Introduction to Algorithms

Size: px
Start display at page:

Download "Introduction to Algorithms"

Transcription

1 Introduction to Algorithms 6.046J/18.401J LECTURE 17 Shortest Paths I Properties of shortest paths Dijkstra s algorithm Correctness Analysis Breadth-first search Prof. Erik Demaine November 14, 005 Copyright by Erik D. Demaine and Charles E. Leiserson L17.1

2 Paths in graphs Consider a digraph G = (V, E) with edge-weight function w : E R. The weight of path p = v 1 v L v k is defined to be k 1 i= 1 w ( p) = w( v i, v i + 1). November 14, 005 Copyright by Erik D. Demaine and Charles E. Leiserson L17.

3 Paths in graphs Consider a digraph G = (V, E) with edge-weight function w : E R. The weight of path p = v 1 v L v k is defined to be Example: k 1 i= 1 w ( p) = w( v i, v i + 1). v 1 v v 3 v 5 v v w(p) = November 14, 005 Copyright by Erik D. Demaine and Charles E. Leiserson L17.3

4 Shortest paths A shortest path from u to v is a path of minimum weight from u to v. The shortestpath weight from u to v is defined as δ(u, v) = min{w(p) : p is a path from u to v}. Note: δ(u, v) = if no path from u to v exists. November 14, 005 Copyright by Erik D. Demaine and Charles E. Leiserson L17.4

5 Optimal substructure Theorem. A subpath of a shortest path is a shortest path. November 14, 005 Copyright by Erik D. Demaine and Charles E. Leiserson L17.5

6 Optimal substructure Theorem. A subpath of a shortest path is a shortest path. Proof. Cut and paste: November 14, 005 Copyright by Erik D. Demaine and Charles E. Leiserson L17.6

7 Optimal substructure Theorem. A subpath of a shortest path is a shortest path. Proof. Cut and paste: November 14, 005 Copyright by Erik D. Demaine and Charles E. Leiserson L17.7

8 Triangle inequality Theorem. For all u, v, x V, we have δ(u, v) δ(u, x) + δ(x, v). November 14, 005 Copyright by Erik D. Demaine and Charles E. Leiserson L17.8

9 Triangle inequality Theorem. For all u, v, x V, we have δ(u, v) δ(u, x) + δ(x, v). Proof. uu δ(u, v) vv δ(u, x) δ(x, v) xx November 14, 005 Copyright by Erik D. Demaine and Charles E. Leiserson L17.9

10 Well-definedness of shortest paths If a graph G contains a negative-weight cycle, then some shortest paths may not exist. November 14, 005 Copyright by Erik D. Demaine and Charles E. Leiserson L17.10

11 Well-definedness of shortest paths If a graph G contains a negative-weight cycle, then some shortest paths may not exist. Example: < 0 uu vv November 14, 005 Copyright by Erik D. Demaine and Charles E. Leiserson L17.11

12 Single-source shortest paths Problem. From a given source vertex s V, find the shortest-path weights δ(s, v) for all v V. If all edge weights w(u, v) are nonnegative, all shortest-path weights must exist. IDEA: Greedy. 1. Maintain a set S of vertices whose shortestpath distances from s are known.. At each step add to S the vertex v V S whose distance estimate from s is minimal. 3. Update the distance estimates of vertices adjacent to v. November 14, 005 Copyright by Erik D. Demaine and Charles E. Leiserson L17.1

13 Dijkstra s algorithm d[s] 0 for each v V {s} do d[v] S Q V Q is a priority queue maintaining V S November 14, 005 Copyright by Erik D. Demaine and Charles E. Leiserson L17.13

14 Dijkstra s algorithm d[s] 0 for each v V {s} do d[v] S Q V Q is a priority queue maintaining V S while Q do u EXTRACT-MIN(Q) S S {u} for each v Adj[u] do if d[v] > d[u] + w(u, v) then d[v] d[u] + w(u, v) November 14, 005 Copyright by Erik D. Demaine and Charles E. Leiserson L17.14

15 Dijkstra s algorithm d[s] 0 for each v V {s} do d[v] S Q V while Q do u EXTRACT-MIN(Q) S S {u} for each v Adj[u] do if d[v] > d[u] + w(u, v) then d[v] d[u] + w(u, v) Q is a priority queue maintaining V S relaxation step Implicit DECREASE-KEY November 14, 005 Copyright by Erik D. Demaine and Charles E. Leiserson L17.15

16 Example of Dijkstra s algorithm Graph with nonnegative edge weights: AA 10 BB D CC EE November 14, 005 Copyright by Erik D. Demaine and Charles E. Leiserson L17.16

17 Initialize: Example of Dijkstra s algorithm 0 Q: A B C D E AA 10 3 BB CC D S: {} EE November 14, 005 Copyright by Erik D. Demaine and Charles E. Leiserson L17.17

18 Example of Dijkstra s algorithm A EXTRACT-MIN(Q): 0 Q: A B C D E AA 10 3 BB CC D S: { A } EE November 14, 005 Copyright by Erik D. Demaine and Charles E. Leiserson L17.18

19 Example of Dijkstra s algorithm Relax all edges leaving A: 0 Q: A B C D E AA BB D CC S: { A } EE 3 November 14, 005 Copyright by Erik D. Demaine and Charles E. Leiserson L17.19

20 Example of Dijkstra s algorithm C EXTRACT-MIN(Q): Q: 0 A B C D E AA BB D CC S: { A, C } EE 3 November 14, 005 Copyright by Erik D. Demaine and Charles E. Leiserson L17.0

21 Example of Dijkstra s algorithm Relax all edges leaving C: Q: 0 A B C D E AA BB D CC S: { A, C } EE 3 5 November 14, 005 Copyright by Erik D. Demaine and Charles E. Leiserson L17.1

22 Example of Dijkstra s algorithm E EXTRACT-MIN(Q): Q: 0 A B C D E AA BB D CC EE 3 5 S: { A, C, E } November 14, 005 Copyright by Erik D. Demaine and Charles E. Leiserson L17.

