LABORATORY INVESTIGATIONS ON BERM BREAKWATER USING CONCRETE CUBES AS ARTIFICIAL ARMOUR UNIT

Size: px
Start display at page:

Download "LABORATORY INVESTIGATIONS ON BERM BREAKWATER USING CONCRETE CUBES AS ARTIFICIAL ARMOUR UNIT"

Transcription

1 LABORATORY INVESTIGATIONS ON BERM BREAKWATER USING CONCRETE CUBES AS ARTIFICIAL ARMOUR UNIT Subba Rao Kiran G.Shirlal Madhu.M* Professor Assistant professor M.Tech Student Department of Applied Mechanics and Hydraulics,National Institute of Technology Karnataka,Surathkal,Srinivasanagar,D.K.District,Karnataka,India,Pin * ABSTRACT This paper presents the results of experimental studies conducted on the stability of berm breakwater using concrete cube as artificial armour unit. The weight of concrete cube used in the model is about 79.5 gm, for a design wave height of 0.1m. Berm breakwater models were tested for the stability for three different water depths. The dimensionless recession varied from 3 to 6.6 for the design wave height of 0.10 m and 6.6 to 8.85 for higher wave height of 0.12m for the different water depths. Keywords: Run-up, Rundown, Wave steepness, Stability number, Recession, Damage level Notations: d Water depth H 0 /gt 2 Deep Water wave steepness N s Hudson s stability number R u /H 0 Relative run-up INTRODUCTION The berm breakwater is normally constructed with a berm that is allowed to reshape instead of constructing the reshaped profile directly. This is so because it has been considered cheaper to construct the breakwater with a reshaping berm, as it requires smaller size armor stones. After reshaping by severe storms, several breakwaters have been seen to achieve a stable profile and Laboratory Investigations on Berm Breakwater Using Concrete cubes as Artificial Armour Unit 1

2 they withstand later storms without significant further reshaping and damage (Torum et al.1999). This breakwater concept has been used in the construction of breakwaters in several countries (PIANC MarCom WG 40, 2003, Poonawala I.Z. et al., 2004, O.J.Sayao, 1999). The design procedure for the preliminary definition of structure cross-sections are available (Hall & Kao 1991; Van der Meer & Koster 1988; Torum et al. 1999, 2003; PIANC MarCom WG 40, 2003). The uncertainty in wave climate favors a breakwater design that is not too sensitive to the wave height with respect to stability. Hall and Kao (1991) performed basic tests on berm breakwaters, studied the influence of wave height, period, spectral shape, number of waves, grading and rock shape on the profile reshaping. Van der Meer (1992) developed a computational model for the profile development of rock slopes and gravel beaches and this can be used in designing of berm breakwaters. Torum et al. (1999, 2003) developed an equation to calculate the recession of the berm of berm breakwaters based on the wave height, period, and nominal diameter of stones, gradation factor and depth factor. These design procedures have their own limitations because of wide range of armor stone size, gradation of armor stones, water depth, and seaward slope, crest height and wave characteristics. In this paper, result of berm breakwater hydraulic model studies designed to suit the wave parameters of Mangalore coast, are analyzed. DETAILS OF EXPERIMENTAL WORK The present work involves an experimental study on the influence of change in water level in front of breakwater on the stability of the berm breakwater. The weight of concrete cube used in the present model is, W 50 = 79.5 gm and berm width, (B =0.45m). The earlier experiments conducted in the same wave flume on statically stable berm breakwater model with armour weight, W 50 =52gm, and berm width = 0.45m, has shown a stable profile for wave height up to 0.14m (Subba Rao et.al. 2006). The stability of the breakwater is studied by measuring the recession of the berm provided. The recession of the berm beyond the berm width is considered as the failure of the breakwater. Weight of armour unit used, W 50 = 79.5 gm is calculated by Hudson equation (CEM 2002) for a design wave height of 0.1m. In the present model, the Laboratory Investigations on Berm Breakwater Using Concrete cubes as Artificial Armour Unit 2

3 primary layer is divided into three zones crest ward slope, berm and toe ward slope, and the units in these regions are coloured as grey,white and red respectively..fig.1 shows the sectional elevation of the breakwater model studied. Geometrically similar scale of 1:30 was selected for the present investigation. The armour layer thickness has been calculated using layer coefficient as explained in the CEM (2002). The same number of layers are provided in the secondary layers with armor weight W 50 = 7.95gm. The minimum crest width adopted is so as to accommodate three cubes, and a crest width of 0.15m. A horizontal berm is provided at a constant depth of 0.425m above the seabed. The seaward slope above the berm and below the berm is kept same (1.5:1). Fig: 1 Cross-section of berm breakwater model Wave Flume The wave flume is 50m long, 0.71m wide, 1.1m deep and has a 42m long smooth concrete bed. Fig.2 shows the sketch of the wave flume used in the present work. A bottom-hinged flap generates waves at one end of the deep chamber which is 6.3m long, 1.5m wide and 1.4m deep. About 15m length of the flume is provided with glass panels on one side. The flap is controlled by an induction motor of 11kW and 1450 rpm. This motor is regulated by an inverter drive (0-50Hz) rotating with a speed range of rpm. Regular waves of height 0.02m to 0.24m, and periods 0.8sec to 4sec can be generated with this facility. Laboratory Investigations on Berm Breakwater Using Concrete cubes as Artificial Armour Unit 3

4 Fig: 2 Details of experimental setup In this analysis a stable berm breakwater is defined when recession of the berm (eroded berm width) is less than the initial berm width provided ((Rec/B) <1 for a minimum storm condition of 3000 waves, or till the breakwater has failed, whichever occurred earlier is the limit for every test run, where Rec is the recession of the berm and B is the initial berm width provided (Fig: 3) Fig: 3- Berm Recession Laboratory Investigations on Berm Breakwater Using Concrete cubes as Artificial Armour Unit 4

5 Table.1 Range of Experimental Variables SL.No. Variable Expression Range 1 Wave height H 0.10,0.12,0.14,0.16m 2 Wave period T 1.6 & 2.0 sec 3 Berm width B 0.45 m 4 Storm duration N 3000 waves 5 Angle of wave attack θ Water depth d 0.37m, 0.40m,0.43m 7 Design Armor unit weight W gm 8 Nominal diameter of primary Armour unit D n m 9 Primary armour layer thickness : Above the berm At and below the berm t p m m 10 Secondary armour layer thickness : Above the berm At and below the berm t s m m Laboratory Investigations on Berm Breakwater Using Concrete cubes as Artificial Armour Unit 5

