound for On-Line Scheduling on Uniformly Related Machines Leah Epstein Jir Sgall September 23, 1999 lea@math.tau.ac.il, Department of Computer Science, Tel-Aviv University, Israel; sgall@math.cas.cz,

### Introduction to Algorithms Review information for Prelim 1 CS 4820, Spring 2010 Distributed Wednesday, February 24

Introduction to Algorithms Review information for Prelim 1 CS 4820, Spring 2010 Distributed Wednesday, February 24 The final exam will cover seven topics. 1. greedy algorithms 2. divide-and-conquer algorithms

### princeton univ. F 13 cos 521: Advanced Algorithm Design Lecture 6: Provable Approximation via Linear Programming Lecturer: Sanjeev Arora

princeton univ. F 13 cos 521: Advanced Algorithm Design Lecture 6: Provable Approximation via Linear Programming Lecturer: Sanjeev Arora Scribe: One of the running themes in this course is the notion of

### Learning Threshold Functions with Small Weights using Membership Queries

Learning Threshold Functions with Small Weights using Membership Queries Elias Abboud Research Center Ibillin Elias College P.O. Box 102 Ibillin 30012 Nader Agha Research Center Ibillin Elias College P.O.

### Lecture 7: Approximation via Randomized Rounding

Lecture 7: Approximation via Randomized Rounding Often LPs return a fractional solution where the solution x, which is supposed to be in {0, } n, is in [0, ] n instead. There is a generic way of obtaining

### Optimal and nearly optimal online and semi-online algorithms for some scheduling problems

Optimal and nearly optimal online and semi-online algorithms for some scheduling problems Ph.D. thesis Made by: Dósa György Supervisor: Vízvári Béla University of Szeged, Faculty of Science Doctoral School

### SCHEDULING ON A SINGLE MACHINE TO MINIMIZE TOTAL FLOW TIME WITH JOB REJECTIONS

SCHEDULING ON A SINGLE MACHINE TO MINIMIZE TOTAL FLOW TIME WITH JOB REJECTIONS David P. Bunde University of Illinois at Urbana-Champaign bunde@uiuc.edu Abstract We consider the problem of minimizing flow

### Tutorial 8. NP-Complete Problems

Tutorial 8 NP-Complete Problems Decision Problem Statement of a decision problem Part 1: instance description defining the input Part 2: question stating the actual yesor-no question A decision problem

### Lecture 15 An Arithmetic Circuit Lowerbound and Flows in Graphs

CSE599s: Extremal Combinatorics November 21, 2011 Lecture 15 An Arithmetic Circuit Lowerbound and Flows in Graphs Lecturer: Anup Rao 1 An Arithmetic Circuit Lower Bound An arithmetic circuit is just like

### The Orthogonal Art Gallery Theorem with Constrained Guards

The Orthogonal Art Gallery Theorem with Constrained Guards T. S. Michael 1 Mathematics Department United States Naval Academy Annapolis, MD, U.S.A. Val Pinciu 2 Department of Mathematics Southern Connecticut

### Lecture 23: Competitive ratio: rent or buy problems

COMPSCI 53: Design and Analysis of Algorithms November 19, 213 Lecture 23: Competitive ratio: rent or buy problems Lecturer: Debmalya Panigrahi Scribe: Hangjie Ji 1 Overview In this lecture, we focus on

### A binary search algorithm for a special case of minimizing the lateness on a single machine

Issue 3, Volume 3, 2009 45 A binary search algorithm for a special case of minimizing the lateness on a single machine Nodari Vakhania Abstract We study the problem of scheduling jobs with release times

### Scheduling Parallel Machine Scheduling. Tim Nieberg

Scheduling Parallel Machine Scheduling Tim Nieberg Problem P C max : m machines n jobs with processing times p 1,..., p n Problem P C max : m machines n jobs with processing times p 1,..., p { n 1 if job

### Determination of the normalization level of database schemas through equivalence classes of attributes

Computer Science Journal of Moldova, vol.17, no.2(50), 2009 Determination of the normalization level of database schemas through equivalence classes of attributes Cotelea Vitalie Abstract In this paper,