23 Example of Dijkstra s algorithm Relax all edges leaving E: Q: 0 A B C D E AA BB D CC S: { A, C, E } EE 3 5 November 14, 005 Copyright by Erik D. Demaine and Charles E. Leiserson L17.3

24 Example of Dijkstra s algorithm B EXTRACT-MIN(Q): Q: 0 A B C D E AA BB D CC EE 3 5 S: { A, C, E, B } November 14, 005 Copyright by Erik D. Demaine and Charles E. Leiserson L17.4

25 Example of Dijkstra s algorithm Relax all edges leaving B: Q: 0 A B C D E AA 7 9 BB D November 14, 005 Copyright by Erik D. Demaine and Charles E. Leiserson L CC S: { A, C, E, B } EE 3 5

26 Example of Dijkstra s algorithm D EXTRACT-MIN(Q): Q: 0 A B C D E AA 7 9 BB D November 14, 005 Copyright by Erik D. Demaine and Charles E. Leiserson L CC EE 3 5 S: { A, C, E, B, D }

27 Correctness Part I Lemma. Initializing d[s] 0 and d[v] for all v V {s} establishes d[v] δ(s, v) for all v V, and this invariant is maintained over any sequence of relaxation steps. November 14, 005 Copyright by Erik D. Demaine and Charles E. Leiserson L17.7

28 Correctness Part I Lemma. Initializing d[s] 0 and d[v] for all v V {s} establishes d[v] δ(s, v) for all v V, and this invariant is maintained over any sequence of relaxation steps. Proof. Suppose not. Let v be the first vertex for which d[v] < δ(s, v), and let u be the vertex that caused d[v] to change: d[v] = d[u] + w(u, v). Then, d[v] < δ(s, v) supposition δ(s, u) + δ(u, v) triangle inequality δ(s,u) + w(u, v) sh. path specific path d[u] + w(u, v) v is first violation Contradiction. November 14, 005 Copyright by Erik D. Demaine and Charles E. Leiserson L17.8

29 Correctness Part II Lemma. Let u be v s predecessor on a shortest path from s to v. Then, if d[u] = δ(s, u) and edge (u, v) is relaxed, we have d[v] = δ(s, v) after the relaxation. November 14, 005 Copyright by Erik D. Demaine and Charles E. Leiserson L17.9

30 Correctness Part II Lemma. Let u be v s predecessor on a shortest path from s to v. Then, if d[u] = δ(s, u) and edge (u, v) is relaxed, we have d[v] = δ(s, v) after the relaxation. Proof. Observe that δ(s, v) = δ(s, u)+ w(u, v). Suppose that d[v] > δ(s, v) before the relaxation. (Otherwise, we re done.) Then, the test d[v] > d[u] + w(u, v) succeeds, because d[v] > δ(s, v) = δ(s, u)+ w(u, v) = d[u] + w(u, v), and the algorithm sets d[v] = d[u] + w(u, v) = δ(s, v). November 14, 005 Copyright by Erik D. Demaine and Charles E. Leiserson L17.30

31 Correctness Part III Theorem. Dijkstra s algorithm terminates with d[v] = δ(s, v) for all v V. November 14, 005 Copyright by Erik D. Demaine and Charles E. Leiserson L17.31

32 Correctness Part III Theorem. Dijkstra s algorithm terminates with d[v] = δ(s, v) for all v V. Proof. It suffices to show that d[v] = δ(s, v) for every v V when v is added to S. Suppose u is the first vertex added to S for which d[u] >δ(s, u). Let y be the first vertex in V S along a shortest path from s to u, and let x be its predecessor: S, just before adding u. ss xx yy uu November 14, 005 Copyright by Erik D. Demaine and Charles E. Leiserson L17.3

33 Correctness Part III (continued) ss S xx yy uu Since u is the first vertex violating the claimed invariant, we have d[x] = δ(s, x). When x was added to S, the edge (x, y) was relaxed, which implies that d[y] =δ(s, y) δ(s, u) < d[u]. But, d[u] d[y] by our choice of u. Contradiction. November 14, 005 Copyright by Erik D. Demaine and Charles E. Leiserson L17.33

34 Analysis of Dijkstra while Q do u EXTRACT-MIN(Q) S S {u} for each v Adj[u] do if d[v] > d[u] + w(u, v) then d[v] d[u] + w(u, v) November 14, 005 Copyright by Erik D. Demaine and Charles E. Leiserson L17.34

35 Analysis of Dijkstra V times while Q do u EXTRACT-MIN(Q) S S {u} for each v Adj[u] do if d[v] > d[u] + w(u, v) then d[v] d[u] + w(u, v) November 14, 005 Copyright by Erik D. Demaine and Charles E. Leiserson L17.35

36 Analysis of Dijkstra V times degree(u) times while Q do u EXTRACT-MIN(Q) S S {u} for each v Adj[u] do if d[v] > d[u] + w(u, v) then d[v] d[u] + w(u, v) November 14, 005 Copyright by Erik D. Demaine and Charles E. Leiserson L17.36

37 Analysis of Dijkstra V times degree(u) times while Q do u EXTRACT-MIN(Q) S S {u} for each v Adj[u] do if d[v] > d[u] + w(u, v) then d[v] d[u] + w(u, v) Handshaking Lemma Θ(E) implicit DECREASE-KEY s. November 14, 005 Copyright by Erik D. Demaine and Charles E. Leiserson L17.37

38 Analysis of Dijkstra V times degree(u) times while Q do u EXTRACT-MIN(Q) S S {u} for each v Adj[u] do if d[v] > d[u] + w(u, v) then d[v] d[u] + w(u, v) Handshaking Lemma Θ(E) implicit DECREASE-KEY s. Time = Θ(V T EXTRACT -MIN + E T DECREASE-KEY ) Note: Same formula as in the analysis of Prim s minimum spanning tree algorithm. November 14, 005 Copyright by Erik D. Demaine and Charles E. Leiserson L17.38

39 Analysis of Dijkstra (continued) Time = Θ(V) T EXTRACT -MIN + Θ(E) T DECREASE-KEY Q TEXTRACT-MIN T DECREASE -KEY Total November 14, 005 Copyright by Erik D. Demaine and Charles E. Leiserson L17.39

40 Analysis of Dijkstra (continued) Time = Θ(V) T EXTRACT -MIN + Θ(E) T DECREASE-KEY Q TEXTRACT-MIN T DECREASE -KEY Total array O(V) O(1) O(V ) November 14, 005 Copyright by Erik D. Demaine and Charles E. Leiserson L17.40

41 Analysis of Dijkstra (continued) Time = Θ(V) T EXTRACT -MIN + Θ(E) T DECREASE-KEY Q TEXTRACT-MIN T DECREASE -KEY Total array O(V) O(1) O(V ) binary heap O(lg V) O(lg V) O(E lg V) November 14, 005 Copyright by Erik D. Demaine and Charles E. Leiserson L17.41

42 Analysis of Dijkstra (continued) Time = Θ(V) T EXTRACT -MIN + Θ(E) T DECREASE-KEY Q TEXTRACT-MIN T DECREASE -KEY Total array O(V) O(1) O(V ) binary heap Fibonacci heap O(lg V) O(lg V) O(E lg V) O(lg V) amortized O(1) amortized O(E + V lg V) worst case November 14, 005 Copyright by Erik D. Demaine and Charles E. Leiserson L17.4

43 Unweighted graphs Suppose that w(u, v) = 1 for all (u, v) E. Can Dijkstra s algorithm be improved? November 14, 005 Copyright by Erik D. Demaine and Charles E. Leiserson L17.43