6 11 Shape of the armor unit - cube 12 Crest height m 13 Slope - 1: Specific gravity of armor unit S r 2.4 RESULTS AND DISCUSSIONS Effect of Storm Duration on Recession The influence of storm duration on reshaping of berm is shown in Fig.4. It shows the recession of berm for different wave heights against the number of waves for T=1.6sec, berm width, B=0.45m and water depth in front of breakwater, d=0.37m. From the figure it is observed that for the wave height, H=0.1m, most of the changes took place during the first 1000 waves and the recession remains almost same for the number of waves more than 2000 and 3000 indicating the stability of the breakwater. When the wave height was H=0.12m the recession of the berm was almost constant after 2000 waves. For the wave height, H=0.14m the recession was found increasing even up to 2000 number of waves. Though the rate of recession of the berm was reduced after 2000 number of waves, for the wave height, H=0.16m, the recession was found to be increasing up to 2500 waves and recession the berm reduced after 2500 waves, up to 3000 waves From the above discussion it can be concluded that the stability of the breakwater is largely influenced by the storm duration. Laboratory Investigations on Berm Breakwater Using Concrete cubes as Artificial Armour Unit 6

7 Fig: 4 Variation of Recession with Number of waves for T=1.6 sec and d=0.43 m Effect of water depth on Damage level (S) The variation of damage level (S) with N s for different water depths is shown in Fig.5. It is observed that the variation of S with N s is linear for all the water depths and it increases with the increase in N s values. Although the variation of S for lower values of N s is higher up to N s =2.3. But for higher values of N s, the variation of S for 0.40m water depth is the highest and for 0.43 m water depth, it is the least. And the variation of S for d=0.37m is intermediate. Laboratory Investigations on Berm Breakwater Using Concrete cubes as Artificial Armour Unit 7

8 Fig: 5 Variation of Damage level (S) With Stability Number (N S ) for different Water depths Effect of water depth on runup Fig: 6 shows the variation of wave runup (R u /H o ) with wave steepness (H o /gt 2 ) for different water depths, where H o is the deep water wave height. The runup values in the graphs were corresponding to the wave heights from 0.10m to 0.16 m and wave periods 1.6sec and 2.0sec. It is observed that as the wave steepness increases from to the wave run up (R u /H 0 ) varied from 0.52 to 0.79 for d=0.43m, 0.76 to 0.98 for d=0.40m and 0.94 to 1.08 for d=0.37m For the three cases of water depths studied, the dimensionless runup varied from 0.52 to 1.08.when compared the results of present work with literatures of, AVRP Rajesh, showed 0.86 to 1.17,Pralay Kumar Roy showed 0.75 to 1.28 and K.Balakrishna Rao showed 0.73 to 1.58,hence the dimensionless runup of present work is lesser compared to other works, and trend pattern is similar as shown in CEM. Laboratory Investigations on Berm Breakwater Using Concrete cubes as Artificial Armour Unit 8

9 Fig: 6 Variation of relative runup with wave steepness for different water depths CONCLUSIONS Based on the present investigation, the following conclusions are drawn. The stability of berm breakwater model studied is largely influenced by the storm duration. The model has shown a stable profile after duration of 1000 waves for the wave heights of 0.10 m and 0.12 m. The recession of berm is largely influenced by the change in water level in front of the breakwater. The dimensionless recession varied from 0.93 to 2.04 for the design wave height of 0.10 m and 2.32 to 2.72 for higher wave height of 0.12m, for the different water depths. For the higher wave heights of H=0.14m showed a recession of 6.36 and H= 0.16m showed a dimensionless recession of for d=0.37 m, Hence the recession is less with the use of cube as armour unit, for the three cases of water depths studied. The dimensionless runup varied from 0.52 to The variation of damage level (S) with N s for 0.40m water depth is highest and 0.37 m being least. Laboratory Investigations on Berm Breakwater Using Concrete cubes as Artificial Armour Unit 9

10 ACKNOWLEDGEMENTS The authors are thankful to the Director of National Institute of Technology Karnataka, Surathkal, and Head of the Department of Applied Mechanics and Hydraulics for the facilities provided for the investigation and permission granted to publish the results. REFERENCES CEM. Coastal Engineering Manual (2002). Fundamental of Design. EM (Part-6), U.S. Army Corps. of Engineers Hall, K. R.and Kao, J. S. (1991). The influence of armor stone gradation on dynamically stable breakwaters. Journal of Coastal Engineering, Vol.15, PIANC MarCom W G 40. (2003). State-of-the-art of the design and construction of berm breakwaters. PIANC, Report of Working Group 40 - MARCOM, Brussels. Sayao, O.J. (1999). On the profile reshaping of berm breakwaters, Coastal Structures, Subba Rao, Ch. Pramod and Balakrishna Rao K, (2004), Stability of Berm Breakwater with Reduced Armor Stone Weight, Ocean Engineering, An International Journal of research and development, Pergamon, Elsevier Science Ltd. New York, N.Y., U.S.A., Vol. 31, pp Subba Rao, Balakrishna Rao K., Rajesh AVRP (2006). Stability Aspect of Berm Breakwaters. Proceedings of National Conference on Hydraulics and Water Resources, HYDRO-2006, Dec.8-9, Pune, Subba Rao, Subrahmanya K, Balakrishna Rao, and Chandramohan V. R. (2007), Stability aspects of non reshaped berm breakwaters with reduced armour weight and varying slopes, Journal of Waterways, Port, Coastal and Ocean Engineering, ASCE, USA, Vol. 134, No. 2, Laboratory Investigations on Berm Breakwater Using Concrete cubes as Artificial Armour Unit 10

11 March/April 2008, pp Torum, A., Krogh, S.R., Bjordal, S., Fjeld, S., Archetti, R., Jacobsen, A. (1999). Design criteria and design procedure for berm breakwaters. Proc., Coastal Structures '99', Balkema, Rotterdam, Torum, A., Franziska K., Andreas Menze (2003). On berm breakwaters. Stability, scour, overtopping. Journal of Coastal Engineering, Vol.49, Van der Meer & Koster (1988), CIRIA and CUR (1991), state of the art guide by PIANC (2003b) Laboratory Investigations on Berm Breakwater Using Concrete cubes as Artificial Armour Unit 11

STABILITY OF HARDLY RESHAPING BERM BREAKWATERS

STABILITY OF HARDLY RESHAPING BERM BREAKWATERS STABILITY OF HARDLY RESHAPING BERM BREAKWATERS T. Lykke Andersen 1, J.W. van der Meer 2, H.F. Burcharth 1 and S. Sigurdarson 3 The present paper deals with stability of berm breakwaters designed to be

More information

Geometrical design of coastal structures

Geometrical design of coastal structures CHAPTER 9 Geometrical design of coastal structures Jentsje W. van der Meer Consultants for Infrastructure appraisal and management, Infram 1 INTRODUCTION The main contours of a coastal structure are determined

More information

STABILITY OF HARDLY RESHAPING BERM BREAKWATERS EXPOSED TO LONG WAVES

STABILITY OF HARDLY RESHAPING BERM BREAKWATERS EXPOSED TO LONG WAVES STABILITY OF HARDLY RESHAPING BERM BREAKWATERS EXPOSED TO LONG WAVES Jonas Bjerg Thomsen 1, Mads Sønderstrup Røge 1, Nicole Færch Christensen 1, Thomas Lykke Andersen 1, Jentsje W. van der Meer 2 Stability

