Network Design with Coverage Costs

Size: px
Start display at page:

Download "Network Design with Coverage Costs"

Transcription

1 Network Design with Coverage Costs Siddharth Barman 1 Shuchi Chawla 2 Seeun William Umboh 2 1 Caltech 2 University of Wisconsin-Madison APPROX-RANDOM 2014

2 Motivation

3 Physical Flow vs Data Flow vs. Commodity Network Internet Unlike physical commodities, data can be easily duplicated, compressed, and combined.

4 Physical Flow vs Data Flow Flow = 1 P = Flow = 2 vs. P = Flow = 1 P = Unlike physical commodities, data can be easily duplicated, compressed, and combined.

5 Why Coverage Costs? Want a cost structure that captures bandwidth savings obtained by eliminating redundancy in data. Packet deduplication capability exists in networks today.

6 Problem Statement

7 Load Function We focus on redundant-data elimination: Load on an edge l e = # distinct data packets on it. P 1 : P 1 : P 2 : Load = 2

8 Input: Graph with edge costs, g terminal pairs (s 1,t 1 ),...,(s g,t g ) s 1 t 1 s 2 t 2

9 Input: Graph with edge costs, g terminal pairs (s 1,t 1 ),...,(s g,t g ) A global set of packets Π. s 1 t 1 s 2 t 2

10 Input: Graph with edge costs, g terminal pairs (s 1,t 1 ),...,(s g,t g ) A global set of packets Π. A demand set D j Π for each j. s 1 t 1 s 2 t 2 D 1 D 2

11 Input: Graph with edge costs, g terminal pairs (s 1,t 1 ),...,(s g,t g ) A global set of packets Π. A demand set D j Π for each j. Goal: Find (s j,t j ) path on which to route D j for each j minimizing Cost of edge Load on edge edges s 1 t 1 s 2 t 2 D 1 D 2

12 Input: Graph with edge costs, g terminal pairs (s 1,t 1 ),...,(s g,t g ) A global set of packets Π. A demand set D j Π for each j. Goal: Find (s j,t j ) path on which to route D j for each j minimizing Cost of edge # distinct packets on edge edges s 1 t 1 s 2 t 2 D 1 D 2

13 Input: Graph with edge costs, g terminal pairs (s 1,t 1 ),...,(s g,t g ) A global set of packets Π. A demand set D j Π for each j. Goal: Find (s j,t j ) path on which to route D j for each j minimizing Cost of edge # distinct packets on edge edges s 1 t 1 s 2 t 2 D 1 D 2

14 Input: Graph with edge costs, g terminal pairs (s 1,t 1 ),...,(s g,t g ) A global set of packets Π. A demand set D j Π for each j. Goal: Find (s j,t j ) path on which to route D j for each j minimizing Cost of edge # distinct packets on edge edges s 1 t 1 D1 D1 D2 D1 U D2 D2 D 1 D 2 s 2 t 2

15 More generally, we consider terminal groups. Input: Graph with edge costs, g terminal groups X 1,...,X g V. A global set of packets Π. A demand set D j Π for each j. Goal: Find a Steiner tree for X j on which to broadcast D j for each j minimizing Cost of edge # distinct packets on edge edges

16 Special cases (for terminal pairs): Pairwise disjoint demands = shortest-paths s 1 t 1 D1 D2 D 1 D 2 s 2 t 2

17 Special cases (for terminal pairs): Pairwise disjoint demands = shortest-paths s 1 t 1 D1 D2 D 1 D 2 s 2 t 2 Identical demands = Steiner forest s 1 t 1 D D D D D s 2 t 2 D 1, D 2 = D

18 Challenges Intuitively, difficulty depends on complexity of demand sets

19 Challenges Intuitively, difficulty depends on complexity of demand sets Desire an approximation in terms of g (number of groups), e.g. O(log g) (tree embeddings only yield O(log n)).

20 Our results

21 Laminar Demands The family of demand sets is said to be laminar if i,j one of the following holds: D i D j = ϕ or D i D j or D j D i. D 1 D 2 D 1 D 3 D 5 D 5 D3 D 4

22 Laminar Demands The family of demand sets is said to be laminar if i,j one of the following holds: D i D j = ϕ or D i D j or D j D i. D 1 D 2 D 1 D 3 D 5 D 5 D3 D 4 Theorem NDCC with laminar demands admits a 2-approximation. Previous work: O(log Π ) [Barman-Chawla 12].

23 Sunflower Demands The family of demand sets is said to be a sunflower family if there exists a core C Π such that i,j, D i D j = C. D i \ C C D j \ C

24 Sunflower Demands The family of demand sets is said to be a sunflower family if there exists a core C Π such that i,j, D i D j = C. D i \ C C D j \ C No O(log 1/4 γ g)-approximation for any γ > 0 (reduction from single-cable buy-at-bulk [Andrews-Zhang 02]).

25 Sunflower Demands The family of demand sets is said to be a sunflower family if there exists a core C Π such that i,j, D i D j = C. D i \ C C D j \ C No O(log 1/4 γ g)-approximation for any γ > 0 (reduction from single-cable buy-at-bulk [Andrews-Zhang 02]). Theorem NDCC with sunflower demands admits an O(log g) approximation over unweighted graphs with V = j X j.

26 Related Work Network design with economies of scale. Cost of edge Load on edge edges

27 Related Work Network design with economies of scale. Cost of edge Load on edge edges Submodular costs on edges [Hayrapetyan-Swamy-Tardos 05] O(log n) via tree embeddings.