44 Unweighted graphs Suppose that w(u, v) = 1 for all (u, v) E. Can Dijkstra s algorithm be improved? Use a simple FIFO queue instead of a priority queue. November 14, 005 Copyright by Erik D. Demaine and Charles E. Leiserson L17.44

45 Unweighted graphs Suppose that w(u, v) = 1 for all (u, v) E. Can Dijkstra s algorithm be improved? Use a simple FIFO queue instead of a priority queue. Breadth-first search while Q do u DEQUEUE(Q) for each v Adj[u] do if d[v] = then d[v] d[u] + 1 ENQUEUE(Q, v) November 14, 005 Copyright by Erik D. Demaine and Charles E. Leiserson L17.45

46 Unweighted graphs Suppose that w(u, v) = 1 for all (u, v) E. Can Dijkstra s algorithm be improved? Use a simple FIFO queue instead of a priority queue. Breadth-first search while Q do u DEQUEUE(Q) for each v Adj[u] do if d[v] = then d[v] d[u] + 1 ENQUEUE(Q, v) Analysis: Time = O(V + E). November 14, 005 Copyright by Erik D. Demaine and Charles E. Leiserson L17.46

47 Example of breadth-first search aa bb cc dd ee f gg hh ii Q: November 14, 005 Copyright by Erik D. Demaine and Charles E. Leiserson L17.47

48 Example of breadth-first search 0 aa bb cc dd ee f gg hh ii 0 Q: a November 14, 005 Copyright by Erik D. Demaine and Charles E. Leiserson L17.48

49 Example of breadth-first search aa bb cc dd ee 1 1 Q: a b d f gg hh ii November 14, 005 Copyright by Erik D. Demaine and Charles E. Leiserson L17.49

50 Example of breadth-first search aa bb cc dd ee 1 Q: a b d c e f gg hh ii November 14, 005 Copyright by Erik D. Demaine and Charles E. Leiserson L17.50

51 Example of breadth-first search aa bb cc dd ee Q: a bdc e f gg hh ii November 14, 005 Copyright by Erik D. Demaine and Charles E. Leiserson L17.51

52 Example of breadth-first search aa bb cc dd ee Q: a bdce f gg hh ii November 14, 005 Copyright by Erik D. Demaine and Charles E. Leiserson L17.5

53 Example of breadth-first search aa bb cc dd ee 3 f gg Q: a b d c e g i hh ii November 14, 005 Copyright by Erik D. Demaine and Charles E. Leiserson L17.53

54 Example of breadth-first search 0 1 aa bb cc 1 dd ee 3 4 f gg Q: a b d c e g i f hh ii November 14, 005 Copyright by Erik D. Demaine and Charles E. Leiserson L17.54

55 Example of breadth-first search 0 1 aa bb cc 1 dd ee f gg Q: a b d c e g i f h hh ii November 14, 005 Copyright by Erik D. Demaine and Charles E. Leiserson L17.55

56 Example of breadth-first search 0 1 aa bb cc 1 dd ee f gg 3 4 Q: a b d c e g i f h hh ii November 14, 005 Copyright by Erik D. Demaine and Charles E. Leiserson L17.56

57 Example of breadth-first search 0 1 aa bb cc 1 dd ee f gg 3 hh ii Q: a b d c e g i f h November 14, 005 Copyright by Erik D. Demaine and Charles E. Leiserson L17.57

58 Example of breadth-first search 0 1 aa bb cc 1 dd ee f gg 3 hh ii Q: a b d c e g i f h November 14, 005 Copyright by Erik D. Demaine and Charles E. Leiserson L17.58

59 Correctness of BFS while Q do u DEQUEUE(Q) for each v Adj[u] do if d[v] = then d[v] d[u] + 1 ENQUEUE(Q, v) Key idea: The FIFO Q in breadth-first search mimics the priority queue Q in Dijkstra. Invariant: v comes after u in Q implies that d[v] = d[u] or d[v] = d[u] + 1. November 14, 005 Copyright by Erik D. Demaine and Charles E. Leiserson L17.59

Cpt S 223. School of EECS, WSU

Cpt S 223. School of EECS, WSU The Shortest Path Problem 1 Shortest-Path Algorithms Find the shortest path from point A to point B Shortest in time, distance, cost, Numerous applications Map navigation Flight itineraries Circuit wiring

More information

Analysis of Algorithms, I

Analysis of Algorithms, I Analysis of Algorithms, I CSOR W4231.002 Eleni Drinea Computer Science Department Columbia University Thursday, February 26, 2015 Outline 1 Recap 2 Representing graphs 3 Breadth-first search (BFS) 4 Applications

More information

CS711008Z Algorithm Design and Analysis

CS711008Z Algorithm Design and Analysis CS711008Z Algorithm Design and Analysis Lecture 7 Binary heap, binomial heap, and Fibonacci heap 1 Dongbo Bu Institute of Computing Technology Chinese Academy of Sciences, Beijing, China 1 The slides were

More information

CSE 326, Data Structures. Sample Final Exam. Problem Max Points Score 1 14 (2x7) 2 18 (3x6) 3 4 4 7 5 9 6 16 7 8 8 4 9 8 10 4 Total 92.

CSE 326, Data Structures. Sample Final Exam. Problem Max Points Score 1 14 (2x7) 2 18 (3x6) 3 4 4 7 5 9 6 16 7 8 8 4 9 8 10 4 Total 92. Name: Email ID: CSE 326, Data Structures Section: Sample Final Exam Instructions: The exam is closed book, closed notes. Unless otherwise stated, N denotes the number of elements in the data structure

More information

Data Structures and Algorithms Written Examination

Data Structures and Algorithms Written Examination Data Structures and Algorithms Written Examination 22 February 2013 FIRST NAME STUDENT NUMBER LAST NAME SIGNATURE Instructions for students: Write First Name, Last Name, Student Number and Signature where

More information

Problem Set 7 Solutions

Problem Set 7 Solutions 8 8 Introduction to Algorithms May 7, 2004 Massachusetts Institute of Technology 6.046J/18.410J Professors Erik Demaine and Shafi Goldwasser Handout 25 Problem Set 7 Solutions This problem set is due in

More information

Bicolored Shortest Paths in Graphs with Applications to Network Overlay Design

Bicolored Shortest Paths in Graphs with Applications to Network Overlay Design Bicolored Shortest Paths in Graphs with Applications to Network Overlay Design Hongsik Choi and Hyeong-Ah Choi Department of Electrical Engineering and Computer Science George Washington University Washington,

More information

SHARP BOUNDS FOR THE SUM OF THE SQUARES OF THE DEGREES OF A GRAPH

SHARP BOUNDS FOR THE SUM OF THE SQUARES OF THE DEGREES OF A GRAPH 31 Kragujevac J. Math. 25 (2003) 31 49. SHARP BOUNDS FOR THE SUM OF THE SQUARES OF THE DEGREES OF A GRAPH Kinkar Ch. Das Department of Mathematics, Indian Institute of Technology, Kharagpur 721302, W.B.,