More information

COASTAL DAMAGE INSPECTION SOUTHWEST VITI LEVU, FIJI AFTER CYCLONE SINA

COASTAL DAMAGE INSPECTION SOUTHWEST VITI LEVU, FIJI AFTER CYCLONE SINA COASTAL DAMAGE INSPECTION SOUTHWEST VITI LEVU, FIJI AFTER CYCLONE SINA Brendan J. Holden SOPAC Technical Secretariat July 1992 SOPAC Technical Report 148 Prepared for: South Pacific Applied Geoscience

More information

Evaluating the Condition of Seawalls/Bulkheads

Evaluating the Condition of Seawalls/Bulkheads Volume 2 Evaluating the Condition of Seawalls/Bulkheads By: Coastal Systems International, Inc. Typical bulkhead under construction Seawalls and bulkheads (walls) provide shoreline stabilization for many

More information

DESIGN TECHNICAL NOTE

DESIGN TECHNICAL NOTE Project Title: Sheet No: 1 : Job No: 2014s1358 Calc No: Version:1.0 Developed By: Date: 26/08/2014 Revised By: Date: 11/12/2014 Checked By: Graham Kenn Date: 09/12/2014 Approved By: Graham Kenn Date: 11/12/2014

More information

Scour and Scour Protection

Scour and Scour Protection Design of Maritime Structures Scour and Scour Protection Steven A. Hughes, PhD, PE Coastal and Hydraulics Laboratory US Army Engineer Research and Development Center Waterways Experiment Station 3909 Halls

More information

Executive summary (maximum 2 sides A4)

Executive summary (maximum 2 sides A4) DEPARTMENT for ENVIRONMENT, FOOD and RURAL AFFAIRS CSG 15 Research and Development Final Project Report (Not to be used for LINK projects) Two hard copies of this form should be returned to: Research Policy

More information

Emergency Spillways (Sediment basins)

Emergency Spillways (Sediment basins) Emergency Spillways (Sediment basins) DRAINAGE CONTROL TECHNIQUE Low Gradient Velocity Control Short-Term Steep Gradient Channel Lining Medium-Long Term Outlet Control Soil Treatment Permanent [1] [1]

More information

SITE INVESTIGATIONS OF THE BEACH EROSION PROBLEM AT MAHO BEACH, ST. MAARTEN

SITE INVESTIGATIONS OF THE BEACH EROSION PROBLEM AT MAHO BEACH, ST. MAARTEN SITE INVESTIGATIONS OF THE BEACH EROSION PROBLEM AT MAHO BEACH, ST. MAARTEN Performed February 2003 Performed by: Dr. Lee E. Harris, Ph.D., P.E. Associate Professor of Ocean Engineering & Oceanography

More information

WAVE REFLECTION FROM COASTAL STRUCTURES

WAVE REFLECTION FROM COASTAL STRUCTURES WAVE REFLECTION FROM COASTAL STRUCTURES Barbara Zanuttigh 1 and Jentsje W. van der Meer 2 This paper analyses wave reflection for various type of structures, such as smooth and rock (permeable and impermeable

More information

EXAMPLES (OPEN-CHANNEL FLOW) AUTUMN 2015

EXAMPLES (OPEN-CHANNEL FLOW) AUTUMN 2015 EXAMPLES (OPEN-CHANNEL FLOW) AUTUMN 2015 Normal and Critical Depths Q1. If the discharge in a channel of width 5 m is 20 m 3 s 1 and Manning s n is 0.02 m 1/3 s, find: (a) the normal depth and Froude number

More information

Backwater Rise and Drag Characteristics of Bridge Piers under Subcritical

Backwater Rise and Drag Characteristics of Bridge Piers under Subcritical European Water 36: 7-35, 11. 11 E.W. Publications Backwater Rise and Drag Characteristics of Bridge Piers under Subcritical Flow Conditions C.R. Suribabu *, R.M. Sabarish, R. Narasimhan and A.R. Chandhru

More information

Open channel flow Basic principle

Open channel flow Basic principle Open channel flow Basic principle INTRODUCTION Flow in rivers, irrigation canals, drainage ditches and aqueducts are some examples for open channel flow. These flows occur with a free surface and the pressure

More information

RIPRAP From Massachusetts Erosion and Sediment Control Guidelines for Urban and Suburban Areas http://www.mass.gov/dep/water/laws/policies.

RIPRAP From Massachusetts Erosion and Sediment Control Guidelines for Urban and Suburban Areas http://www.mass.gov/dep/water/laws/policies. RIPRAP From Massachusetts Erosion and Sediment Control Guidelines for Urban and Suburban Areas http://www.mass.gov/dep/water/laws/policies.htm#storm Definition: A permanent, erosion-resistant ground cover

More information

BEACH NOURISHMENT COMBINED WITH SIC VERTICAL DRAIN IN MALAYSIA.

BEACH NOURISHMENT COMBINED WITH SIC VERTICAL DRAIN IN MALAYSIA. BEACH NOURISHMENT COMBINED WITH SIC VERTICAL DRAIN IN MALAYSIA. Claus Brøgger 1 and Poul Jakobsen 2 The present paper presents measurements and results from a three year full scale Pilot Project with the

More information

Index. protection. excavated drop inlet protection (Temporary) 6.50.1 6.51.1. Block and gravel inlet Protection (Temporary) 6.52.1

Index. protection. excavated drop inlet protection (Temporary) 6.50.1 6.51.1. Block and gravel inlet Protection (Temporary) 6.52.1 6 Index inlet protection excavated drop inlet protection (Temporary) 6.50.1 HARDWARE CLOTH AND GRAVEL INLET PROTECTION Block and gravel inlet Protection (Temporary) sod drop inlet protection ROCK DOUGHNUT

More information

ebb current, the velocity alternately increasing and decreasing without coming to

ebb current, the velocity alternately increasing and decreasing without coming to Slack water (slack tide): The state of a tidal current when its velocity is near zero, especially the moment when a reversing current changes its direction and its velocity is zero. The term is also applied

More information

Xxxx 1 10 Monitoring, inspection, maintenance and repair 2 3 4 5 6 7 8 9 10 CIRIA C683 1177

Xxxx 1 10 Monitoring, inspection, maintenance and repair 2 3 4 5 6 7 8 9 10 CIRIA C683 1177 Xxxx 0 Monitoring, inspection, maintenance and repair 2 3 5 7 8 9 0 CIRIA C83 77 0 Monitoring, inspection, maintenance and repair CHAPTER 0 CONTENTS 0. Conceptual management approaches..............................