28 Related Work Network design with economies of scale. Cost of edge Load on edge edges Submodular costs on edges [Hayrapetyan-Swamy-Tardos 05] O(log n) via tree embeddings. Buy-at-Bulk Network Design [Salman et al. 97] Single-source: O(1) [Guha et al. 01, Talwar 02, Gupta-Kumar-Roughgarden 03] Multiple-source: Ω(log 1 4 n) hardness [Andrews 04]

29 Approach: Laminar

30 Laminar D 1 D 2 D 1 D 3 D 5 D 5 D3 D 4 Naive LP does not have much structure Key idea: exploit laminarity to write a different LP Run an extension of AKR-GW primal-dual algorithm to get 2-approx

31 Approach: Sunflower (single-source for this talk)

32 Sunflower Family of Demands The family of demand sets is said to be a sunflower family if there exists C Π such that i,j, D i D j = C. D i \ C C D j \ C Theorem Network Design with Coverage Costs in the sunflower demands setting admits an O(log g) approximation over unweighted graphs with V = j X j.

33 Structure of OPT Define: E j = Steiner tree for X j on which OPT broadcasts D j C E 0 = j E j

34 Structure of OPT Define: E j = Steiner tree for X j on which OPT broadcasts D j C E 0 = j E j Note: E 0 spans V because V = j X j and single-source (each X j contains s)

35 Structure of OPT Define: E j = Steiner tree for X j on which OPT broadcasts D j C E 0 = j E j Note: E 0 spans V because V = j X j and single-source (each X j contains s) c(opt) = C c(e 0 ) + D j \ C c(e j ) j C c(mst) + D j \ C c(opt Steiner for X j ) j

36 Group Spanners Definition For a graph G and g groups X 1,...,X g V, a subgraph H is a (α,β) group spanner if c(h) αc(mst), c(opt Steiner for X j in H) βc(opt Steiner for X j in G) for all j.

37 Group Spanners Definition For a graph G and g groups X 1,...,X g V, a subgraph H is a (α,β) group spanner if c(h) αc(mst), c(opt Steiner for X j in H) βc(opt Steiner for X j in G) for all j. Usual spanners: X j s are all vertex pairs. c(shortest u v path in H) βc(shortest u v path in G) for all u,v V.

38 Using Group Spanners Given (α,β) group spanner H, route D j along 2-approximate Steiner tree for X j in H. Cost C c(h) + D j \ C 2c(opt Steiner for X j in H) j C αc(mst) + D j \ C 2βc(opt Steiner for X j ) j max{α,2β}opt.

39 Group Spanners Result Lemma Given an unweighted graph G and g groups X 1,...,X g V with V = j X j, we can construct in polynomial time a (O(1), O(log g)) group spanner. Theorem Network Design with Coverage Costs in the sunflower demands setting admits an O(log g) approximation over unweighted graphs with V = j X j.

40 Summary Coverage cost model for designing information networks. P1 : P1 : P2 : Load = 2

41 Summary Coverage cost model for designing information networks. P1 : P1 : P2 : Load = 2 Laminar demands: 2-approximation via primal-dual. D1 D2 D1 D2 D4 D3 D3 D5 D5 D4

42 Summary Coverage cost model for designing information networks. P1 : P1 : P2 : Load = 2 Laminar demands: 2-approximation via primal-dual. D1 D2 D1 D2 D4 D3 D3 D5 D5 D4 Sunflower demands: O(log g)-approximation (unweighted graph, no Steiner vertices). D i \ C C D j \ C Group spanners: (O(1), O(log g)) group spanners (unweighted graph, no Steiner vertices).

43 Open Problems Group spanners: (O(log g), O(log g)) in general?

44 Open Problems Group spanners: (O(log g), O(log g)) in general? Sunflower demands: O(log g) approximation in general?

45 Open Problems Group spanners: (O(log g), O(log g)) in general? Sunflower demands: O(log g) approximation in general? Terminal pairs with single-source: O(1)?

46 Open Problems Group spanners: (O(log g), O(log g)) in general? Sunflower demands: O(log g) approximation in general? Terminal pairs with single-source: O(1)? Thanks!

ONLINE DEGREE-BOUNDED STEINER NETWORK DESIGN. Sina Dehghani Saeed Seddighin Ali Shafahi Fall 2015

ONLINE DEGREE-BOUNDED STEINER NETWORK DESIGN. Sina Dehghani Saeed Seddighin Ali Shafahi Fall 2015 ONLINE DEGREE-BOUNDED STEINER NETWORK DESIGN Sina Dehghani Saeed Seddighin Ali Shafahi Fall 2015 ONLINE STEINER FOREST PROBLEM An initially given graph G. s 1 s 2 A sequence of demands (s i, t i ) arriving

More information

8.1 Min Degree Spanning Tree

8.1 Min Degree Spanning Tree CS880: Approximations Algorithms Scribe: Siddharth Barman Lecturer: Shuchi Chawla Topic: Min Degree Spanning Tree Date: 02/15/07 In this lecture we give a local search based algorithm for the Min Degree

More information

A simpler and better derandomization of an approximation algorithm for Single Source Rent-or-Buy

A simpler and better derandomization of an approximation algorithm for Single Source Rent-or-Buy A simpler and better derandomization of an approximation algorithm for Single Source Rent-or-Buy David P. Williamson Anke van Zuylen School of Operations Research and Industrial Engineering, Cornell University,

More information

Approximated Distributed Minimum Vertex Cover Algorithms for Bounded Degree Graphs

Approximated Distributed Minimum Vertex Cover Algorithms for Bounded Degree Graphs Approximated Distributed Minimum Vertex Cover Algorithms for Bounded Degree Graphs Yong Zhang 1.2, Francis Y.L. Chin 2, and Hing-Fung Ting 2 1 College of Mathematics and Computer Science, Hebei University,

More information

Social Media Mining. Graph Essentials

Social Media Mining. Graph Essentials Graph Essentials Graph Basics Measures Graph and Essentials Metrics 2 2 Nodes and Edges A network is a graph nodes, actors, or vertices (plural of vertex) Connections, edges or ties Edge Node Measures

More information

A Constant-Factor Approximation Algorithm for the Multicommodity Rent-or-Buy Problem