More information

Minimum cost maximum flow, Minimum cost circulation, Cost/Capacity scaling

Minimum cost maximum flow, Minimum cost circulation, Cost/Capacity scaling 6.854 Advanced Algorithms Lecture 16: 10/11/2006 Lecturer: David Karger Scribe: Kermin Fleming and Chris Crutchfield, based on notes by Wendy Chu and Tudor Leu Minimum cost maximum flow, Minimum cost circulation,

More information

Social Media Mining. Graph Essentials

Social Media Mining. Graph Essentials Graph Essentials Graph Basics Measures Graph and Essentials Metrics 2 2 Nodes and Edges A network is a graph nodes, actors, or vertices (plural of vertex) Connections, edges or ties Edge Node Measures

More information

Algorithm Design and Analysis

Algorithm Design and Analysis Algorithm Design and Analysis LECTURE 27 Approximation Algorithms Load Balancing Weighted Vertex Cover Reminder: Fill out SRTEs online Don t forget to click submit Sofya Raskhodnikova 12/6/2011 S. Raskhodnikova;

More information

Data Structures Fibonacci Heaps, Amortized Analysis

Data Structures Fibonacci Heaps, Amortized Analysis Chapter 4 Data Structures Fibonacci Heaps, Amortized Analysis Algorithm Theory WS 2012/13 Fabian Kuhn Fibonacci Heaps Lacy merge variant of binomial heaps: Do not merge trees as long as possible Structure:

More information

The Goldberg Rao Algorithm for the Maximum Flow Problem

The Goldberg Rao Algorithm for the Maximum Flow Problem The Goldberg Rao Algorithm for the Maximum Flow Problem COS 528 class notes October 18, 2006 Scribe: Dávid Papp Main idea: use of the blocking flow paradigm to achieve essentially O(min{m 2/3, n 1/2 }

More information

Connectivity and cuts

Connectivity and cuts Math 104, Graph Theory February 19, 2013 Measure of connectivity How connected are each of these graphs? > increasing connectivity > I G 1 is a tree, so it is a connected graph w/minimum # of edges. Every

More information

2. (a) Explain the strassen s matrix multiplication. (b) Write deletion algorithm, of Binary search tree. [8+8]

2. (a) Explain the strassen s matrix multiplication. (b) Write deletion algorithm, of Binary search tree. [8+8] Code No: R05220502 Set No. 1 1. (a) Describe the performance analysis in detail. (b) Show that f 1 (n)+f 2 (n) = 0(max(g 1 (n), g 2 (n)) where f 1 (n) = 0(g 1 (n)) and f 2 (n) = 0(g 2 (n)). [8+8] 2. (a)

More information

Exam study sheet for CS2711. List of topics

Exam study sheet for CS2711. List of topics Exam study sheet for CS2711 Here is the list of topics you need to know for the final exam. For each data structure listed below, make sure you can do the following: 1. Give an example of this data structure

More information

Euclidean Minimum Spanning Trees Based on Well Separated Pair Decompositions Chaojun Li. Advised by: Dave Mount. May 22, 2014

Euclidean Minimum Spanning Trees Based on Well Separated Pair Decompositions Chaojun Li. Advised by: Dave Mount. May 22, 2014 Euclidean Minimum Spanning Trees Based on Well Separated Pair Decompositions Chaojun Li Advised by: Dave Mount May 22, 2014 1 INTRODUCTION In this report we consider the implementation of an efficient

More information

ONLINE DEGREE-BOUNDED STEINER NETWORK DESIGN. Sina Dehghani Saeed Seddighin Ali Shafahi Fall 2015

ONLINE DEGREE-BOUNDED STEINER NETWORK DESIGN. Sina Dehghani Saeed Seddighin Ali Shafahi Fall 2015 ONLINE DEGREE-BOUNDED STEINER NETWORK DESIGN Sina Dehghani Saeed Seddighin Ali Shafahi Fall 2015 ONLINE STEINER FOREST PROBLEM An initially given graph G. s 1 s 2 A sequence of demands (s i, t i ) arriving

More information

Graph Theory Topics in Computer Networking

Graph Theory Topics in Computer Networking Graph Theory Topics in Computer Networking By Chad Hart Spring 2013 In Partial Fulfillment of Math 4395 - Senior Project Department of Computer and Mathematical Sciences Faculty Advisor: Dr. Timothy Redl:

More information

A New Approach to Dynamic All Pairs Shortest Paths

A New Approach to Dynamic All Pairs Shortest Paths A New Approach to Dynamic All Pairs Shortest Paths Camil Demetrescu Giuseppe F. Italiano Abstract We study novel combinatorial properties of graphs that allow us to devise a completely new approach to

More information

Handout #Ch7 San Skulrattanakulchai Gustavus Adolphus College Dec 6, 2010. Chapter 7: Digraphs

Handout #Ch7 San Skulrattanakulchai Gustavus Adolphus College Dec 6, 2010. Chapter 7: Digraphs MCS-236: Graph Theory Handout #Ch7 San Skulrattanakulchai Gustavus Adolphus College Dec 6, 2010 Chapter 7: Digraphs Strong Digraphs Definitions. A digraph is an ordered pair (V, E), where V is the set

More information

SEMITOTAL AND TOTAL BLOCK-CUTVERTEX GRAPH

SEMITOTAL AND TOTAL BLOCK-CUTVERTEX GRAPH CHAPTER 3 SEMITOTAL AND TOTAL BLOCK-CUTVERTEX GRAPH ABSTRACT This chapter begins with the notion of block distances in graphs. Using block distance we defined the central tendencies of a block, like B-radius

More information

I Have...Who Has... Multiplication Game

I Have...Who Has... Multiplication Game How to play the game: Distribute the cards randomly to your students. Some students may get more than one card. Select a student to begin by reading their card aloud. (example: 35. who has 4x4?) 35 4 x

More information

Home Page. Data Structures. Title Page. Page 1 of 24. Go Back. Full Screen. Close. Quit

Home Page. Data Structures. Title Page. Page 1 of 24. Go Back. Full Screen. Close. Quit Data Structures Page 1 of 24 A.1. Arrays (Vectors) n-element vector start address + ielementsize 0 +1 +2 +3 +4... +n-1 start address continuous memory block static, if size is known at compile time dynamic,

More information

International Journal of Advanced Research in Computer Science and Software Engineering

International Journal of Advanced Research in Computer Science and Software Engineering Volume 3, Issue 7, July 23 ISSN: 2277 28X International Journal of Advanced Research in Computer Science and Software Engineering Research Paper Available online at: www.ijarcsse.com Greedy Algorithm:

More information

Cpt S 223. School of EECS, WSU

Cpt S 223. School of EECS, WSU Priority Queues (Heaps) 1 Motivation Queues are a standard mechanism for ordering tasks on a first-come, first-served basis However, some tasks may be more important or timely than others (higher priority)