More information

DESIGN OF SLABS. 3) Based on support or boundary condition: Simply supported, Cantilever slab,

DESIGN OF SLABS. 3) Based on support or boundary condition: Simply supported, Cantilever slab, DESIGN OF SLABS Dr. G. P. Chandradhara Professor of Civil Engineering S. J. College of Engineering Mysore 1. GENERAL A slab is a flat two dimensional planar structural element having thickness small compared

More information

REHABILITATION OF THE CHICAGO SHORELINE: A COASTAL ENGINEERING PERSPECTIVE

REHABILITATION OF THE CHICAGO SHORELINE: A COASTAL ENGINEERING PERSPECTIVE REHABILITATION OF THE CHICAGO SHORELINE: A COASTAL ENGINEERING PERSPECTIVE Michael Krecic, P.E. Senior Engineer Taylor Engineering, Inc. 9000 Cypress Green Drive Jacksonville, FL 32256 Mark Wagstaff, P.E.

More information

Practice Problems on Boundary Layers. Answer(s): D = 107 N D = 152 N. C. Wassgren, Purdue University Page 1 of 17 Last Updated: 2010 Nov 22

Practice Problems on Boundary Layers. Answer(s): D = 107 N D = 152 N. C. Wassgren, Purdue University Page 1 of 17 Last Updated: 2010 Nov 22 BL_01 A thin flat plate 55 by 110 cm is immersed in a 6 m/s stream of SAE 10 oil at 20 C. Compute the total skin friction drag if the stream is parallel to (a) the long side and (b) the short side. D =

More information

Numerical Modelling of Regular Waves Propagation and Breaking Using Waves2Foam

Numerical Modelling of Regular Waves Propagation and Breaking Using Waves2Foam Journal of Clean Energy Technologies, Vol. 3, No. 4, July 05 Numerical Modelling of Regular Waves Propagation and Breaking Using WavesFoam B. Chenari, S. S. Saadatian, and Almerindo D. Ferreira numerical

More information

Experiment (13): Flow channel

Experiment (13): Flow channel Introduction: An open channel is a duct in which the liquid flows with a free surface exposed to atmospheric pressure. Along the length of the duct, the pressure at the surface is therefore constant and

More information

...Eq(11.6) The energy loss in the jump is dependent on the two depths y 1 and y 2 3 = E =...Eq(11.7)

...Eq(11.6) The energy loss in the jump is dependent on the two depths y 1 and y 2 3 = E =...Eq(11.7) . Open Channel Flow Contd.5 Hydraulic Jump A hydraulic jump occurs when water in an open channel is flowing supercritical and is slowed by a deepening of the channel or obstruction in the channel. The

More information

How To Predict Wave Overtopping At Coastal Structures

How To Predict Wave Overtopping At Coastal Structures WL delft hydraulics CLIENT: Commission of the European Communities, CLASH (EVK3-2001-00058) TITLE: Prediction method Neural network modelling of wave overtopping at coastal structures ABSTRACT: Within

More information

Topic 8: Open Channel Flow

Topic 8: Open Channel Flow 3.1 Course Number: CE 365K Course Title: Hydraulic Engineering Design Course Instructor: R.J. Charbeneau Subject: Open Channel Hydraulics Topics Covered: 8. Open Channel Flow and Manning Equation 9. Energy,

More information

The success of the hurricane protection around Chevron s refinery at Pascagoula, MS, during Katrina

The success of the hurricane protection around Chevron s refinery at Pascagoula, MS, during Katrina The success of the hurricane protection around Chevron s refinery at Pascagoula, MS, during Katrina Dr J.W. van der Meer, Dr C. Cooper, M.J. Warner, H. Adams-Morales and G.J. Steendam Abstract and presentation

More information

Experiment 3 Pipe Friction

Experiment 3 Pipe Friction EML 316L Experiment 3 Pipe Friction Laboratory Manual Mechanical and Materials Engineering Department College of Engineering FLORIDA INTERNATIONAL UNIVERSITY Nomenclature Symbol Description Unit A cross-sectional

More information

Riprap-lined Swale (RS)

Riprap-lined Swale (RS) Riprap-lined Swale (RS) Practice Description A riprap-lined swale is a natural or constructed channel with an erosion-resistant rock lining designed to carry concentrated runoff to a stable outlet. This

More information

HYDRAULICS. H91.8D/C - Computerized Open Surface Tilting Flow Channel - 10, 12.5, 15 and 20 m long

HYDRAULICS. H91.8D/C - Computerized Open Surface Tilting Flow Channel - 10, 12.5, 15 and 20 m long HYDRAULICS H91.8D/C - Computerized Open Surface Tilting Flow Channel - 10, 12.5, 15 and 20 m long 1. General The series of channels H91.8D has been designed by Didacta Italia to study the hydrodynamic

More information

Wave Run-Up and Wave Overtopping at Armored Rubble Slopes and Mounds

Wave Run-Up and Wave Overtopping at Armored Rubble Slopes and Mounds Chapter 15 Wave Run-Up and Wave Overtopping at Armored Rubble Slopes and Mounds Holger Schüttrumpf Institute of Hydraulic Engineering and Water Resources Management RWTH-Aachen University, 52065 Aachen,

More information

CITY UTILITIES DESIGN STANDARDS MANUAL

CITY UTILITIES DESIGN STANDARDS MANUAL CITY UTILITIES DESIGN STANDARDS MANUAL Book 2 (SW) SW9 June 2015 SW9.01 Purpose This Chapter provides information for the design of open channels for the conveyance of stormwater in the City of Fort Wayne.

More information

Hydraulic Jumps and Non-uniform Open Channel Flow, Course #507. Presented by: PDH Enterprises, LLC PO Box 942 Morrisville, NC 27560 www.pdhsite.

Hydraulic Jumps and Non-uniform Open Channel Flow, Course #507. Presented by: PDH Enterprises, LLC PO Box 942 Morrisville, NC 27560 www.pdhsite. Hydraulic Jumps and Non-uniform Open Channel Flow, Course #507 Presented by: PDH Enterprises, LLC PO Box 942 Morrisville, NC 27560 www.pdhsite.com Many examples of open channel flow can be approximated

More information

Chapter 9. Steady Flow in Open channels

Chapter 9. Steady Flow in Open channels Chapter 9 Steady Flow in Open channels Objectives Be able to define uniform open channel flow Solve uniform open channel flow using the Manning Equation 9.1 Uniform Flow in Open Channel Open-channel flows

More information

Project Management. Project Co-ordination. Disclaimer. Geoff Withycombe Executive Officer Sydney Coastal Councils Group

Project Management. Project Co-ordination. Disclaimer. Geoff Withycombe Executive Officer Sydney Coastal Councils Group Project Management Geoff Withycombe Executive Officer Sydney Coastal Councils Group Douglas Lord Director Coastal Environment Pty Ltd Professor Rodger Tomlinson Director Griffith Centre for Coastal Management

More information

Wave run-up on a rubble mound breakwater: prototype measurements versus scale model tests