A Constant-Factor Approximation Algorithm for the Multicommodity Rent-or-Buy Problem A Constant-Factor Approximation Algorithm for the Multicommodity Rent-or-Buy Problem Amit Kumar Anupam Gupta Tim Roughgarden Abstract We present the first constant-factor approximation algorithm for network

More information

On the k-path cover problem for cacti

On the k-path cover problem for cacti On the k-path cover problem for cacti Zemin Jin and Xueliang Li Center for Combinatorics and LPMC Nankai University Tianjin 300071, P.R. China zeminjin@eyou.com, x.li@eyou.com Abstract In this paper we

More information

How To Solve A K Path In Time (K)

How To Solve A K Path In Time (K) What s next? Reductions other than kernelization Dániel Marx Humboldt-Universität zu Berlin (with help from Fedor Fomin, Daniel Lokshtanov and Saket Saurabh) WorKer 2010: Workshop on Kernelization Nov

More information

Computer Algorithms. NP-Complete Problems. CISC 4080 Yanjun Li

Computer Algorithms. NP-Complete Problems. CISC 4080 Yanjun Li Computer Algorithms NP-Complete Problems NP-completeness The quest for efficient algorithms is about finding clever ways to bypass the process of exhaustive search, using clues from the input in order

More information

Steiner Tree Approximation via IRR. Randomized Rounding

Steiner Tree Approximation via IRR. Randomized Rounding Steiner Tree Approximation via Iterative Randomized Rounding Graduate Program in Logic, Algorithms and Computation μπλ Network Algorithms and Complexity June 18, 2013 Overview 1 Introduction Scope Related

More information

Online Algorithms for Network Design

Online Algorithms for Network Design Online Algorithms for Network Design Adam Meyerson University of California, Los Angeles 3731J Boelter Hall Los Angeles, California 90095 awm@cs.ucla.edu ABSTRACT This paper presents the first polylogarithmic-competitive

More information

Cpt S 223. School of EECS, WSU

Cpt S 223. School of EECS, WSU The Shortest Path Problem 1 Shortest-Path Algorithms Find the shortest path from point A to point B Shortest in time, distance, cost, Numerous applications Map navigation Flight itineraries Circuit wiring

More information

Outline. NP-completeness. When is a problem easy? When is a problem hard? Today. Euler Circuits

Outline. NP-completeness. When is a problem easy? When is a problem hard? Today. Euler Circuits Outline NP-completeness Examples of Easy vs. Hard problems Euler circuit vs. Hamiltonian circuit Shortest Path vs. Longest Path 2-pairs sum vs. general Subset Sum Reducing one problem to another Clique

More information

Energy-efficient communication in multi-interface wireless networks

Energy-efficient communication in multi-interface wireless networks Energy-efficient communication in multi-interface wireless networks Stavros Athanassopoulos, Ioannis Caragiannis, Christos Kaklamanis, and Evi Papaioannou Research Academic Computer Technology Institute

More information

1. Nondeterministically guess a solution (called a certificate) 2. Check whether the solution solves the problem (called verification)

1. Nondeterministically guess a solution (called a certificate) 2. Check whether the solution solves the problem (called verification) Some N P problems Computer scientists have studied many N P problems, that is, problems that can be solved nondeterministically in polynomial time. Traditionally complexity question are studied as languages:

More information

Online Node-weighted Steiner Forest and Extensions via Disk Paintings

Online Node-weighted Steiner Forest and Extensions via Disk Paintings Online Node-weighted Steiner Forest and Extensions via Disk Paintings MohammadTaghi Hajiaghayi Computer Science Dept. Univ of Maryland College Park, MD, USA Email: hajiagha@cs.umd.edu Vahid Liaghat Computer

More information

Approximation Algorithms

Approximation Algorithms Approximation Algorithms or: How I Learned to Stop Worrying and Deal with NP-Completeness Ong Jit Sheng, Jonathan (A0073924B) March, 2012 Overview Key Results (I) General techniques: Greedy algorithms

More information

Approximating Minimum Bounded Degree Spanning Trees to within One of Optimal

Approximating Minimum Bounded Degree Spanning Trees to within One of Optimal Approximating Minimum Bounded Degree Spanning Trees to within One of Optimal ABSTACT Mohit Singh Tepper School of Business Carnegie Mellon University Pittsburgh, PA USA mohits@andrew.cmu.edu In the MINIMUM

More information

Well-Separated Pair Decomposition for the Unit-disk Graph Metric and its Applications

Well-Separated Pair Decomposition for the Unit-disk Graph Metric and its Applications Well-Separated Pair Decomposition for the Unit-disk Graph Metric and its Applications Jie Gao Department of Computer Science Stanford University Joint work with Li Zhang Systems Research Center Hewlett-Packard

More information

Energy Efficient Monitoring in Sensor Networks

Energy Efficient Monitoring in Sensor Networks Energy Efficient Monitoring in Sensor Networks Amol Deshpande, Samir Khuller, Azarakhsh Malekian, Mohammed Toossi Computer Science Department, University of Maryland, A.V. Williams Building, College Park,

More information

Minimum cost maximum flow, Minimum cost circulation, Cost/Capacity scaling

Minimum cost maximum flow, Minimum cost circulation, Cost/Capacity scaling 6.854 Advanced Algorithms Lecture 16: 10/11/2006 Lecturer: David Karger Scribe: Kermin Fleming and Chris Crutchfield, based on notes by Wendy Chu and Tudor Leu Minimum cost maximum flow, Minimum cost circulation,

More information

NP-complete? NP-hard? Some Foundations of Complexity. Prof. Sven Hartmann Clausthal University of Technology Department of Informatics

NP-complete? NP-hard? Some Foundations of Complexity. Prof. Sven Hartmann Clausthal University of Technology Department of Informatics NP-complete? NP-hard? Some Foundations of Complexity Prof. Sven Hartmann Clausthal University of Technology Department of Informatics Tractability of Problems Some problems are undecidable: no computer