More information

Graph Theory Problems and Solutions

Graph Theory Problems and Solutions raph Theory Problems and Solutions Tom Davis tomrdavis@earthlink.net http://www.geometer.org/mathcircles November, 005 Problems. Prove that the sum of the degrees of the vertices of any finite graph is

More information

CMPSCI611: Approximating MAX-CUT Lecture 20

CMPSCI611: Approximating MAX-CUT Lecture 20 CMPSCI611: Approximating MAX-CUT Lecture 20 For the next two lectures we ll be seeing examples of approximation algorithms for interesting NP-hard problems. Today we consider MAX-CUT, which we proved to

More information

QUEUES. Primitive Queue operations. enqueue (q, x): inserts item x at the rear of the queue q

QUEUES. Primitive Queue operations. enqueue (q, x): inserts item x at the rear of the queue q QUEUES A queue is simply a waiting line that grows by adding elements to its end and shrinks by removing elements from the. Compared to stack, it reflects the more commonly used maxim in real-world, namely,

More information

B AB 5 C AC 3 D ABGED 9 E ABGE 7 F ABGEF 8 G ABG 6 A BEDA 3 C BC 1 D BCD 2 E BE 1 F BEF 2 G BG 1

B AB 5 C AC 3 D ABGED 9 E ABGE 7 F ABGEF 8 G ABG 6 A BEDA 3 C BC 1 D BCD 2 E BE 1 F BEF 2 G BG 1 p.9 9.5 a. Find the shortest path from A to all other vertices for the graph in Figure 9.8. b. Find the shortest unweighted path from B to all other vertices for the graph in Figure 9.8. A 5 B C 7 7 6

More information

Labeling outerplanar graphs with maximum degree three

Labeling outerplanar graphs with maximum degree three Labeling outerplanar graphs with maximum degree three Xiangwen Li 1 and Sanming Zhou 2 1 Department of Mathematics Huazhong Normal University, Wuhan 430079, China 2 Department of Mathematics and Statistics

More information

Printing Letters Correctly

Printing Letters Correctly Printing Letters Correctly The ball and stick method of teaching beginners to print has been proven to be the best. Letters formed this way are easier for small children to print, and this print is similar

More information

Degree Hypergroupoids Associated with Hypergraphs

Degree Hypergroupoids Associated with Hypergraphs Filomat 8:1 (014), 119 19 DOI 10.98/FIL1401119F Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat Degree Hypergroupoids Associated

More information

Total colorings of planar graphs with small maximum degree

Total colorings of planar graphs with small maximum degree Total colorings of planar graphs with small maximum degree Bing Wang 1,, Jian-Liang Wu, Si-Feng Tian 1 Department of Mathematics, Zaozhuang University, Shandong, 77160, China School of Mathematics, Shandong

More information

! Solve problem to optimality. ! Solve problem in poly-time. ! Solve arbitrary instances of the problem. #-approximation algorithm.

! Solve problem to optimality. ! Solve problem in poly-time. ! Solve arbitrary instances of the problem. #-approximation algorithm. Approximation Algorithms 11 Approximation Algorithms Q Suppose I need to solve an NP-hard problem What should I do? A Theory says you're unlikely to find a poly-time algorithm Must sacrifice one of three

More information

Triangle deletion. Ernie Croot. February 3, 2010

Triangle deletion. Ernie Croot. February 3, 2010 Triangle deletion Ernie Croot February 3, 2010 1 Introduction The purpose of this note is to give an intuitive outline of the triangle deletion theorem of Ruzsa and Szemerédi, which says that if G = (V,

More information

Dynamic programming. Doctoral course Optimization on graphs - Lecture 4.1. Giovanni Righini. January 17 th, 2013

Dynamic programming. Doctoral course Optimization on graphs - Lecture 4.1. Giovanni Righini. January 17 th, 2013 Dynamic programming Doctoral course Optimization on graphs - Lecture.1 Giovanni Righini January 1 th, 201 Implicit enumeration Combinatorial optimization problems are in general NP-hard and we usually

More information

CS311H. Prof: Peter Stone. Department of Computer Science The University of Texas at Austin

CS311H. Prof: Peter Stone. Department of Computer Science The University of Texas at Austin CS311H Prof: Department of Computer Science The University of Texas at Austin Good Morning, Colleagues Good Morning, Colleagues Are there any questions? Logistics Class survey Logistics Class survey Homework

More information

The Union-Find Problem Kruskal s algorithm for finding an MST presented us with a problem in data-structure design. As we looked at each edge,

The Union-Find Problem Kruskal s algorithm for finding an MST presented us with a problem in data-structure design. As we looked at each edge, The Union-Find Problem Kruskal s algorithm for finding an MST presented us with a problem in data-structure design. As we looked at each edge, cheapest first, we had to determine whether its two endpoints

More information

Graph Theory and Complex Networks: An Introduction. Chapter 06: Network analysis

Graph Theory and Complex Networks: An Introduction. Chapter 06: Network analysis Graph Theory and Complex Networks: An Introduction Maarten van Steen VU Amsterdam, Dept. Computer Science Room R4.0, steen@cs.vu.nl Chapter 06: Network analysis Version: April 8, 04 / 3 Contents Chapter

More information

NP-complete? NP-hard? Some Foundations of Complexity. Prof. Sven Hartmann Clausthal University of Technology Department of Informatics

NP-complete? NP-hard? Some Foundations of Complexity. Prof. Sven Hartmann Clausthal University of Technology Department of Informatics NP-complete? NP-hard? Some Foundations of Complexity Prof. Sven Hartmann Clausthal University of Technology Department of Informatics Tractability of Problems Some problems are undecidable: no computer

More information

On the independence number of graphs with maximum degree 3

On the independence number of graphs with maximum degree 3 On the independence number of graphs with maximum degree 3 Iyad A. Kanj Fenghui Zhang Abstract Let G be an undirected graph with maximum degree at most 3 such that G does not contain any of the three graphs

More information

Simple Graphs Degrees, Isomorphism, Paths

Simple Graphs Degrees, Isomorphism, Paths Mathematics for Computer Science MIT 6.042J/18.062J Simple Graphs Degrees, Isomorphism, Types of Graphs Simple Graph this week Multi-Graph Directed Graph next week Albert R Meyer, March 10, 2010 lec 6W.1

More information

! Solve problem to optimality. ! Solve problem in poly-time. ! Solve arbitrary instances of the problem. !-approximation algorithm.