Wave run-up on a rubble mound breakwater: prototype measurements versus scale model tests Wave run-up on a rubble und breakwater: prototype measurements versus scale del tests De Rouck J., Troch P., Van de Walle B., van der Meer J., Van Damme L. 3, Medina J.R. 4, Willems M. 5, Frigaard P. 6

More information

CEE 370 Fall 2015. Laboratory #3 Open Channel Flow

CEE 370 Fall 2015. Laboratory #3 Open Channel Flow CEE 70 Fall 015 Laboratory # Open Channel Flow Objective: The objective of this experiment is to measure the flow of fluid through open channels using a V-notch weir and a hydraulic jump. Introduction:

More information

Stress and deformation of offshore piles under structural and wave loading

Stress and deformation of offshore piles under structural and wave loading Stress and deformation of offshore piles under structural and wave loading J. A. Eicher, H. Guan, and D. S. Jeng # School of Engineering, Griffith University, Gold Coast Campus, PMB 50 Gold Coast Mail

More information

Session 21 Max Sheppard. Improved Complex Pier Scour Prediction Procedure

Session 21 Max Sheppard. Improved Complex Pier Scour Prediction Procedure Session 21 Max Sheppard Ocean Engineering Associates, Inc. Improved Prediction Procedure Topic Description Improved Prediction Procedure Improvements: have been made in the methodology for predicting local

More information

NACA 2415- FINDING LIFT COEFFICIENT USING CFD, THEORETICAL AND JAVAFOIL

NACA 2415- FINDING LIFT COEFFICIENT USING CFD, THEORETICAL AND JAVAFOIL NACA 2415- FINDING LIFT COEFFICIENT USING CFD, THEORETICAL AND JAVAFOIL Sarfaraj Nawaz Shaha 1, M. Sadiq A. Pachapuri 2 1 P.G. Student, MTech Design Engineering, KLE Dr. M S Sheshgiri College of Engineering

More information

3. Design Procedures. Design Procedures. Introduction

3. Design Procedures. Design Procedures. Introduction Design Procedures 3. Design Procedures Introduction This chapter presents a procedure for the design of natural channels. The chapter primarily focuses on those physical properties of the channel required

More information

STATUS REPORT FOR THE SUBMERGED REEF BALL TM ARTIFICIAL REEF SUBMERGED BREAKWATER BEACH STABILIZATION PROJECT FOR THE GRAND CAYMAN MARRIOTT HOTEL

STATUS REPORT FOR THE SUBMERGED REEF BALL TM ARTIFICIAL REEF SUBMERGED BREAKWATER BEACH STABILIZATION PROJECT FOR THE GRAND CAYMAN MARRIOTT HOTEL STATUS REPORT FOR THE SUBMERGED REEF BALL TM ARTIFICIAL REEF SUBMERGED BREAKWATER BEACH STABILIZATION PROJECT FOR THE GRAND CAYMAN MARRIOTT HOTEL performed by Lee E. Harris, Ph.D., P.E. Consulting Coastal

More information

Proceeding of International Seminar on Application of Science Matehmatics 2011 (ISASM2011) PWTC, KL, Nov, 1-3, 2011

Proceeding of International Seminar on Application of Science Matehmatics 2011 (ISASM2011) PWTC, KL, Nov, 1-3, 2011 Proceeding of International Seminar on Application of Science Matehmatics 2011 (ISASM2011) PWTC, KL, Nov, 1-3, 2011 INFLUENCE OF BED ROUGHNESS IN OPEN CHANNEL Zarina Md Ali 1 and Nor Ashikin Saib 2 1 Department

More information

Exercise (4): Open Channel Flow - Gradually Varied Flow

Exercise (4): Open Channel Flow - Gradually Varied Flow Exercise 4: Open Channel Flow - Gradually Varied Flow 1 A wide channel consists of three long reaches and has two gates located midway of the first and last reaches. The bed slopes for the three reaches

More information

Table 4.9 Storm Drain Inlet Protetion Applicable for

Table 4.9 Storm Drain Inlet Protetion Applicable for BMP C220: Storm Drain Inlet Protection Purpose To prevent coarse sediment from entering drainage systems prior to permanent stabilization of the disturbed area. Conditions of Use Type of Inlet Protection

More information

The advantages and disadvantages of dynamic load testing and statnamic load testing

The advantages and disadvantages of dynamic load testing and statnamic load testing The advantages and disadvantages of dynamic load testing and statnamic load testing P.Middendorp & G.J.J. van Ginneken TNO Profound R.J. van Foeken TNO Building and Construction Research ABSTRACT: Pile

More information

Face detection is a process of localizing and extracting the face region from the

Face detection is a process of localizing and extracting the face region from the Chapter 4 FACE NORMALIZATION 4.1 INTRODUCTION Face detection is a process of localizing and extracting the face region from the background. The detected face varies in rotation, brightness, size, etc.

More information

Concrete mattress used for berth scour protection

Concrete mattress used for berth scour protection Concrete mattress used for berth scour protection M. G. Hawkswood Proserve Ltd, UK. office@proserveltd.co.uk P. J. Assinder HUESKER Synthetic GmbH, Germany. petera@huesker.co.uk ABSTRACT Geosynthetic concrete

More information

Predicting Coastal Hazards: A Southern California Demonstration

Predicting Coastal Hazards: A Southern California Demonstration Predicting Coastal Hazards: A Southern California Demonstration Patrick Barnard United States Geological Survey Coastal and Marine Geology Team Santa Cruz, CA Southern California Multi-hazards Demonstration

More information

SECTION 5: SANITARY SEWER SYSTEM DESIGN

SECTION 5: SANITARY SEWER SYSTEM DESIGN SECTION 5: SANITARY SEWER SYSTEM DESIGN 5.01 GENERAL Sanitary sewer improvements shall be designed to serve the ultimate level of City development as defined in the General Plan and the Wastewater Facilities

More information

Open Channel Flow 2F-2. A. Introduction. B. Definitions. Design Manual Chapter 2 - Stormwater 2F - Open Channel Flow

Open Channel Flow 2F-2. A. Introduction. B. Definitions. Design Manual Chapter 2 - Stormwater 2F - Open Channel Flow Design Manual Chapter 2 - Stormwater 2F - Open Channel Flow 2F-2 Open Channel Flow A. Introduction The beginning of any channel design or modification is to understand the hydraulics of the stream. The

More information

Lecture 24 Flumes & Channel Transitions. I. General Characteristics of Flumes. Flumes are often used:

Lecture 24 Flumes & Channel Transitions. I. General Characteristics of Flumes. Flumes are often used: Lecture 24 Flumes & Channel Transitions I. General Characteristics of Flumes Flumes are often used: 1. Along contours of steep slopes where minimal excavation is desired 2. On flat terrain where it is

