# Minimum cost maximum flow, Minimum cost circulation, Cost/Capacity scaling

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 6.854 Advanced Algorithms Lecture 16: 10/11/2006 Lecturer: David Karger Scribe: Kermin Fleming and Chris Crutchfield, based on notes by Wendy Chu and Tudor Leu Minimum cost maximum flow, Minimum cost circulation, Cost/Capacity scaling Introduction to minimum cost maximum flow We previously discussed maximum flow in a network. Today we add one parameter to a flow network, a cost per unit of flow on each edge: c(v, w) R, where (v, w) E. Definition 1 The cost of a flow f is defined as: c(f) = e E f(e) c(e) A minimum cost maximum flow of a network G = (V, E) is a maximum flow with the smallest possible cost. This problem combines maximum flow (getting as much flow as possible from the source to the sink) with shortest path (reaching from the source to the sink with minimum cost). Note that in a network with costs the residual edges also have costs. Consider an edge (v, w) with capacity u(v, w), cost per unit flow c(v, w) and net flow f(v, w). Then the residual graph has two edges corresponding to (v, w). The first edge is (v, w) with capacity u(v, w) f(v, w) and cost c(v, w), and second edge is (w, v) with capacity f(v, w) and cost c(v, w). Observation 1 Any flow can be decomposed into paths (some of which can be cycles). We define the cost of a path p as c(p) = e p c(e) and express the cost of a flow f as c(f) = p P c(p)f(p), where P is the path decomposition of f The min-cost circulation problem Consider a network without a source or a sink. We can define a flow in this network, as long as it is balanced at every node in that network. This kind of flow is called a circulation. The cost of a circulation is defined identically with the cost of a flow. Observation 2 Any circulation can be decomposed entirely into cycles. The cost of a circulation f can be expressed as the sum of the costs of all cycles in a decomposition of f. A minimum cost circulation is a circulation of the smallest possible cost. Note that there is no restriction on the flow through the network. For example, if all costs are positive, the minimum 16-1

2 Lecture 16: 10/11/ circulation has no flow on all edges. On the other hand, if there are negative cost cycles in the network, the minimum circulation has negative costs and flow has to exist on the edges of the cycle. Claim 1 Finding the minimum cost maximum flow of a network is an equivalent problem with finding the minimum cost circulation. Proof: First, we show that min-cost max-flow can be solved using min-cost circulation. Given a network G with a source s and a sink t, add an edge (t, s) to the network such that u(t, s) = mu and c(t, s) = (C + 1)n. The minimum cost circulation in the new graph will use to the maximum the very inexpensive newly added edge. Any path from s to t forms a negative cost cycle together with (t, s), since c(t, s) is greater than the cost of any such path. This guarantees that we obtain a maximum flow from s to t included in the circulation of the new network. Among all maximum flows, this one is also of minimum cost. All the maximum flows use (t, s) at the same capacity, so they use the edge (t, s) at the same cost. This means that the minimum cost circulation has to be minimum cost on the section from s to t, which makes the max-flow also min-cost. Another reduction from min-cost max-flow to min-cost circulation is to find any maximum flow in the network, regardless of the costs, then find the min-cost circulation in the residual graph. We claim that the resulted flow is a min-cost max-flow. This is because the difference between two maxflows is a circulation, and the cost of that difference circulation is the difference between the costs of the two max-flows. Given f, the initial max-flow, and f, the resulting maximum flow, f f is a min-cost circulation in the residual network G f iff f is a min-cost max-flow. The second part of the proof is showing that min-cost circulation reduces to min-cost max-flow. Consider a network G for which we want to find a min-cost circulation. Add a source s and a sink t to the network, without any edges to the rest of the network. The maximum flow in this network is 0, therefore the min-cost max-flow is actually a min-cost circulation. We conclude then that min-cost max-flow and min-cost circulation are equivalent problems Optimality criteria We are interested to find criteria which determine whether a circulation is a min-cost circulation. Theorem 1 A circulation is optimal (min-cost) iff there are no negative cost cycles in the residual network. Proof: First, suppose that a circulation f is not optimal, and let f be an optimal circulation in a network G. We will show that G f has a negative cost cycle. The difference f f is a circulation, therefore it has a cycle decomposition. Because the cost of f is smaller than the cost of f, f f is a circulation of negative cost, and it is also feasible in G f. At least one of the cycles in the decomposition has to be negative, therefore G f contains a negative cost cycle. To prove the other implication, suppose a residual network G f has a negative cycle. Then f is not a min-cost circulation, because that cycle can be added to f, forming a new circulation of smaller cost.