More information

Connectivity and cuts

Connectivity and cuts Math 104, Graph Theory February 19, 2013 Measure of connectivity How connected are each of these graphs? > increasing connectivity > I G 1 is a tree, so it is a connected graph w/minimum # of edges. Every

More information

Sociology and CS. Small World. Sociology Problems. Degree of Separation. Milgram s Experiment. How close are people connected? (Problem Understanding)

Sociology and CS. Small World. Sociology Problems. Degree of Separation. Milgram s Experiment. How close are people connected? (Problem Understanding) Sociology Problems Sociology and CS Problem 1 How close are people connected? Small World Philip Chan Problem 2 Connector How close are people connected? (Problem Understanding) Small World Are people

More information

Computer Science Department. Technion - IIT, Haifa, Israel. Itai and Rodeh [IR] have proved that for any 2-connected graph G and any vertex s G there

Computer Science Department. Technion - IIT, Haifa, Israel. Itai and Rodeh [IR] have proved that for any 2-connected graph G and any vertex s G there - 1 - THREE TREE-PATHS Avram Zehavi Alon Itai Computer Science Department Technion - IIT, Haifa, Israel Abstract Itai and Rodeh [IR] have proved that for any 2-connected graph G and any vertex s G there

More information

Page 1. CSCE 310J Data Structures & Algorithms. CSCE 310J Data Structures & Algorithms. P, NP, and NP-Complete. Polynomial-Time Algorithms

Page 1. CSCE 310J Data Structures & Algorithms. CSCE 310J Data Structures & Algorithms. P, NP, and NP-Complete. Polynomial-Time Algorithms CSCE 310J Data Structures & Algorithms P, NP, and NP-Complete Dr. Steve Goddard goddard@cse.unl.edu CSCE 310J Data Structures & Algorithms Giving credit where credit is due:» Most of the lecture notes

More information

Data Caching in Networks with Reading, Writing and Storage Costs

Data Caching in Networks with Reading, Writing and Storage Costs Data Caching in Networks with Reading, 1 Writing and Storage Costs Himanshu Gupta Computer Science Department Stony Brook University Stony Brook, NY 11790 Email: hgupta@cs.sunysb.edu Bin Tang Computer

More information

Labeling outerplanar graphs with maximum degree three

Labeling outerplanar graphs with maximum degree three Labeling outerplanar graphs with maximum degree three Xiangwen Li 1 and Sanming Zhou 2 1 Department of Mathematics Huazhong Normal University, Wuhan 430079, China 2 Department of Mathematics and Statistics

More information

Bicolored Shortest Paths in Graphs with Applications to Network Overlay Design

Bicolored Shortest Paths in Graphs with Applications to Network Overlay Design Bicolored Shortest Paths in Graphs with Applications to Network Overlay Design Hongsik Choi and Hyeong-Ah Choi Department of Electrical Engineering and Computer Science George Washington University Washington,

More information

! Solve problem to optimality. ! Solve problem in poly-time. ! Solve arbitrary instances of the problem. #-approximation algorithm.

! Solve problem to optimality. ! Solve problem in poly-time. ! Solve arbitrary instances of the problem. #-approximation algorithm. Approximation Algorithms 11 Approximation Algorithms Q Suppose I need to solve an NP-hard problem What should I do? A Theory says you're unlikely to find a poly-time algorithm Must sacrifice one of three

More information

Applied Algorithm Design Lecture 5

Applied Algorithm Design Lecture 5 Applied Algorithm Design Lecture 5 Pietro Michiardi Eurecom Pietro Michiardi (Eurecom) Applied Algorithm Design Lecture 5 1 / 86 Approximation Algorithms Pietro Michiardi (Eurecom) Applied Algorithm Design

More information

Network Algorithms for Homeland Security

Network Algorithms for Homeland Security Network Algorithms for Homeland Security Mark Goldberg and Malik Magdon-Ismail Rensselaer Polytechnic Institute September 27, 2004. Collaborators J. Baumes, M. Krishmamoorthy, N. Preston, W. Wallace. Partially

More information

NP-Completeness. CptS 223 Advanced Data Structures. Larry Holder School of Electrical Engineering and Computer Science Washington State University

NP-Completeness. CptS 223 Advanced Data Structures. Larry Holder School of Electrical Engineering and Computer Science Washington State University NP-Completeness CptS 223 Advanced Data Structures Larry Holder School of Electrical Engineering and Computer Science Washington State University 1 Hard Graph Problems Hard means no known solutions with

More information

arxiv:cs/0605141v1 [cs.dc] 30 May 2006

arxiv:cs/0605141v1 [cs.dc] 30 May 2006 General Compact Labeling Schemes for Dynamic Trees Amos Korman arxiv:cs/0605141v1 [cs.dc] 30 May 2006 February 1, 2008 Abstract Let F be a function on pairs of vertices. An F- labeling scheme is composed

More information

The Data Management Strategy

The Data Management Strategy Approximation Algorithms for Data Management in Networks Christof Krick Harald Räcke Matthias Westermann Abstract This paper deals with static data management in computer systems connected by networks.