! Solve problem to optimality. ! Solve problem in poly-time. ! Solve arbitrary instances of the problem. !-approximation algorithm. Approximation Algorithms Chapter Approximation Algorithms Q Suppose I need to solve an NP-hard problem What should I do? A Theory says you're unlikely to find a poly-time algorithm Must sacrifice one of

More information

Minimum Spanning Trees

Minimum Spanning Trees Minimum Spanning Trees weighted graph API cycles and cuts Kruskal s algorithm Prim s algorithm advanced topics References: Algorithms in Java, Chapter 20 http://www.cs.princeton.edu/introalgsds/54mst 1

More information

Static Load Balancing

Static Load Balancing Load Balancing Load Balancing Load balancing: distributing data and/or computations across multiple processes to maximize efficiency for a parallel program. Static load-balancing: the algorithm decides

More information

Graphical degree sequences and realizations

Graphical degree sequences and realizations swap Graphical and realizations Péter L. Erdös Alfréd Rényi Institute of Mathematics Hungarian Academy of Sciences MAPCON 12 MPIPKS - Dresden, May 15, 2012 swap Graphical and realizations Péter L. Erdös

More information

Network File Storage with Graceful Performance Degradation

Network File Storage with Graceful Performance Degradation Network File Storage with Graceful Performance Degradation ANXIAO (ANDREW) JIANG California Institute of Technology and JEHOSHUA BRUCK California Institute of Technology A file storage scheme is proposed

More information

6.852: Distributed Algorithms Fall, 2009. Class 2

6.852: Distributed Algorithms Fall, 2009. Class 2 .8: Distributed Algorithms Fall, 009 Class Today s plan Leader election in a synchronous ring: Lower bound for comparison-based algorithms. Basic computation in general synchronous networks: Leader election

More information

Chapter 11. 11.1 Load Balancing. Approximation Algorithms. Load Balancing. Load Balancing on 2 Machines. Load Balancing: Greedy Scheduling

Chapter 11. 11.1 Load Balancing. Approximation Algorithms. Load Balancing. Load Balancing on 2 Machines. Load Balancing: Greedy Scheduling Approximation Algorithms Chapter Approximation Algorithms Q. Suppose I need to solve an NP-hard problem. What should I do? A. Theory says you're unlikely to find a poly-time algorithm. Must sacrifice one

More information

Informed search algorithms. Chapter 4, Sections 1 2 1

Informed search algorithms. Chapter 4, Sections 1 2 1 Informed search algorithms Chapter 4, Sections 1 2 Chapter 4, Sections 1 2 1 Outline Best-first search A search Heuristics Chapter 4, Sections 1 2 2 Review: Tree search function Tree-Search( problem, fringe)

More information

On Pebbling Graphs by their Blocks

On Pebbling Graphs by their Blocks On Pebbling Graphs by their Blocks Dawn Curtis, Taylor Hines, Glenn Hurlbert, Tatiana Moyer Department of Mathematics and Statistics Arizona State University, Tempe, AZ 85287-1804 November 19, 2008 dawn.curtis@asu.edu

More information

Approximated Distributed Minimum Vertex Cover Algorithms for Bounded Degree Graphs

Approximated Distributed Minimum Vertex Cover Algorithms for Bounded Degree Graphs Approximated Distributed Minimum Vertex Cover Algorithms for Bounded Degree Graphs Yong Zhang 1.2, Francis Y.L. Chin 2, and Hing-Fung Ting 2 1 College of Mathematics and Computer Science, Hebei University,

More information

1 Introduction. Dr. T. Srinivas Department of Mathematics Kakatiya University Warangal 506009, AP, INDIA tsrinivasku@gmail.com

1 Introduction. Dr. T. Srinivas Department of Mathematics Kakatiya University Warangal 506009, AP, INDIA tsrinivasku@gmail.com A New Allgoriitthm for Miiniimum Costt Liinkiing M. Sreenivas Alluri Institute of Management Sciences Hanamkonda 506001, AP, INDIA allurimaster@gmail.com Dr. T. Srinivas Department of Mathematics Kakatiya

More information

8.1 Min Degree Spanning Tree

8.1 Min Degree Spanning Tree CS880: Approximations Algorithms Scribe: Siddharth Barman Lecturer: Shuchi Chawla Topic: Min Degree Spanning Tree Date: 02/15/07 In this lecture we give a local search based algorithm for the Min Degree

More information

Cycles and clique-minors in expanders

Cycles and clique-minors in expanders Cycles and clique-minors in expanders Benny Sudakov UCLA and Princeton University Expanders Definition: The vertex boundary of a subset X of a graph G: X = { all vertices in G\X with at least one neighbor

More information

CSC2420 Fall 2012: Algorithm Design, Analysis and Theory

CSC2420 Fall 2012: Algorithm Design, Analysis and Theory CSC2420 Fall 2012: Algorithm Design, Analysis and Theory Allan Borodin November 15, 2012; Lecture 10 1 / 27 Randomized online bipartite matching and the adwords problem. We briefly return to online algorithms

More information

Data Structures. Chapter 8

Data Structures. Chapter 8 Chapter 8 Data Structures Computer has to process lots and lots of data. To systematically process those data efficiently, those data are organized as a whole, appropriate for the application, called a

More information

Outline. NP-completeness. When is a problem easy? When is a problem hard? Today. Euler Circuits

Outline. NP-completeness. When is a problem easy? When is a problem hard? Today. Euler Circuits Outline NP-completeness Examples of Easy vs. Hard problems Euler circuit vs. Hamiltonian circuit Shortest Path vs. Longest Path 2-pairs sum vs. general Subset Sum Reducing one problem to another Clique

More information

V. Adamchik 1. Graph Theory. Victor Adamchik. Fall of 2005

V. Adamchik 1. Graph Theory. Victor Adamchik. Fall of 2005 V. Adamchik 1 Graph Theory Victor Adamchik Fall of 2005 Plan 1. Basic Vocabulary 2. Regular graph 3. Connectivity 4. Representing Graphs Introduction A.Aho and J.Ulman acknowledge that Fundamentally, computer

More information

CS 598CSC: Combinatorial Optimization Lecture date: 2/4/2010

CS 598CSC: Combinatorial Optimization Lecture date: 2/4/2010 CS 598CSC: Combinatorial Optimization Lecture date: /4/010 Instructor: Chandra Chekuri Scribe: David Morrison Gomory-Hu Trees (The work in this section closely follows [3]) Let G = (V, E) be an undirected

More information

UPPER BOUNDS ON THE L(2, 1)-LABELING NUMBER OF GRAPHS WITH MAXIMUM DEGREE

UPPER BOUNDS ON THE L(2, 1)-LABELING NUMBER OF GRAPHS WITH MAXIMUM DEGREE UPPER BOUNDS ON THE L(2, 1)-LABELING NUMBER OF GRAPHS WITH MAXIMUM DEGREE ANDREW LUM ADVISOR: DAVID GUICHARD ABSTRACT. L(2,1)-labeling was first defined by Jerrold Griggs [Gr, 1992] as a way to use graphs

More information

A simpler and better derandomization of an approximation algorithm for Single Source Rent-or-Buy