3 Lecture 16: 10/11/ The optimality criteria is checked by looking for negative cost cycles. This can be done with the Bellman-Ford shortest-path algorithm, which can handle negative cost edges (unlike Dijkstra s algorithm), but runs in O(mn). Price function We can analyze the optimality of a circulation using a price function. Think of the flow units as widgets that are given away at the source and they are paid for at the source. There is a market for widgets at intermediate vertices. We can define then a price function p for the vertices of the network. At the source, p(s) = 0. Consider an edge (v, w) which has residual capacity. The price p(w) is feasible if p(w) p(w) + c(v, w). Definition 2 The reduced cost of an edge (v, w) is c p (v, w) = c(v, w) + p(v) p(w). We can think of the reduced cost as the cost of buying a widget at v, shipping it to w and selling it there. Note that if c p (v, w) is positive, we would therefore not ship the item from v to w. Using this definition, we can say that a price function is feasible for a residual graph if no residual edge has a negative reduced cost. Observation 3 Prices do not affect the value or structure of a minimum cost circulation. As we discussed before, a circulation is decomposed into cycles. Cycle costs do not change if we compute them as the sum of reduced costs of the edges, since the price terms around the cycle cancel out. Claim 2 A circulation is optimal iff there is a feasible price function in the residual graph Proof: 1) If there is a feasible price function for the residual graph, then the circulation is optimal. If there is a feasible price function, then no residual edge has negative reduced cost. Then there is no negative cost cycle in the residual graph, therefore the circulation is optimal. 2) If the circulation has minimum cost, then there is a feasible price function for the residual graph. Add a source s to the residual graph, along with edges of cost 0 to all other vertices. Compute shortest paths d(v) from s to each vertex v. The distances may be negative, but they are finite, since there are no negative cost cycles (the circulation is optimal). We claim that we can use the distances as prices. Since d is the shortest-path distance function, d(w) d(v) + c(v, w) if (v, w) is in the residual graph G f, so d is a feasible price function.

4 Lecture 16: 10/11/ Algorithms Cycle canceling To find the minimum cost circulation, look for negative cycles and saturate them until done. Negative cycles can be found with the Bellman-Ford algorithm in O(mn) time. The number of iterations is less than the cost of the min-cost circulation (taken with a plus sign), because each negative cycle decreases the cost by at least one unit. The minimum cost of a circulation is bounded by muc, so the total time of this algorithm is O(m 2 nuc), a pseudo-polynomial bound. By using a scaling algorithm for shortest paths, we can obtain a running time of O(m 2 ncu log C) Shortest Augmenting Path for Unit Capacity Graphs The shortest augmenting path algorithm for solving the MCF problem is the natural extension of the SAP algorithm for the max flow problem. Note that here the shortest path is defined by edge cost, not edge capacity. For the unit capacity graph case, we assume that all arcs have unit capacity and that there are no negative cost arcs. Therefore, the value of any flow in the cycle must be less than or equal to n. Given that each augmenting path increases the value of the flow by 1, at most n augmentation steps will suffice in finding the MCF. Shortest augmenting paths can be found using any single-source shortest path algorithm. We can use Dijkstra s algorithm since there are no negative-cost edges in the graph. Each path calculation takes O(m log n) time, for a total runtime of O(nm log n). Two questions arise: what if augmentations create negative cost edges? how do we know the result is a MCF? We answer both of these questions with the following claim. Claim 3 Under the SAP algorithm, there will never be a negative reduced-cost cycle in the residual graph. Proof: (by induction). We want to show that one SAP doesn t introduce negative cycles in G f. Initially there are no negative cost cycles. Feasible prices can be computed by using shortest path distances from s. After finding the shortest s-t path, it has reduced cost 0. Every arc on the path has reduced length 0. This demonstrates that the triangle inequality property is tight on shortest path edges. When we augment along the path, therefore, the residual backwards arcs we create are of reduced cost 0. Therefore in the new G f, the price function is still feasible. Furthermore, there are:

5 Lecture 16: 10/11/ no residual negative reduced cost arcs no negative reduced cost cycles no negative cost cycles Proof of this claim also proves the correctness of the algorithm, since it will also apply to the residual graph at the time the algorithm terminates. The SAP algorithm we present suffers from two limitations. It is applicable only to unit capacity graphs, and it cannot handle graphs with negative cost cycles Capacity Scaling We can extend the SAP algorithm to general-capacity networks by scaling. During each scaling phase, we roll in one bit of precision, for a total of O(log U) phases. At the end of each phase we have an MCF and a feasible price function. After rolling in the next bit, though, we can introduce residual capaicty on negative reduced cost arcs. This will cause the price function no longer to be feasible. We can correct this problem by sending flow along the negative arcs. This introduces flow excesses (of one unit) at some nodes and deficits (of one unit) at others. We use an MCF to send the excesses back to deficits. Since each arc can create at most one unit of excess, total excess is at most m units and m SAPs will suffice in returning all excesses to deficits. Using Dijkstra s for finding SAPs as before, runtime per phase is O(m 2 log n). The total runtime of the algorithm is O(m 2 log n log U) Cost Scaling An alternative method of solving for MCF in a general network is by scaling by costs, rather than capacities. This is useful for graphs with integral costs, since all cycles will have integer costs. The idea is to allow for slightly negative cost arcs and continuously improve on the price function. We introduce the idea of ɛ-optimality: Definition 3 A price function p is ɛ-optimal if for all residual arcs (i, j), c p (i, j) ɛ. We start with a max flow and a zero price function, which will be C-optimal. During each scaling phase, we go from an ɛ-optimal max flow to an (ɛ/2)-optimal max flow. When can we terminate the algorithm? Claim 4 A 1 n+1-optimal max flow is optimal.

6 Lecture 16: 10/11/ Proof: We start with the observation that the least negative cycle cost is 1 in a integral-cost graph. All cycles in the residual network cost at least n n+1, which is strictly larger than 1. Therefore the reduced cost of any residual cycle is at least n n+1, and a 1 n+1-optimal max flow is optimal. This implies that O(log n C) scaling phases are required to obtain an optimal flow. To get an (ɛ/2)-optimal max flow from an ɛ-optimal max flow, we first saturate all negative-cost residual arcs. This makes all residual arcs have non-negative reduced cost, but introduces excesses and deficits into the network. We then use MCF to push the excesses back to the deficits, without allowing any edge costs to drop below ɛ/2. Using dynamic trees, the runtime of this algorithm is O(mn log n log C) State of the Art The double-scaling algorithm combines cost- and capacity-scaling introduced here. It has the runtime of O(mn log C log log U). Tardos minimum mean-cost cycles algorithm ( 85) is a strongly polynomial algorithm for MCF. The algorithm proceeds by finding the negative cycles in which the average cost per edge is most strongly negative. Thus short cycles of a particular negativity are preferred over long ones. The algorithm uses a cost scaling technique from the ideas of ɛ-optimality. After every m negative-cycle saturations, an edge becomes frozen, meaning its flow value never changes again. The minimum mean-cost cycle algorithm has time bound O(m 2 polylog m). An algorithm due to Trajan and Goldberg cancels minimum average weight cycles, which can be found in polynomial time, to obtain a MCF after a polynomial number of cycles have been cancelled. This algorithm has runtime O(n 2 m 3 (log n)) References A. V. Goldberg and R. E. Tarjan. Finding minimum-cost circulations by canceling negative cycles. J. Assoc. Comput. Mach., 36(4): , É. Tardos. A strongly polynomial minimum cost circulation algorithm. Combinatorica, 5(3): , 1985.

### The Goldberg Rao Algorithm for the Maximum Flow Problem

The Goldberg Rao Algorithm for the Maximum Flow Problem COS 528 class notes October 18, 2006 Scribe: Dávid Papp Main idea: use of the blocking flow paradigm to achieve essentially O(min{m 2/3, n 1/2 }

### The Binary Blocking Flow Algorithm. Andrew V. Goldberg Microsoft Research Silicon Valley www.research.microsoft.com/ goldberg/

The Binary Blocking Flow Algorithm Andrew V. Goldberg Microsoft Research Silicon Valley www.research.microsoft.com/ goldberg/ Theory vs. Practice In theory, there is no difference between theory and practice.