More information

Part 2: Community Detection

Part 2: Community Detection Chapter 8: Graph Data Part 2: Community Detection Based on Leskovec, Rajaraman, Ullman 2014: Mining of Massive Datasets Big Data Management and Analytics Outline Community Detection - Social networks -

More information

MapReduce and Distributed Data Analysis. Sergei Vassilvitskii Google Research

MapReduce and Distributed Data Analysis. Sergei Vassilvitskii Google Research MapReduce and Distributed Data Analysis Google Research 1 Dealing With Massive Data 2 2 Dealing With Massive Data Polynomial Memory Sublinear RAM Sketches External Memory Property Testing 3 3 Dealing With

More information

Theoretical Computer Science

Theoretical Computer Science Theoretical Computer Science 410 (2009) 4489 4503 Contents lists available at ScienceDirect Theoretical Computer Science journal homepage: www.elsevier.com/locate/tcs A push relabel approximation algorithm

More information

Kevin Webb, Alex Snoeren, Ken Yocum UC San Diego Computer Science March 29, 2011 Hot-ICE 2011

Kevin Webb, Alex Snoeren, Ken Yocum UC San Diego Computer Science March 29, 2011 Hot-ICE 2011 Topology witching for Data Center Networks Kevin Webb, Alex noeren, Ken Yocum UC an Diego Computer cience March 29, 2011 Hot-ICE 2011 Data Center Networks Hosting myriad of applications: Big data: MapReduce

More information

Single machine parallel batch scheduling with unbounded capacity

Single machine parallel batch scheduling with unbounded capacity Workshop on Combinatorics and Graph Theory 21th, April, 2006 Nankai University Single machine parallel batch scheduling with unbounded capacity Yuan Jinjiang Department of mathematics, Zhengzhou University

More information

Graph models for the Web and the Internet. Elias Koutsoupias University of Athens and UCLA. Crete, July 2003

Graph models for the Web and the Internet. Elias Koutsoupias University of Athens and UCLA. Crete, July 2003 Graph models for the Web and the Internet Elias Koutsoupias University of Athens and UCLA Crete, July 2003 Outline of the lecture Small world phenomenon The shape of the Web graph Searching and navigation

More information

Finding and counting given length cycles

Finding and counting given length cycles Finding and counting given length cycles Noga Alon Raphael Yuster Uri Zwick Abstract We present an assortment of methods for finding and counting simple cycles of a given length in directed and undirected

More information

Zachary Monaco Georgia College Olympic Coloring: Go For The Gold

Zachary Monaco Georgia College Olympic Coloring: Go For The Gold Zachary Monaco Georgia College Olympic Coloring: Go For The Gold Coloring the vertices or edges of a graph leads to a variety of interesting applications in graph theory These applications include various

More information

Routing Problems. Viswanath Nagarajan R. Ravi. Abstract. We study the distance constrained vehicle routing problem (DVRP) [20, 21]: given a set

Routing Problems. Viswanath Nagarajan R. Ravi. Abstract. We study the distance constrained vehicle routing problem (DVRP) [20, 21]: given a set Approximation Algorithms for Distance Constrained Vehicle Routing Problems Viswanath Nagarajan R. Ravi Abstract We study the distance constrained vehicle routing problem (DVRP) [20, 21]: given a set of

More information

Online and Stochastic Survivable Network Design

Online and Stochastic Survivable Network Design Online and Stochastic Survivable Network Design Anupam Gupta Computer Science Dept. Carnegie Mellon University Pittsburgh PA 15213 anupamg@cs.cmu.edu avishankar Krishnaswamy Computer Science Dept. Carnegie

More information

Rising Rates in Random institute (R&I)

Rising Rates in Random institute (R&I) 139. Proc. 3rd Car. Conf. Comb. & Comp. pp. 139-143 SPANNING TREES IN RANDOM REGULAR GRAPHS Brendan D. McKay Computer Science Dept., Vanderbilt University, Nashville, Tennessee 37235 Let n~ < n2

More information

Disjoint Compatible Geometric Matchings

Disjoint Compatible Geometric Matchings Disjoint Compatible Geometric Matchings Mashhood Ishaque Diane L. Souvaine Csaba D. Tóth Abstract We prove that for every even set of n pairwise disjoint line segments in the plane in general position,

More information

Chapter 11. 11.1 Load Balancing. Approximation Algorithms. Load Balancing. Load Balancing on 2 Machines. Load Balancing: Greedy Scheduling

Chapter 11. 11.1 Load Balancing. Approximation Algorithms. Load Balancing. Load Balancing on 2 Machines. Load Balancing: Greedy Scheduling Approximation Algorithms Chapter Approximation Algorithms Q. Suppose I need to solve an NP-hard problem. What should I do? A. Theory says you're unlikely to find a poly-time algorithm. Must sacrifice one

More information

Handout #Ch7 San Skulrattanakulchai Gustavus Adolphus College Dec 6, 2010. Chapter 7: Digraphs

Handout #Ch7 San Skulrattanakulchai Gustavus Adolphus College Dec 6, 2010. Chapter 7: Digraphs MCS-236: Graph Theory Handout #Ch7 San Skulrattanakulchai Gustavus Adolphus College Dec 6, 2010 Chapter 7: Digraphs Strong Digraphs Definitions. A digraph is an ordered pair (V, E), where V is the set

More information

Problem Set 7 Solutions

Problem Set 7 Solutions 8 8 Introduction to Algorithms May 7, 2004 Massachusetts Institute of Technology 6.046J/18.410J Professors Erik Demaine and Shafi Goldwasser Handout 25 Problem Set 7 Solutions This problem set is due in

More information

Online Degree-Bounded Steiner Network Design

Online Degree-Bounded Steiner Network Design Online Degree-Bounded Steiner Network Design The problem of satisfying connectivity demands on a graph while respecting given constraints has been a pillar of the area of network design since the early

More information

A Practical Scheme for Wireless Network Operation

A Practical Scheme for Wireless Network Operation A Practical Scheme for Wireless Network Operation Radhika Gowaikar, Amir F. Dana, Babak Hassibi, Michelle Effros June 21, 2004 Abstract In many problems in wireline networks, it is known that achieving

More information

Attacking Anonymized Social Network

Attacking Anonymized Social Network Attacking Anonymized Social Network From: Wherefore Art Thou RX3579X? Anonymized Social Networks, Hidden Patterns, and Structural Steganography Presented By: Machigar Ongtang (Ongtang@cse.psu.edu ) Social

More information

Bandwidth Efficient All-to-All Broadcast on Switched Clusters

Bandwidth Efficient All-to-All Broadcast on Switched Clusters Bandwidth Efficient All-to-All Broadcast on Switched Clusters Ahmad Faraj Pitch Patarasuk Xin Yuan Blue Gene Software Development Department of Computer Science IBM Corporation Florida State University