### A class of on-line scheduling algorithms to minimize total completion time

A class of on-line scheduling algorithms to minimize total completion time X. Lu R.A. Sitters L. Stougie Abstract We consider the problem of scheduling jobs on-line on a single machine and on identical

### 20 Selfish Load Balancing

20 Selfish Load Balancing Berthold Vöcking Abstract Suppose that a set of weighted tasks shall be assigned to a set of machines with possibly different speeds such that the load is distributed evenly among

### Greedy Algorithm And Matroid Intersection Algorithm. Summer Term Talk Summary Paul Wilhelm

Greedy Algorithm And Matroid Intersection Algorithm Summer Term 2010 Talk Summary Paul Wilhelm December 20, 2011 1 Greedy Algorithm Abstract Many combinatorial optimization problems can be formulated in

### COLORED GRAPHS AND THEIR PROPERTIES

COLORED GRAPHS AND THEIR PROPERTIES BEN STEVENS 1. Introduction This paper is concerned with the upper bound on the chromatic number for graphs of maximum vertex degree under three different sets of coloring

### Load Balancing and Rebalancing on Web Based Environment. Yu Zhang

Load Balancing and Rebalancing on Web Based Environment Yu Zhang This report is submitted as partial fulfilment of the requirements for the Honours Programme of the School of Computer Science and Software

### University Dortmund. Robotics Research Institute Information Technology. Job Scheduling. Uwe Schwiegelshohn. EPIT 2007, June 5 Ordonnancement

University Dortmund Robotics Research Institute Information Technology Job Scheduling Uwe Schwiegelshohn EPIT 2007, June 5 Ordonnancement ontent of the Lecture What is ob scheduling? Single machine problems

### CS 2336 Discrete Mathematics

CS 2336 Discrete Mathematics Lecture 5 Proofs: Mathematical Induction 1 Outline What is a Mathematical Induction? Strong Induction Common Mistakes 2 Introduction What is the formula of the sum of the first

### Bicolored Shortest Paths in Graphs with Applications to Network Overlay Design

Bicolored Shortest Paths in Graphs with Applications to Network Overlay Design Hongsik Choi and Hyeong-Ah Choi Department of Electrical Engineering and Computer Science George Washington University Washington,

### A Constant Factor Approximation Algorithm for the Storage Allocation Problem

A Constant Factor Approximation Algorithm for the Storage Allocation Problem Reuven Bar-Yehuda reuven@cs.technion.ac.il Dror Rawitz rawitz@eng.tau.ac.il Michael Beder bederml@cs.technion.ac.il Abstract

### Diagonalization. Ahto Buldas. Lecture 3 of Complexity Theory October 8, 2009. Slides based on S.Aurora, B.Barak. Complexity Theory: A Modern Approach.

Diagonalization Slides based on S.Aurora, B.Barak. Complexity Theory: A Modern Approach. Ahto Buldas Ahto.Buldas@ut.ee Background One basic goal in complexity theory is to separate interesting complexity

### Partitioned real-time scheduling on heterogeneous shared-memory multiprocessors

Partitioned real-time scheduling on heterogeneous shared-memory multiprocessors Martin Niemeier École Polytechnique Fédérale de Lausanne Discrete Optimization Group Lausanne, Switzerland martin.niemeier@epfl.ch

### Survey of Terrain Guarding and Art Gallery Problems

Survey of Terrain Guarding and Art Gallery Problems Erik Krohn Abstract The terrain guarding problem and art gallery problem are two areas in computational geometry. Different versions of terrain guarding

### More Mathematical Induction. October 27, 2016

More Mathematical Induction October 7, 016 In these slides... Review of ordinary induction. Remark about exponential and polynomial growth. Example a second proof that P(A) = A. Strong induction. Least

### Bounded Cost Algorithms for Multivalued Consensus Using Binary Consensus Instances

Bounded Cost Algorithms for Multivalued Consensus Using Binary Consensus Instances Jialin Zhang Tsinghua University zhanggl02@mails.tsinghua.edu.cn Wei Chen Microsoft Research Asia weic@microsoft.com Abstract