### The Binary Blocking Flow Algorithm. Andrew V. Goldberg Microsoft Research Silicon Valley www.research.microsoft.com/ goldberg/

The Binary Blocking Flow Algorithm Andrew V. Goldberg Microsoft Research Silicon Valley www.research.microsoft.com/ goldberg/ Why this Max-Flow Talk? The result: O(min(n 2/3, m 1/2 )mlog(n 2 /m)log(u))

### Network Flow I. Lecture 16. 16.1 Overview. 16.2 The Network Flow Problem

Lecture 6 Network Flow I 6. Overview In these next two lectures we are going to talk about an important algorithmic problem called the Network Flow Problem. Network flow is important because it can be

### Introduction to Algorithms Review information for Prelim 1 CS 4820, Spring 2010 Distributed Wednesday, February 24

Introduction to Algorithms Review information for Prelim 1 CS 4820, Spring 2010 Distributed Wednesday, February 24 The final exam will cover seven topics. 1. greedy algorithms 2. divide-and-conquer algorithms

### Lecture 7: Approximation via Randomized Rounding

Lecture 7: Approximation via Randomized Rounding Often LPs return a fractional solution where the solution x, which is supposed to be in {0, } n, is in [0, ] n instead. There is a generic way of obtaining

### Math 443/543 Graph Theory Notes 4: Connector Problems

Math 443/543 Graph Theory Notes 4: Connector Problems David Glickenstein September 19, 2012 1 Trees and the Minimal Connector Problem Here is the problem: Suppose we have a collection of cities which we

### Approximation Algorithms

Approximation Algorithms or: How I Learned to Stop Worrying and Deal with NP-Completeness Ong Jit Sheng, Jonathan (A0073924B) March, 2012 Overview Key Results (I) General techniques: Greedy algorithms

### 2.3 Scheduling jobs on identical parallel machines

2.3 Scheduling jobs on identical parallel machines There are jobs to be processed, and there are identical machines (running in parallel) to which each job may be assigned Each job = 1,,, must be processed

### 5.1 Bipartite Matching

CS787: Advanced Algorithms Lecture 5: Applications of Network Flow In the last lecture, we looked at the problem of finding the maximum flow in a graph, and how it can be efficiently solved using the Ford-Fulkerson

### CSL851: Algorithmic Graph Theory Semester I Lecture 1: July 24

CSL851: Algorithmic Graph Theory Semester I 2013-2014 Lecture 1: July 24 Lecturer: Naveen Garg Scribes: Suyash Roongta Note: LaTeX template courtesy of UC Berkeley EECS dept. Disclaimer: These notes have

### Problem Set 7 Solutions

8 8 Introduction to Algorithms May 7, 2004 Massachusetts Institute of Technology 6.046J/18.410J Professors Erik Demaine and Shafi Goldwasser Handout 25 Problem Set 7 Solutions This problem set is due in

### Lecture 1: Course overview, circuits, and formulas

Lecture 1: Course overview, circuits, and formulas Topics in Complexity Theory and Pseudorandomness (Spring 2013) Rutgers University Swastik Kopparty Scribes: John Kim, Ben Lund 1 Course Information Swastik

### Good luck, veel succes!

Final exam Advanced Linear Programming, May 7, 13.00-16.00 Switch off your mobile phone, PDA and any other mobile device and put it far away. No books or other reading materials are allowed. This exam

### / Approximation Algorithms Lecturer: Michael Dinitz Topic: Steiner Tree and TSP Date: 01/29/15 Scribe: Katie Henry

600.469 / 600.669 Approximation Algorithms Lecturer: Michael Dinitz Topic: Steiner Tree and TSP Date: 01/29/15 Scribe: Katie Henry 2.1 Steiner Tree Definition 2.1.1 In the Steiner Tree problem the input

### princeton univ. F 13 cos 521: Advanced Algorithm Design Lecture 6: Provable Approximation via Linear Programming Lecturer: Sanjeev Arora

princeton univ. F 13 cos 521: Advanced Algorithm Design Lecture 6: Provable Approximation via Linear Programming Lecturer: Sanjeev Arora Scribe: One of the running themes in this course is the notion of

### Principle of (Weak) Mathematical Induction. P(1) ( n 1)(P(n) P(n + 1)) ( n 1)(P(n))

Outline We will cover (over the next few weeks) Mathematical Induction (or Weak Induction) Strong (Mathematical) Induction Constructive Induction Structural Induction Principle of (Weak) Mathematical Induction

### CS 598CSC: Combinatorial Optimization Lecture date: 2/4/2010

CS 598CSC: Combinatorial Optimization Lecture date: /4/010 Instructor: Chandra Chekuri Scribe: David Morrison Gomory-Hu Trees (The work in this section closely follows [3]) Let G = (V, E) be an undirected