More information

Approximation and Heuristic Algorithms for Minimum Delay Application-Layer Multicast Trees

Approximation and Heuristic Algorithms for Minimum Delay Application-Layer Multicast Trees Approximation and Heuristic Algorithms for Minimum Delay Application-Layer Multicast Trees Eli Brosh Department of EE - Systems Tel-Aviv University Ramat-Aviv, Israel 69978 Email: elibrosh@eng.tau.ac.il

More information

CAD Algorithms. P and NP

CAD Algorithms. P and NP CAD Algorithms The Classes P and NP Mohammad Tehranipoor ECE Department 6 September 2010 1 P and NP P and NP are two families of problems. P is a class which contains all of the problems we solve using

More information

Compact Representations and Approximations for Compuation in Games

Compact Representations and Approximations for Compuation in Games Compact Representations and Approximations for Compuation in Games Kevin Swersky April 23, 2008 Abstract Compact representations have recently been developed as a way of both encoding the strategic interactions

More information

Fast Edge Splitting and Edmonds Arborescence Construction for Unweighted Graphs

Fast Edge Splitting and Edmonds Arborescence Construction for Unweighted Graphs Fast Edge Splitting and Edmonds Arborescence Construction for Unweighted Graphs Anand Bhalgat Ramesh Hariharan Telikepalli Kavitha Debmalya Panigrahi Abstract Given an unweighted undirected or directed

More information

Graphs without proper subgraphs of minimum degree 3 and short cycles

Graphs without proper subgraphs of minimum degree 3 and short cycles Graphs without proper subgraphs of minimum degree 3 and short cycles Lothar Narins, Alexey Pokrovskiy, Tibor Szabó Department of Mathematics, Freie Universität, Berlin, Germany. August 22, 2014 Abstract

More information

The Goldberg Rao Algorithm for the Maximum Flow Problem

The Goldberg Rao Algorithm for the Maximum Flow Problem The Goldberg Rao Algorithm for the Maximum Flow Problem COS 528 class notes October 18, 2006 Scribe: Dávid Papp Main idea: use of the blocking flow paradigm to achieve essentially O(min{m 2/3, n 1/2 }

More information

The positive minimum degree game on sparse graphs

The positive minimum degree game on sparse graphs The positive minimum degree game on sparse graphs József Balogh Department of Mathematical Sciences University of Illinois, USA jobal@math.uiuc.edu András Pluhár Department of Computer Science University

More information

Lecture 15 An Arithmetic Circuit Lowerbound and Flows in Graphs

Lecture 15 An Arithmetic Circuit Lowerbound and Flows in Graphs CSE599s: Extremal Combinatorics November 21, 2011 Lecture 15 An Arithmetic Circuit Lowerbound and Flows in Graphs Lecturer: Anup Rao 1 An Arithmetic Circuit Lower Bound An arithmetic circuit is just like

More information

! Solve problem to optimality. ! Solve problem in poly-time. ! Solve arbitrary instances of the problem. !-approximation algorithm.

! Solve problem to optimality. ! Solve problem in poly-time. ! Solve arbitrary instances of the problem. !-approximation algorithm. Approximation Algorithms Chapter Approximation Algorithms Q Suppose I need to solve an NP-hard problem What should I do? A Theory says you're unlikely to find a poly-time algorithm Must sacrifice one of

More information

Degree-3 Treewidth Sparsifiers

Degree-3 Treewidth Sparsifiers Degree-3 Treewidth Sparsifiers Chandra Chekuri Julia Chuzhoy Abstract We study treewidth sparsifiers. Informally, given a graph G of treewidth k, a treewidth sparsifier H is a minor of G, whose treewidth

More information

CIS 700: algorithms for Big Data

CIS 700: algorithms for Big Data CIS 700: algorithms for Big Data Lecture 6: Graph Sketching Slides at http://grigory.us/big-data-class.html Grigory Yaroslavtsev http://grigory.us Sketching Graphs? We know how to sketch vectors: v Mv

More information

A constant-factor approximation algorithm for the k-median problem

A constant-factor approximation algorithm for the k-median problem A constant-factor approximation algorithm for the k-median problem Moses Charikar Sudipto Guha Éva Tardos David B. Shmoys July 23, 2002 Abstract We present the first constant-factor approximation algorithm

More information

. P. 4.3 Basic feasible solutions and vertices of polyhedra. x 1. x 2

. P. 4.3 Basic feasible solutions and vertices of polyhedra. x 1. x 2 4. Basic feasible solutions and vertices of polyhedra Due to the fundamental theorem of Linear Programming, to solve any LP it suffices to consider the vertices (finitely many) of the polyhedron P of the

More information

T U M. Combinatorial Network Abstraction by Trees and Distances. Stefan Eckhardt Moritz G. Maaß Sven Kosub Hanjo Täubig Sebastian Wernicke

T U M. Combinatorial Network Abstraction by Trees and Distances. Stefan Eckhardt Moritz G. Maaß Sven Kosub Hanjo Täubig Sebastian Wernicke T U M I N S T I T U T F Ü R I N F O R M A T I K Combinatorial Network Abstraction by Trees and Distances Stefan Eckhardt Moritz G. Maaß Sven Kosub Hanjo Täubig Sebastian Wernicke TUM-I0502 Februar 05 T

More information

Guessing Game: NP-Complete?