More information

2.0 BASIC CONCEPTS OF OPEN CHANNEL FLOW MEASUREMENT

2.0 BASIC CONCEPTS OF OPEN CHANNEL FLOW MEASUREMENT 2.0 BASIC CONCEPTS OF OPEN CHANNEL FLOW MEASUREMENT Open channel flow is defined as flow in any channel where the liquid flows with a free surface. Open channel flow is not under pressure; gravity is the

More information

Settlement of Precast Culverts Under High Fills; The Influence of Construction Sequence and Structural Effects of Longitudinal Strains

Settlement of Precast Culverts Under High Fills; The Influence of Construction Sequence and Structural Effects of Longitudinal Strains Settlement of Precast Culverts Under High Fills; The Influence of Construction Sequence and Structural Effects of Longitudinal Strains Doug Jenkins 1, Chris Lawson 2 1 Interactive Design Services, 2 Reinforced

More information

What is the most obvious difference between pipe flow and open channel flow????????????? (in terms of flow conditions and energy situation)

What is the most obvious difference between pipe flow and open channel flow????????????? (in terms of flow conditions and energy situation) OPEN CHANNEL FLOW 1 3 Question What is the most obvious difference between pipe flow and open channel flow????????????? (in terms of flow conditions and energy situation) Typical open channel shapes Figure

More information

Numerical modelling of wave interaction with coastal structures

Numerical modelling of wave interaction with coastal structures Terug naar overzicht Numerical modelling of wave interaction with coastal structures dr ir Peter Troch Afdeling Weg-& Waterbouwkunde, Vakgroep Civiele Techniek TW15 Universiteit Gent, Technologiepark 904,

More information

Guo, James C.Y. (2004). Design of Urban Channel Drop Structure, J. of Flood Hazards News, December,

Guo, James C.Y. (2004). Design of Urban Channel Drop Structure, J. of Flood Hazards News, December, Guo, James C.. (004). esign of Urban Channel rop Structure, J. of Flood azards News, ecember, Guo, James C.., (009) Grade Control for Urban Channel esign, submitted to Elsevier Science, J. of ydro-environmental

More information

A New Coastal Engineering Graduate Program

A New Coastal Engineering Graduate Program Paper ID #12157 A New Coastal Engineering Graduate Program Dr. Robert W. Whalin, Jackson State University Dr. Robert W. Whalin, Professor of Civil and Environmental Engineering, and Director, Coastal Hazards

More information

SIMULATION OF SEDIMENT TRANSPORT AND CHANNEL MORPHOLOGY CHANGE IN LARGE RIVER SYSTEMS. Stephen H. Scott 1 and Yafei Jia 2

SIMULATION OF SEDIMENT TRANSPORT AND CHANNEL MORPHOLOGY CHANGE IN LARGE RIVER SYSTEMS. Stephen H. Scott 1 and Yafei Jia 2 US-CHINA WORKSHOP ON ADVANCED COMPUTATIONAL MODELLING IN HYDROSCIENCE & ENGINEERING September 19-21, Oxford, Mississippi, USA SIMULATION OF SEDIMENT TRANSPORT AND CHANNEL MORPHOLOGY CHANGE IN LARGE RIVER

More information

NUMERICAL SIMULATION OF REGULAR WAVES RUN-UP OVER SLOPPING BEACH BY OPEN FOAM

NUMERICAL SIMULATION OF REGULAR WAVES RUN-UP OVER SLOPPING BEACH BY OPEN FOAM NUMERICAL SIMULATION OF REGULAR WAVES RUN-UP OVER SLOPPING BEACH BY OPEN FOAM Parviz Ghadimi 1*, Mohammad Ghandali 2, Mohammad Reza Ahmadi Balootaki 3 1*, 2, 3 Department of Marine Technology, Amirkabir

More information

STANDARD AND SPECIFICATIONS FOR STORM DRAIN INLET PROTECTION

STANDARD AND SPECIFICATIONS FOR STORM DRAIN INLET PROTECTION STANDARD AND SPECIFICATIONS FOR STORM DRAIN INLET PROTECTION Design Criteria Drainage Area The drainage area for storm drain inlets shall not exceed one acre. The crest elevations of these practices shall

More information

CONSTANT HEAD AND FALLING HEAD PERMEABILITY TEST

CONSTANT HEAD AND FALLING HEAD PERMEABILITY TEST CONSTANT HEAD AND FALLING HEAD PERMEABILITY TEST 1 Permeability is a measure of the ease in which water can flow through a soil volume. It is one of the most important geotechnical parameters. However,

More information

CHAPTER 32 ENERGY LOSS AND SET-UP DUE TO BREAKING OF RANDOM WAVES. 1) 2) J.A. Battjes and J.P.F.M. Janssen ABSTRACT

CHAPTER 32 ENERGY LOSS AND SET-UP DUE TO BREAKING OF RANDOM WAVES. 1) 2) J.A. Battjes and J.P.F.M. Janssen ABSTRACT CHAPTER 32 ENERGY LOSS AND SET-UP DUE TO BREAKING OF RANDOM WAVES 1) 2) J.A. Battjes and J.P.F.M. Janssen ABSTRACT A description is given of a model developed for the prediction of the dissipation of energy

More information

Hydraulics Laboratory Experiment Report

Hydraulics Laboratory Experiment Report Hydraulics Laboratory Experiment Report Name: Ahmed Essam Mansour Section: "1", Monday 2-5 pm Title: Flow in open channel Date: 13 November-2006 Objectives: Calculate the Chezy and Manning coefficients

More information

Spreadsheet Use for Partially Full Pipe Flow Calculations

Spreadsheet Use for Partially Full Pipe Flow Calculations Spreadsheet Use for Partially Full Pipe Flow Calculations Course No: C02-037 Credit: 2 PDH Harlan H. Bengtson, PhD, P.E. Continuing Education and Development, Inc. 9 Greyridge Farm Court Stony Point, NY

More information

Evaluation of Open Channel Flow Equations. Introduction :

Evaluation of Open Channel Flow Equations. Introduction : Evaluation of Open Channel Flow Equations Introduction : Most common hydraulic equations for open channels relate the section averaged mean velocity (V) to hydraulic radius (R) and hydraulic gradient (S).