### Minimize subject to. x S R

Chapter 12 Lagrangian Relaxation This chapter is mostly inspired by Chapter 16 of [1]. In the previous chapters, we have succeeded to find efficient algorithms to solve several important problems such

### Answers to some of the exercises.

Answers to some of the exercises. Chapter 2. Ex.2.1 (a) There are several ways to do this. Here is one possibility. The idea is to apply the k-center algorithm first to D and then for each center in D

### Week 2 Polygon Triangulation

Week 2 Polygon Triangulation What is a polygon? Last week A polygonal chain is a connected series of line segments A closed polygonal chain is a polygonal chain, such that there is also a line segment

### A tree can be defined in a variety of ways as is shown in the following theorem: 2. There exists a unique path between every two vertices of G.

7 Basic Properties 24 TREES 7 Basic Properties Definition 7.1: A connected graph G is called a tree if the removal of any of its edges makes G disconnected. A tree can be defined in a variety of ways as

### Data Structures and Algorithms Written Examination

Data Structures and Algorithms Written Examination 22 February 2013 FIRST NAME STUDENT NUMBER LAST NAME SIGNATURE Instructions for students: Write First Name, Last Name, Student Number and Signature where

### Max Flow, Min Cut, and Matchings (Solution)

Max Flow, Min Cut, and Matchings (Solution) 1. The figure below shows a flow network on which an s-t flow is shown. The capacity of each edge appears as a label next to the edge, and the numbers in boxes

### CMSC 451: Graph Properties, DFS, BFS, etc.

CMSC 451: Graph Properties, DFS, BFS, etc. Slides By: Carl Kingsford Department of Computer Science University of Maryland, College Park Based on Chapter 3 of Algorithm Design by Kleinberg & Tardos. Graphs

### Linear Programming. Widget Factory Example. Linear Programming: Standard Form. Widget Factory Example: Continued.

Linear Programming Widget Factory Example Learning Goals. Introduce Linear Programming Problems. Widget Example, Graphical Solution. Basic Theory:, Vertices, Existence of Solutions. Equivalent formulations.

### 15-750 Graduate Algorithms Spring 2010

15-750 Graduate Algorithms Spring 2010 1 Cheap Cut (25 pts.) Suppose we are given a directed network G = (V, E) with a root node r and a set of terminal nodes T V. We would like to remove the fewest number

### Min-cost flow problems and network simplex algorithm

Min-cost flow problems and network simplex algorithm The particular structure of some LP problems can be sometimes used for the design of solution techniques more efficient than the simplex algorithm.

### Bicolored Shortest Paths in Graphs with Applications to Network Overlay Design

Bicolored Shortest Paths in Graphs with Applications to Network Overlay Design Hongsik Choi and Hyeong-Ah Choi Department of Electrical Engineering and Computer Science George Washington University Washington,

### 6.2 Permutations continued

6.2 Permutations continued Theorem A permutation on a finite set A is either a cycle or can be expressed as a product (composition of disjoint cycles. Proof is by (strong induction on the number, r, of

### Practical Guide to the Simplex Method of Linear Programming

Practical Guide to the Simplex Method of Linear Programming Marcel Oliver Revised: April, 0 The basic steps of the simplex algorithm Step : Write the linear programming problem in standard form Linear

### Algorithms and Data Structures (INF1) Lecture 14/15 Hua Lu

Algorithms and Data Structures (INF1) Lecture 14/15 Hua Lu Department of Computer Science Aalborg University Fall 2007 This Lecture Shortest paths Problem preliminary Shortest paths in DAG Bellman-Moore

### The Union-Find Problem Kruskal s algorithm for finding an MST presented us with a problem in data-structure design. As we looked at each edge,

The Union-Find Problem Kruskal s algorithm for finding an MST presented us with a problem in data-structure design. As we looked at each edge, cheapest first, we had to determine whether its two endpoints

### Complexity Theory. IE 661: Scheduling Theory Fall 2003 Satyaki Ghosh Dastidar

Complexity Theory IE 661: Scheduling Theory Fall 2003 Satyaki Ghosh Dastidar Outline Goals Computation of Problems Concepts and Definitions Complexity Classes and Problems Polynomial Time Reductions Examples