Guessing Game: NP-Complete? Guessing Game: NP-Complete? 1. LONGEST-PATH: Given a graph G = (V, E), does there exists a simple path of length at least k edges? YES 2. SHORTEST-PATH: Given a graph G = (V, E), does there exists a simple

More information

The Binary Blocking Flow Algorithm. Andrew V. Goldberg Microsoft Research Silicon Valley www.research.microsoft.com/ goldberg/

The Binary Blocking Flow Algorithm. Andrew V. Goldberg Microsoft Research Silicon Valley www.research.microsoft.com/ goldberg/ The Binary Blocking Flow Algorithm Andrew V. Goldberg Microsoft Research Silicon Valley www.research.microsoft.com/ goldberg/ Why this Max-Flow Talk? The result: O(min(n 2/3, m 1/2 )mlog(n 2 /m)log(u))

More information

Tools for parsimonious edge-colouring of graphs with maximum degree three. J.L. Fouquet and J.M. Vanherpe. Rapport n o RR-2010-10

Tools for parsimonious edge-colouring of graphs with maximum degree three. J.L. Fouquet and J.M. Vanherpe. Rapport n o RR-2010-10 Tools for parsimonious edge-colouring of graphs with maximum degree three J.L. Fouquet and J.M. Vanherpe LIFO, Université d Orléans Rapport n o RR-2010-10 Tools for parsimonious edge-colouring of graphs

More information

Every tree contains a large induced subgraph with all degrees odd

Every tree contains a large induced subgraph with all degrees odd Every tree contains a large induced subgraph with all degrees odd A.J. Radcliffe Carnegie Mellon University, Pittsburgh, PA A.D. Scott Department of Pure Mathematics and Mathematical Statistics University

More information

1 Definitions. Supplementary Material for: Digraphs. Concept graphs

1 Definitions. Supplementary Material for: Digraphs. Concept graphs Supplementary Material for: van Rooij, I., Evans, P., Müller, M., Gedge, J. & Wareham, T. (2008). Identifying Sources of Intractability in Cognitive Models: An Illustration using Analogical Structure Mapping.

More information

Simplified External memory Algorithms for Planar DAGs. July 2004

Simplified External memory Algorithms for Planar DAGs. July 2004 Simplified External Memory Algorithms for Planar DAGs Lars Arge Duke University Laura Toma Bowdoin College July 2004 Graph Problems Graph G = (V, E) with V vertices and E edges DAG: directed acyclic graph

More information

The Binary Blocking Flow Algorithm. Andrew V. Goldberg Microsoft Research Silicon Valley www.research.microsoft.com/ goldberg/

The Binary Blocking Flow Algorithm. Andrew V. Goldberg Microsoft Research Silicon Valley www.research.microsoft.com/ goldberg/ The Binary Blocking Flow Algorithm Andrew V. Goldberg Microsoft Research Silicon Valley www.research.microsoft.com/ goldberg/ Theory vs. Practice In theory, there is no difference between theory and practice.

More information

Tree-representation of set families and applications to combinatorial decompositions

Tree-representation of set families and applications to combinatorial decompositions Tree-representation of set families and applications to combinatorial decompositions Binh-Minh Bui-Xuan a, Michel Habib b Michaël Rao c a Department of Informatics, University of Bergen, Norway. buixuan@ii.uib.no

More information

On the effect of forwarding table size on SDN network utilization

On the effect of forwarding table size on SDN network utilization IBM Haifa Research Lab On the effect of forwarding table size on SDN network utilization Rami Cohen IBM Haifa Research Lab Liane Lewin Eytan Yahoo Research, Haifa Seffi Naor CS Technion, Israel Danny Raz

More information

Class One: Degree Sequences

Class One: Degree Sequences Class One: Degree Sequences For our purposes a graph is a just a bunch of points, called vertices, together with lines or curves, called edges, joining certain pairs of vertices. Three small examples of

More information

High degree graphs contain large-star factors

High degree graphs contain large-star factors High degree graphs contain large-star factors Dedicated to László Lovász, for his 60th birthday Noga Alon Nicholas Wormald Abstract We show that any finite simple graph with minimum degree d contains a

More information

Topology-based network security

Topology-based network security Topology-based network security Tiit Pikma Supervised by Vitaly Skachek Research Seminar in Cryptography University of Tartu, Spring 2013 1 Introduction In both wired and wireless networks, there is the

More information

UPPER BOUNDS ON THE L(2, 1)-LABELING NUMBER OF GRAPHS WITH MAXIMUM DEGREE

UPPER BOUNDS ON THE L(2, 1)-LABELING NUMBER OF GRAPHS WITH MAXIMUM DEGREE UPPER BOUNDS ON THE L(2, 1)-LABELING NUMBER OF GRAPHS WITH MAXIMUM DEGREE ANDREW LUM ADVISOR: DAVID GUICHARD ABSTRACT. L(2,1)-labeling was first defined by Jerrold Griggs [Gr, 1992] as a way to use graphs

More information

Semi-Matchings for Bipartite Graphs and Load Balancing

Semi-Matchings for Bipartite Graphs and Load Balancing Semi-Matchings for Bipartite Graphs and Load Balancing Nicholas J. A. Harvey Richard E. Ladner László Lovász Tami Tamir Abstract We consider the problem of fairly matching the left-hand vertices of a bipartite

More information

On the independence number of graphs with maximum degree 3

On the independence number of graphs with maximum degree 3 On the independence number of graphs with maximum degree 3 Iyad A. Kanj Fenghui Zhang Abstract Let G be an undirected graph with maximum degree at most 3 such that G does not contain any of the three graphs

More information

Nimble Algorithms for Cloud Computing. Ravi Kannan, Santosh Vempala and David Woodruff

Nimble Algorithms for Cloud Computing. Ravi Kannan, Santosh Vempala and David Woodruff Nimble Algorithms for Cloud Computing Ravi Kannan, Santosh Vempala and David Woodruff Cloud computing Data is distributed arbitrarily on many servers Parallel algorithms: time Streaming algorithms: sublinear

More information

Triangle deletion. Ernie Croot. February 3, 2010

Triangle deletion. Ernie Croot. February 3, 2010 Triangle deletion Ernie Croot February 3, 2010 1 Introduction The purpose of this note is to give an intuitive outline of the triangle deletion theorem of Ruzsa and Szemerédi, which says that if G = (V,

More information

Determination of the normalization level of database schemas through equivalence classes of attributes