### Scheduling. Open shop, job shop, flow shop scheduling. Related problems. Open shop, job shop, flow shop scheduling

Scheduling Basic scheduling problems: open shop, job shop, flow job The disjunctive graph representation Algorithms for solving the job shop problem Computational complexity of the job shop problem Open

### U.C. Berkeley CS276: Cryptography Handout 0.1 Luca Trevisan January, 2009. Notes on Algebra

U.C. Berkeley CS276: Cryptography Handout 0.1 Luca Trevisan January, 2009 Notes on Algebra These notes contain as little theory as possible, and most results are stated without proof. Any introductory

### Matroids, Secretary Problems, and Online Mechanisms

Matroids, Secretary Problems, and Online Mechanisms Moshe Babaioff Nicole Immorlica Robert Kleinberg Abstract We study a generalization of the classical secretary problem which we call the matroid secretary

### Matthias F.M. Stallmann Department of Computer Science North Carolina State University Raleigh, NC 27695-8206

Matthias F.M. Stallmann Department of Computer Science North Carolina State University Raleigh, NC 27695-8206 August, 1990 UNIFORM PLANAR EMBEDDING IS NP-COMPLETE* MATTHIAS F.M. STALLMANN Key Words. planar

### The Conference Call Search Problem in Wireless Networks

The Conference Call Search Problem in Wireless Networks Leah Epstein 1, and Asaf Levin 2 1 Department of Mathematics, University of Haifa, 31905 Haifa, Israel. lea@math.haifa.ac.il 2 Department of Statistics,

### All trees contain a large induced subgraph having all degrees 1 (mod k)

All trees contain a large induced subgraph having all degrees 1 (mod k) David M. Berman, A.J. Radcliffe, A.D. Scott, Hong Wang, and Larry Wargo *Department of Mathematics University of New Orleans New

### Lecture 3: Linear Programming Relaxations and Rounding

Lecture 3: Linear Programming Relaxations and Rounding 1 Approximation Algorithms and Linear Relaxations For the time being, suppose we have a minimization problem. Many times, the problem at hand can

### Weighted Sum Coloring in Batch Scheduling of Conflicting Jobs

Weighted Sum Coloring in Batch Scheduling of Conflicting Jobs Leah Epstein Magnús M. Halldórsson Asaf Levin Hadas Shachnai Abstract Motivated by applications in batch scheduling of jobs in manufacturing

### Chapter 4: Trees. 2. Theorem: Let T be a graph with n vertices. Then the following statements are equivalent:

9 Properties of Trees. Definitions: Chapter 4: Trees forest - a graph that contains no cycles tree - a connected forest. Theorem: Let T be a graph with n vertices. Then the following statements are equivalent:

### Improved Results for Data Migration and Open Shop Scheduling

Improved Results for Data Migration and Open Shop Scheduling Rajiv Gandhi 1, Magnús M. Halldórsson, Guy Kortsarz 1, and Hadas Shachnai 3 1 Department of Computer Science, Rutgers University, Camden, NJ

### R u t c o r Research R e p o r t. A Method to Schedule Both Transportation and Production at the Same Time in a Special FMS.

R u t c o r Research R e p o r t A Method to Schedule Both Transportation and Production at the Same Time in a Special FMS Navid Hashemian a Béla Vizvári b RRR 3-2011, February 21, 2011 RUTCOR Rutgers

### Complexity Theory. IE 661: Scheduling Theory Fall 2003 Satyaki Ghosh Dastidar

Complexity Theory IE 661: Scheduling Theory Fall 2003 Satyaki Ghosh Dastidar Outline Goals Computation of Problems Concepts and Definitions Complexity Classes and Problems Polynomial Time Reductions Examples

### Two General Methods to Reduce Delay and Change of Enumeration Algorithms

ISSN 1346-5597 NII Technical Report Two General Methods to Reduce Delay and Change of Enumeration Algorithms Takeaki Uno NII-2003-004E Apr.2003 Two General Methods to Reduce Delay and Change of Enumeration

### Lecture 6 Online and streaming algorithms for clustering

CSE 291: Unsupervised learning Spring 2008 Lecture 6 Online and streaming algorithms for clustering 6.1 On-line k-clustering To the extent that clustering takes place in the brain, it happens in an on-line