More information

EXPERIMENTAL STUDIES ON PRESSURE DROP IN A SINUSOIDAL PLATE HEAT EXCHANGER: EFFECT OF CORRUGATION ANGLE

EXPERIMENTAL STUDIES ON PRESSURE DROP IN A SINUSOIDAL PLATE HEAT EXCHANGER: EFFECT OF CORRUGATION ANGLE EXPERIMENTAL STUDIES ON PRESSURE DROP IN A SINUSOIDAL PLATE HEAT EXCHANGER: EFFECT OF CORRUGATION ANGLE B. Sreedhara Rao 1, Varun S 2, MVS Murali Krishna 3, R C Sastry 4 1 Asst professor, 2 PG Student,

More information

1. Carry water under the canal 2. Carry water over the canal 3. Carry water into the canal

1. Carry water under the canal 2. Carry water over the canal 3. Carry water into the canal Lecture 21 Culvert Design & Analysis Much of the following is based on the USBR publication: Design of Small Canal Structures (1978) I. Cross-Drainage Structures Cross-drainage is required when a canal

More information

Open Channel Flow Measurement Weirs and Flumes

Open Channel Flow Measurement Weirs and Flumes Open Channel Flow Measurement Weirs and Flumes by Harlan H. Bengtson, PhD, P.E. 1. Introduction Your Course Title Here Measuring the flow rate of water in an open channel typically involves some type of

More information

Module 7 (Lecture 24 to 28) RETAINING WALLS

Module 7 (Lecture 24 to 28) RETAINING WALLS Module 7 (Lecture 24 to 28) RETAINING WALLS Topics 24.1 INTRODUCTION 24.2 GRAVITY AND CANTILEVER WALLS 24.3 PROPORTIONING RETAINING WALLS 24.4 APPLICATION OF LATERAL EARTH PRESSURE THEORIES TO DESIGN 24.5

More information

Lecture 25 Design Example for a Channel Transition. I. Introduction

Lecture 25 Design Example for a Channel Transition. I. Introduction Lecture 5 Design Example for a Channel Transition I. Introduction This example will be for a transition from a trapezoidal canal section to a rectangular flume section The objective of the transition design

More information

An Automatic Kunzelstab Penetration Test

An Automatic Kunzelstab Penetration Test An Automatic Kunzelstab Penetration Test Yongyuth Sirisriphet 1, Kitidech Santichaianant 2 1 Graduated student: Faculty of Industrial Education in and Technology. King Mongkut's University of Technology

More information

Welded Mesh Gabions and Mattresses River Protection Design Guide HY-TEN GABION SOLUTIONS Dunstall Hill Trading Estate, Gorsebrook Road,

Welded Mesh Gabions and Mattresses River Protection Design Guide HY-TEN GABION SOLUTIONS Dunstall Hill Trading Estate, Gorsebrook Road, Welded Mesh Gabions and Mattresses River Protection Design Guide HY-TEN GABION SOLUTIONS Dunstall Hill Trading Estate, Gorsebrook Road, Wolverhampton, WV6 0PJ Tel 01902 712200 Fax 01902 714096 e-mail sales@hy-tengabions.com

More information

New Coastal Study for Puerto Rico FIRMs. Paul Weberg, FEMA RII Mat Mampara, Dewberry Jeff Gangai, Dewberry Krista Collier, Baker

New Coastal Study for Puerto Rico FIRMs. Paul Weberg, FEMA RII Mat Mampara, Dewberry Jeff Gangai, Dewberry Krista Collier, Baker New Coastal Study for Puerto Rico FIRMs Paul Weberg, FEMA RII Mat Mampara, Dewberry Jeff Gangai, Dewberry Krista Collier, Baker September 2007 Project Team FEMA Region II Program Manager Collaboration

More information

Enhancement of heat transfer of solar air heater roughened with circular transverse RIB

Enhancement of heat transfer of solar air heater roughened with circular transverse RIB Enhancement of heat transfer of solar air heater roughened with circular transverse RIB Gurpreet Singh 1, Dr. G. S. Sidhu 2 Lala Lajpat Rai Institute of Engineering and Technology, Moga Punjab, India 1,2

More information

Use of Strain Gauge Rosette to Investigate Stress concentration in Isotropic and Orthotropic Plate with Circular Hole

Use of Strain Gauge Rosette to Investigate Stress concentration in Isotropic and Orthotropic Plate with Circular Hole Use of Strain Gauge Rosette to Investigate Stress concentration in Isotropic and Orthotropic Plate with Circular Hole Mr.V.G.Aradhye 1, Prof.S.S.Kulkarni 2 1 PG Scholar, Mechanical department, SKN Sinhgad

More information

Report on. Wind Resistance of Signs supported by. Glass Fiber Reinforced Concrete (GFRC) Pillars

Report on. Wind Resistance of Signs supported by. Glass Fiber Reinforced Concrete (GFRC) Pillars Report on Wind Resistance of Signs supported by Glass Fiber Reinforced Concrete (GFRC) Pillars Prepared for US Sign and Fabrication Corporation January, 2006 SUMMARY This study found the attachment of

More information

Sharp-Crested Weirs for Open Channel Flow Measurement, Course #506. Presented by:

Sharp-Crested Weirs for Open Channel Flow Measurement, Course #506. Presented by: Sharp-Crested Weirs for Open Channel Flow Measurement, Course #506 Presented by: PDH Enterprises, LLC PO Box 942 Morrisville, NC 27560 www.pdhsite.com A weir is basically an obstruction in an open channel

More information

COMBINED PHYSICAL AND NUMERICAL MODELLING OF AN ARTIFICIAL COASTAL REEF

COMBINED PHYSICAL AND NUMERICAL MODELLING OF AN ARTIFICIAL COASTAL REEF COMBINED PHYSICAL AND NUMERICAL MODELLING OF AN ARTIFICIAL COASTAL REEF Valeri Penchev and Dorina Dragancheva, Bulgarian Ship Hydrodynamics Centre, 9003 Varna, Bulgaria Andreas Matheja, Stephan Mai and

More information

1 Introduction 1 CIRIA C683 1

1 Introduction 1 CIRIA C683 1 1 Introduction 1 3 5 7 9 CIRIA C3 1 1 Introduction CHAPTER 1 CONTENTS 1.1 Use of rock...................................................... 3 1. Background to the manual.........................................

More information

Interpreting Federal Emergency Management Agency Flood Maps and Studies in the Coastal Zone

Interpreting Federal Emergency Management Agency Flood Maps and Studies in the Coastal Zone Interpreting Federal Emergency Management Agency Flood Maps and Studies in the Coastal Zone Publication Date: October 2015 Table of Contents FEMA Flood Insurance Rate Maps and Flood Insurance Studies.

More information

Overturning Stability of Offshore Wind Power Substructure with Bucket Foundation

Overturning Stability of Offshore Wind Power Substructure with Bucket Foundation Website: www.ijetae.com (ISSN 2250-2459, ISO 9001:2008 Certified Journal, Volume 5, Issue 10, October 2015) Overturning Stability of Offshore Wind Power Substructure with Bucket Foundation Young-Jun You

More information

PART TWO GEOSYNTHETIC SOIL REINFORCEMENT. Martin Street Improvements, Fredonia, Wisconsin; Keystone Compac Hewnstone

PART TWO GEOSYNTHETIC SOIL REINFORCEMENT. Martin Street Improvements, Fredonia, Wisconsin; Keystone Compac Hewnstone GEOSYNTHETIC SOIL REINFORCEMENT Martin Street Improvements, Fredonia, Wisconsin; Keystone Compac Hewnstone DESIGN MANUAL & KEYWALL OPERATING GUIDE GEOSYNTHETIC SOIL REINFORCEMENT Keystone retaining walls

More information

Monitoring of water level, waves and ice with radar gauges

Monitoring of water level, waves and ice with radar gauges Ulrich Barjenbruch 1 Stephan Mai 2 Dr. rer. nat. habil. Dipl.-Phys. Dipl.-Ing. barjenbruch@bafg.de Stephan.Mai@mbox.fi.uni-hannover.de Nino Ohle 2 Peter Mertinatis 1 Kai Irschik 2 Dipl.-Ing. Dipl.-Ing.