Determination of the normalization level of database schemas through equivalence classes of attributes Computer Science Journal of Moldova, vol.17, no.2(50), 2009 Determination of the normalization level of database schemas through equivalence classes of attributes Cotelea Vitalie Abstract In this paper,

More information

arxiv:1412.2333v1 [cs.dc] 7 Dec 2014

arxiv:1412.2333v1 [cs.dc] 7 Dec 2014 Minimum-weight Spanning Tree Construction in O(log log log n) Rounds on the Congested Clique Sriram V. Pemmaraju Vivek B. Sardeshmukh Department of Computer Science, The University of Iowa, Iowa City,

More information

On Integer Additive Set-Indexers of Graphs

On Integer Additive Set-Indexers of Graphs On Integer Additive Set-Indexers of Graphs arxiv:1312.7672v4 [math.co] 2 Mar 2014 N K Sudev and K A Germina Abstract A set-indexer of a graph G is an injective set-valued function f : V (G) 2 X such that

More information

Physical Synthesis of Bus Matrix for High Bandwidth Low Power On-chip Communications

Physical Synthesis of Bus Matrix for High Bandwidth Low Power On-chip Communications Physical Synthesis of Bus Matrix for High Bandwidth Low Power On-chip Communications Renshen Wang, Evangeline Young, Ronald Graham and Chung-Kuan Cheng University of California, San Diego, La Jolla, CA

More information

Groebner bases over noetherian path algebras

Groebner bases over noetherian path algebras Groebner bases over noetherian path algebras Universite Cheikh Anta Diop Colloque sur la cryptographie et les codes correcteurs Dakar 3-11 decembre 2015 Andre Saint Eudes Mialebama Bouesso Postdoc fellow

More information

SEQUENCES OF MAXIMAL DEGREE VERTICES IN GRAPHS. Nickolay Khadzhiivanov, Nedyalko Nenov

SEQUENCES OF MAXIMAL DEGREE VERTICES IN GRAPHS. Nickolay Khadzhiivanov, Nedyalko Nenov Serdica Math. J. 30 (2004), 95 102 SEQUENCES OF MAXIMAL DEGREE VERTICES IN GRAPHS Nickolay Khadzhiivanov, Nedyalko Nenov Communicated by V. Drensky Abstract. Let Γ(M) where M V (G) be the set of all vertices

More information

Multicast Group Management for Interactive Distributed Applications

Multicast Group Management for Interactive Distributed Applications Multicast Group Management for Interactive Distributed Applications Carsten Griwodz griff@simula.no September 25, 2008 based on the thesis work of Knut-Helge Vik, knuthelv@simula.no Group communication

More information

Weighted Sum Coloring in Batch Scheduling of Conflicting Jobs

Weighted Sum Coloring in Batch Scheduling of Conflicting Jobs Weighted Sum Coloring in Batch Scheduling of Conflicting Jobs Leah Epstein Magnús M. Halldórsson Asaf Levin Hadas Shachnai Abstract Motivated by applications in batch scheduling of jobs in manufacturing

More information

CS 598CSC: Combinatorial Optimization Lecture date: 2/4/2010

CS 598CSC: Combinatorial Optimization Lecture date: 2/4/2010 CS 598CSC: Combinatorial Optimization Lecture date: /4/010 Instructor: Chandra Chekuri Scribe: David Morrison Gomory-Hu Trees (The work in this section closely follows [3]) Let G = (V, E) be an undirected

More information

Strictly Localized Construction of Planar Bounded-Degree Spanners of Unit Disk Graphs

Strictly Localized Construction of Planar Bounded-Degree Spanners of Unit Disk Graphs Strictly Localized Construction of Planar Bounded-Degree Spanners of Unit Disk Graphs Iyad A. Kanj Ljubomir Perković Ge Xia Abstract We describe a new distributed and strictly-localized approach for constructing

More information

Degree-associated reconstruction parameters of complete multipartite graphs and their complements

Degree-associated reconstruction parameters of complete multipartite graphs and their complements Degree-associated reconstruction parameters of complete multipartite graphs and their complements Meijie Ma, Huangping Shi, Hannah Spinoza, Douglas B. West January 23, 2014 Abstract Avertex-deleted subgraphofagraphgisacard.

More information

2. (a) Explain the strassen s matrix multiplication. (b) Write deletion algorithm, of Binary search tree. [8+8]

2. (a) Explain the strassen s matrix multiplication. (b) Write deletion algorithm, of Binary search tree. [8+8] Code No: R05220502 Set No. 1 1. (a) Describe the performance analysis in detail. (b) Show that f 1 (n)+f 2 (n) = 0(max(g 1 (n), g 2 (n)) where f 1 (n) = 0(g 1 (n)) and f 2 (n) = 0(g 2 (n)). [8+8] 2. (a)

More information

Capacity of Inter-Cloud Layer-2 Virtual Networking!

Capacity of Inter-Cloud Layer-2 Virtual Networking! Capacity of Inter-Cloud Layer-2 Virtual Networking! Yufeng Xin, Ilya Baldin, Chris Heermann, Anirban Mandal, and Paul Ruth!! Renci, University of North Carolina at Chapel Hill, NC, USA! yxin@renci.org!

More information

Private Approximation of Clustering and Vertex Cover

Private Approximation of Clustering and Vertex Cover Private Approximation of Clustering and Vertex Cover Amos Beimel, Renen Hallak, and Kobbi Nissim Department of Computer Science, Ben-Gurion University of the Negev Abstract. Private approximation of search

More information

Graph Theory and Complex Networks: An Introduction. Chapter 06: Network analysis

Graph Theory and Complex Networks: An Introduction. Chapter 06: Network analysis Graph Theory and Complex Networks: An Introduction Maarten van Steen VU Amsterdam, Dept. Computer Science Room R4.0, steen@cs.vu.nl Chapter 06: Network analysis Version: April 8, 04 / 3 Contents Chapter

More information