A simpler and better derandomization of an approximation algorithm for Single Source Rent-or-Buy A simpler and better derandomization of an approximation algorithm for Single Source Rent-or-Buy David P. Williamson Anke van Zuylen School of Operations Research and Industrial Engineering, Cornell University,

More information

OPTIMAL DESIGN OF DISTRIBUTED SENSOR NETWORKS FOR FIELD RECONSTRUCTION

OPTIMAL DESIGN OF DISTRIBUTED SENSOR NETWORKS FOR FIELD RECONSTRUCTION OPTIMAL DESIGN OF DISTRIBUTED SENSOR NETWORKS FOR FIELD RECONSTRUCTION Sérgio Pequito, Stephen Kruzick, Soummya Kar, José M. F. Moura, A. Pedro Aguiar Department of Electrical and Computer Engineering

More information

A Timing Analysis and Optimization System for Level-Clocked Circuitry by Marios Christos C. Papaefthymiou B.S., Electrical Engineering California Institute of Technology (1988) S.M., Electrical Engineering

More information

Analyzing the Facebook graph?

Analyzing the Facebook graph? Logistics Big Data Algorithmic Introduction Prof. Yuval Shavitt Contact: shavitt@eng.tau.ac.il Final grade: 4 6 home assignments (will try to include programing assignments as well): 2% Exam 8% Big Data

More information

Shortcut sets for plane Euclidean networks (Extended abstract) 1

Shortcut sets for plane Euclidean networks (Extended abstract) 1 Shortcut sets for plane Euclidean networks (Extended abstract) 1 J. Cáceres a D. Garijo b A. González b A. Márquez b M. L. Puertas a P. Ribeiro c a Departamento de Matemáticas, Universidad de Almería,

More information

Approximation Algorithms

Approximation Algorithms Approximation Algorithms or: How I Learned to Stop Worrying and Deal with NP-Completeness Ong Jit Sheng, Jonathan (A0073924B) March, 2012 Overview Key Results (I) General techniques: Greedy algorithms

More information

Lecture 3. Linear Programming. 3B1B Optimization Michaelmas 2015 A. Zisserman. Extreme solutions. Simplex method. Interior point method

Lecture 3. Linear Programming. 3B1B Optimization Michaelmas 2015 A. Zisserman. Extreme solutions. Simplex method. Interior point method Lecture 3 3B1B Optimization Michaelmas 2015 A. Zisserman Linear Programming Extreme solutions Simplex method Interior point method Integer programming and relaxation The Optimization Tree Linear Programming

More information

Graphs without proper subgraphs of minimum degree 3 and short cycles

Graphs without proper subgraphs of minimum degree 3 and short cycles Graphs without proper subgraphs of minimum degree 3 and short cycles Lothar Narins, Alexey Pokrovskiy, Tibor Szabó Department of Mathematics, Freie Universität, Berlin, Germany. August 22, 2014 Abstract

More information

Copperplate Victorian Handwriting. Victorian. Exploring your History. Created by Causeway Museum Service

Copperplate Victorian Handwriting. Victorian. Exploring your History. Created by Causeway Museum Service Victorian Coleraine Exploring your History Copperplate Victorian Handwriting Postcards courtesy of Coleraine Museum Collection Created by Causeway Museum Service In Victorian times hand writing was very

More information

Local Search The perfect guide

Local Search The perfect guide Local Search The perfect guide Tanmay Kadam 1, Nikhil Saxena 2, Akash Kosambia 3, Prof Anita Lahane 4 1 (Computer Engineering, Rajiv Gandhi Institute of Technology, University of Mumbai, India) 2 (Computer

More information

CIS 700: algorithms for Big Data

CIS 700: algorithms for Big Data CIS 700: algorithms for Big Data Lecture 6: Graph Sketching Slides at http://grigory.us/big-data-class.html Grigory Yaroslavtsev http://grigory.us Sketching Graphs? We know how to sketch vectors: v Mv

More information

UNIVERSIDADE DE SÃO PAULO

UNIVERSIDADE DE SÃO PAULO UNIVERSIDADE DE SÃO PAULO Instituto de Ciências Matemáticas e de Computação ISSN 0103-2569 Comments on On minimizing the lengths of checking sequences Adenilso da Silva Simão N ō 307 RELATÓRIOS TÉCNICOS

More information

9 Summary of California Law (10th), Partnership

9 Summary of California Law (10th), Partnership 9 Summary of California Law (10th), Partnership I. INTRODUCTION A. [ 1] Statutes Affecting Partnerships. B. Fictitious Business Name. 1. [ 2] In General. 2. [ 3] Fictitious Name Defined. 3. [ 4] Coverage

More information

Network Design with Coverage Costs

Network Design with Coverage Costs Network Design with Coverage Costs Siddharth Barman 1 Shuchi Chawla 2 Seeun William Umboh 2 1 Caltech 2 University of Wisconsin-Madison APPROX-RANDOM 2014 Motivation Physical Flow vs Data Flow vs. Commodity

More information

Algorithms and Data Structures

Algorithms and Data Structures Algorithms and Data Structures CMPSC 465 LECTURES 20-21 Priority Queues and Binary Heaps Adam Smith S. Raskhodnikova and A. Smith. Based on slides by C. Leiserson and E. Demaine. 1 Trees Rooted Tree: collection

More information

GRAPH THEORY LECTURE 4: TREES

GRAPH THEORY LECTURE 4: TREES GRAPH THEORY LECTURE 4: TREES Abstract. 3.1 presents some standard characterizations and properties of trees. 3.2 presents several different types of trees. 3.7 develops a counting method based on a bijection

More information

MATHEMATICS Unit Decision 1

MATHEMATICS Unit Decision 1 General Certificate of Education January 2008 Advanced Subsidiary Examination MATHEMATICS Unit Decision 1 MD01 Tuesday 15 January 2008 9.00 am to 10.30 am For this paper you must have: an 8-page answer

More information

LIGHT SUBGRAPHS IN PLANAR GRAPHS OF MINIMUM DEGREE 4 AND EDGE-DEGREE 9

LIGHT SUBGRAPHS IN PLANAR GRAPHS OF MINIMUM DEGREE 4 AND EDGE-DEGREE 9 LIGHT SUBGRAPHS IN PLANAR GRAPHS OF MINIMUM DEGREE 4 AND EDGE-DEGREE 9 B. MOHAR,R.ŠKREKOVSKI, AND H.-J. VOSS Abstract. Let G be the class of simple planar graphs of minimum degree 4 in which no two vertices

More information

Minimizing Probing Cost and Achieving Identifiability in Probe Based Network Link Monitoring

Minimizing Probing Cost and Achieving Identifiability in Probe Based Network Link Monitoring Minimizing Probing Cost and Achieving Identifiability in Probe Based Network Link Monitoring Qiang Zheng, Student Member, IEEE, and Guohong Cao, Fellow, IEEE Department of Computer Science and Engineering