More information

The Coast of Crystal Cove Orange County, California

The Coast of Crystal Cove Orange County, California The Coast of Crystal Cove Orange County, California by Hany Elwany, Ph.D. Scripps Institution of Oceanography Megan Hamilton, M.Sc. Coastal Environments Robert Robinson Dept. of Parks & Recreation Headwaters

More information

CHAPTER 2 HYDRAULICS OF SEWERS

CHAPTER 2 HYDRAULICS OF SEWERS CHAPTER 2 HYDRAULICS OF SEWERS SANITARY SEWERS The hydraulic design procedure for sewers requires: 1. Determination of Sewer System Type 2. Determination of Design Flow 3. Selection of Pipe Size 4. Determination

More information

Technical Notes 3B - Brick Masonry Section Properties May 1993

Technical Notes 3B - Brick Masonry Section Properties May 1993 Technical Notes 3B - Brick Masonry Section Properties May 1993 Abstract: This Technical Notes is a design aid for the Building Code Requirements for Masonry Structures (ACI 530/ASCE 5/TMS 402-92) and Specifications

More information

Module 7: Hydraulic Design of Sewers and Storm Water Drains. Lecture 7 : Hydraulic Design of Sewers and Storm Water Drains

Module 7: Hydraulic Design of Sewers and Storm Water Drains. Lecture 7 : Hydraulic Design of Sewers and Storm Water Drains 1 P age Module 7: Hydraulic Design of Sewers and Storm Water Drains Lecture 7 : Hydraulic Design of Sewers and Storm Water Drains 2 P age 7.1 General Consideration Generally, sewers are laid at steeper

More information

Numerical Analysis of Independent Wire Strand Core (IWSC) Wire Rope

Numerical Analysis of Independent Wire Strand Core (IWSC) Wire Rope Numerical Analysis of Independent Wire Strand Core (IWSC) Wire Rope Rakesh Sidharthan 1 Gnanavel B K 2 Assistant professor Mechanical, Department Professor, Mechanical Department, Gojan engineering college,

More information

Measurement of Soil Parameters by Using Penetrometer Needle Apparatus

Measurement of Soil Parameters by Using Penetrometer Needle Apparatus Vol.3, Issue.1, Jan-Feb. 2013 pp-284-290 ISSN: 2249-6645 Measurement of Soil Parameters by Using Penetrometer Needle Apparatus Mahmoud M. Abu zeid, 1 Amr M. Radwan, 2 Emad A. Osman, 3 Ahmed M.Abu-bakr,

More information

Optimum proportions for the design of suspension bridge

Optimum proportions for the design of suspension bridge Journal of Civil Engineering (IEB), 34 (1) (26) 1-14 Optimum proportions for the design of suspension bridge Tanvir Manzur and Alamgir Habib Department of Civil Engineering Bangladesh University of Engineering

More information

Design and Simulation of Soft Switched Converter Fed DC Servo Drive

Design and Simulation of Soft Switched Converter Fed DC Servo Drive International Journal of Soft Computing and Engineering (IJSCE) ISSN: 2231-237, Volume-1, Issue-5, November 211 Design and Simulation of Soft Switched Converter Fed DC Servo Drive Bal Mukund Sharma, A.

More information

Design Charts for Open-Channel Flow HDS 3 August 1961

Design Charts for Open-Channel Flow HDS 3 August 1961 Design Charts for Open-Channel Flow HDS 3 August 1961 Welcome to HDS 3-Design Charts for Open-Channel Flow Table of Contents Preface DISCLAIMER: During the editing of this manual for conversion to an electronic

More information

Technical Drawing Specifications Resource A guide to support VCE Visual Communication Design study design 2013-17

Technical Drawing Specifications Resource A guide to support VCE Visual Communication Design study design 2013-17 A guide to support VCE Visual Communication Design study design 2013-17 1 Contents INTRODUCTION The Australian Standards (AS) Key knowledge and skills THREE-DIMENSIONAL DRAWING PARALINE DRAWING Isometric

More information

http://www.nj.gov/dep/shoreprotection/storm.htmhris TUCKER

http://www.nj.gov/dep/shoreprotection/storm.htmhris TUCKER COASTAL STORM SURVEY NEW JERSEY DEPARTMENT OF ENVIRONMENTAL PROTECTION BUREAU OF COASTAL ENGINEERING - TOMS RIVER NJ 12:00 P.M. TUESDAY, MARCH 1, 2005 NEW JERSEY COASTLINE INCLUDING RARITAN AND DELAWARE

More information

SECTION 6A STORM DRAIN DESIGN Mar. 2002 S E C T I O N 6A STORM DRAIN - DESIGN

SECTION 6A STORM DRAIN DESIGN Mar. 2002 S E C T I O N 6A STORM DRAIN - DESIGN S E C T I O N 6A STORM DRAIN - DESIGN 6A.l Scope 6A.2 Storm Water Quantity 6A.3 Storm Drain Hydraulics 6A.4 Depths 6A.5 Locations 6A.6 Curved Storm Drains 6A.7 Manholes 6A.8 Catch basins 6A.9 Storm Drain

More information

Oakwood Beach Storm Damage Prevention Project NJDEP-Bureau of Coastal Engineering Glenn Golden, Project Manager U.S. Army Corps Civil Works Programs

Oakwood Beach Storm Damage Prevention Project NJDEP-Bureau of Coastal Engineering Glenn Golden, Project Manager U.S. Army Corps Civil Works Programs Oakwood Beach Storm Damage Prevention Project NJDEP- Glenn Golden, Project Manager U.S. Army Corps Civil Works Programs Branch Dwight Pakan, Project Manager, Philadelphia District The State of New Jersey

More information

Watershed Works Manual

Watershed Works Manual National Rural Employment Guarantee Act Watershed Works Manual DRAINAGE LINE TREATMENT: GABION STRUCTURE Baba Amte Centre for People s Empowerment Samaj Pragati Sahayog September 2006 Drainage Line Treatment:

More information

4.4 WAVE CHARACTERISTICS 4.5 WAVE PROPERTIES HW/Study Packet

4.4 WAVE CHARACTERISTICS 4.5 WAVE PROPERTIES HW/Study Packet 4.4 WAVE CHARACTERISTICS 4.5 WAVE PROPERTIES HW/Study Packet Required: READ Hamper pp 115-134 SL/HL Supplemental: Cutnell and Johnson, pp 473-477, 507-513 Tsokos, pp 216-242 REMEMBER TO. Work through all

More information