More information

Solutions to Homework 6

Solutions to Homework 6 Solutions to Homework 6 Debasish Das EECS Department, Northwestern University ddas@northwestern.edu 1 Problem 5.24 We want to find light spanning trees with certain special properties. Given is one example

More information

Applied Algorithm Design Lecture 5

Applied Algorithm Design Lecture 5 Applied Algorithm Design Lecture 5 Pietro Michiardi Eurecom Pietro Michiardi (Eurecom) Applied Algorithm Design Lecture 5 1 / 86 Approximation Algorithms Pietro Michiardi (Eurecom) Applied Algorithm Design

More information

Computer Science Department. Technion - IIT, Haifa, Israel. Itai and Rodeh [IR] have proved that for any 2-connected graph G and any vertex s G there

Computer Science Department. Technion - IIT, Haifa, Israel. Itai and Rodeh [IR] have proved that for any 2-connected graph G and any vertex s G there - 1 - THREE TREE-PATHS Avram Zehavi Alon Itai Computer Science Department Technion - IIT, Haifa, Israel Abstract Itai and Rodeh [IR] have proved that for any 2-connected graph G and any vertex s G there

More information

Every tree contains a large induced subgraph with all degrees odd

Every tree contains a large induced subgraph with all degrees odd Every tree contains a large induced subgraph with all degrees odd A.J. Radcliffe Carnegie Mellon University, Pittsburgh, PA A.D. Scott Department of Pure Mathematics and Mathematical Statistics University

More information

Topic: Greedy Approximations: Set Cover and Min Makespan Date: 1/30/06

Topic: Greedy Approximations: Set Cover and Min Makespan Date: 1/30/06 CS880: Approximations Algorithms Scribe: Matt Elder Lecturer: Shuchi Chawla Topic: Greedy Approximations: Set Cover and Min Makespan Date: 1/30/06 3.1 Set Cover The Set Cover problem is: Given a set of

More information

Introduction to Algorithms. Part 3: P, NP Hard Problems

Introduction to Algorithms. Part 3: P, NP Hard Problems Introduction to Algorithms Part 3: P, NP Hard Problems 1) Polynomial Time: P and NP 2) NP-Completeness 3) Dealing with Hard Problems 4) Lower Bounds 5) Books c Wayne Goddard, Clemson University, 2004 Chapter

More information

A Review And Evaluations Of Shortest Path Algorithms

A Review And Evaluations Of Shortest Path Algorithms A Review And Evaluations Of Shortest Path Algorithms Kairanbay Magzhan, Hajar Mat Jani Abstract: Nowadays, in computer networks, the routing is based on the shortest path problem. This will help in minimizing

More information

AI: A Modern Approach, Chpts. 3-4 Russell and Norvig

AI: A Modern Approach, Chpts. 3-4 Russell and Norvig AI: A Modern Approach, Chpts. 3-4 Russell and Norvig Sequential Decision Making in Robotics CS 599 Geoffrey Hollinger and Gaurav Sukhatme (Some slide content from Stuart Russell and HweeTou Ng) Spring,

More information

Semi-Matchings for Bipartite Graphs and Load Balancing

Semi-Matchings for Bipartite Graphs and Load Balancing Semi-Matchings for Bipartite Graphs and Load Balancing Nicholas J. A. Harvey Richard E. Ladner László Lovász Tami Tamir Abstract We consider the problem of fairly matching the left-hand vertices of a bipartite

More information

Any two nodes which are connected by an edge in a graph are called adjacent node.

Any two nodes which are connected by an edge in a graph are called adjacent node. . iscuss following. Graph graph G consist of a non empty set V called the set of nodes (points, vertices) of the graph, a set which is the set of edges and a mapping from the set of edges to a set of pairs

More information

Large induced subgraphs with all degrees odd

Large induced subgraphs with all degrees odd Large induced subgraphs with all degrees odd A.D. Scott Department of Pure Mathematics and Mathematical Statistics, University of Cambridge, England Abstract: We prove that every connected graph of order

More information

Ph.D. Thesis. Judit Nagy-György. Supervisor: Péter Hajnal Associate Professor

Ph.D. Thesis. Judit Nagy-György. Supervisor: Péter Hajnal Associate Professor Online algorithms for combinatorial problems Ph.D. Thesis by Judit Nagy-György Supervisor: Péter Hajnal Associate Professor Doctoral School in Mathematics and Computer Science University of Szeged Bolyai

More information

Efficient Best Path Monitoring in Road Networks For Instant Local Traffic Information

Efficient Best Path Monitoring in Road Networks For Instant Local Traffic Information Proc. st Australasian Database Conference (ADC ), Brisbane, Australia Efficient Best Path Monitoring in Road Networks For Instant Local Traffic Information Shuo Shang Ke Deng Kai Zheng School of Information

More information

Finding and counting given length cycles

Finding and counting given length cycles Finding and counting given length cycles Noga Alon Raphael Yuster Uri Zwick Abstract We present an assortment of methods for finding and counting simple cycles of a given length in directed and undirected

More information

Load balancing Static Load Balancing

Load balancing Static Load Balancing Chapter 7 Load Balancing and Termination Detection Load balancing used to distribute computations fairly across processors in order to obtain the highest possible execution speed. Termination detection

More information

136 CHAPTER 4. INDUCTION, GRAPHS AND TREES

136 CHAPTER 4. INDUCTION, GRAPHS AND TREES 136 TER 4. INDUCTION, GRHS ND TREES 4.3 Graphs In this chapter we introduce a fundamental structural idea of discrete mathematics, that of a graph. Many situations in the applications of discrete mathematics

More information

JUST-IN-TIME SCHEDULING WITH PERIODIC TIME SLOTS. Received December May 12, 2003; revised February 5, 2004

JUST-IN-TIME SCHEDULING WITH PERIODIC TIME SLOTS. Received December May 12, 2003; revised February 5, 2004 Scientiae Mathematicae Japonicae Online, Vol. 10, (2004), 431 437 431 JUST-IN-TIME SCHEDULING WITH PERIODIC TIME SLOTS Ondřej Čepeka and Shao Chin Sung b Received December May 12, 2003; revised February

More information

Lecture 15 An Arithmetic Circuit Lowerbound and Flows in Graphs

Lecture 15 An Arithmetic Circuit Lowerbound and Flows in Graphs CSE599s: Extremal Combinatorics November 21, 2011 Lecture 15 An Arithmetic Circuit Lowerbound and Flows in Graphs Lecturer: Anup Rao 1 An Arithmetic Circuit Lower Bound An arithmetic circuit is just like

More information

Load Balancing and Termination Detection

Load Balancing and Termination Detection Chapter 7 Load Balancing and Termination Detection 1 Load balancing used to distribute computations fairly across processors in order to obtain the highest possible execution speed. Termination detection

More information