### Lecture 3: Linear Programming Relaxations and Rounding

Lecture 3: Linear Programming Relaxations and Rounding 1 Approximation Algorithms and Linear Relaxations For the time being, suppose we have a minimization problem. Many times, the problem at hand can

### Network Flow Algorithms

Network Flow Algorithms Andrew V. Goldberg, Eva Tardos and Robert E. Tarjan 0. Introduction Reprint from Algorithms and Combinatorics Volume 9 Paths, Rows, and VLSI-Layout Volume Editors: B. Kone, L Lovasz,

### Distributed Computing over Communication Networks: Maximal Independent Set

Distributed Computing over Communication Networks: Maximal Independent Set What is a MIS? MIS An independent set (IS) of an undirected graph is a subset U of nodes such that no two nodes in U are adjacent.

### Chapter 2 Paths and Searching

Chapter 2 Paths and Searching Section 2.1 Distance Almost every day you face a problem: You must leave your home and go to school. If you are like me, you are usually a little late, so you want to take

### 3. Equivalence Relations. Discussion

3. EQUIVALENCE RELATIONS 33 3. Equivalence Relations 3.1. Definition of an Equivalence Relations. Definition 3.1.1. A relation R on a set A is an equivalence relation if and only if R is reflexive, symmetric,

### Uniform Multicommodity Flow through the Complete Graph with Random Edge-capacities

Combinatorics, Probability and Computing (2005) 00, 000 000. c 2005 Cambridge University Press DOI: 10.1017/S0000000000000000 Printed in the United Kingdom Uniform Multicommodity Flow through the Complete

### ! Solve problem to optimality. ! Solve problem in poly-time. ! Solve arbitrary instances of the problem. #-approximation algorithm.

Approximation Algorithms 11 Approximation Algorithms Q Suppose I need to solve an NP-hard problem What should I do? A Theory says you're unlikely to find a poly-time algorithm Must sacrifice one of three

### Dynamic programming. Doctoral course Optimization on graphs - Lecture 4.1. Giovanni Righini. January 17 th, 2013

Dynamic programming Doctoral course Optimization on graphs - Lecture.1 Giovanni Righini January 1 th, 201 Implicit enumeration Combinatorial optimization problems are in general NP-hard and we usually

### Solutions to Exercises 8

Discrete Mathematics Lent 2009 MA210 Solutions to Exercises 8 (1) Suppose that G is a graph in which every vertex has degree at least k, where k 1, and in which every cycle contains at least 4 vertices.

### Outline. NP-completeness. When is a problem easy? When is a problem hard? Today. Euler Circuits

Outline NP-completeness Examples of Easy vs. Hard problems Euler circuit vs. Hamiltonian circuit Shortest Path vs. Longest Path 2-pairs sum vs. general Subset Sum Reducing one problem to another Clique

### Graph. Consider a graph, G in Fig Then the vertex V and edge E can be represented as:

Graph A graph G consist of 1. Set of vertices V (called nodes), (V = {v1, v2, v3, v4...}) and 2. Set of edges E (i.e., E {e1, e2, e3...cm} A graph can be represents as G = (V, E), where V is a finite and

### Semi-Matchings for Bipartite Graphs and Load Balancing

Semi-Matchings for Bipartite Graphs and Load Balancing Nicholas J. A. Harvey Richard E. Ladner László Lovász Tami Tamir Abstract We consider the problem of fairly matching the left-hand vertices of a bipartite

### Fairness in Routing and Load Balancing

Fairness in Routing and Load Balancing Jon Kleinberg Yuval Rabani Éva Tardos Abstract We consider the issue of network routing subject to explicit fairness conditions. The optimization of fairness criteria

### COLORED GRAPHS AND THEIR PROPERTIES

COLORED GRAPHS AND THEIR PROPERTIES BEN STEVENS 1. Introduction This paper is concerned with the upper bound on the chromatic number for graphs of maximum vertex degree under three different sets of coloring

Approximation Algorithms Chapter Approximation Algorithms Q. Suppose I need to solve an NP-hard problem. What should I do? A. Theory says you're unlikely to find a poly-time algorithm. Must sacrifice one

### Introduction to Flocking {Stochastic Matrices}

Supelec EECI Graduate School in Control Introduction to Flocking {Stochastic Matrices} A. S. Morse Yale University Gif sur - Yvette May 21, 2012 CRAIG REYNOLDS - 1987 BOIDS The Lion King CRAIG REYNOLDS

### ! Solve problem to optimality. ! Solve problem in poly-time. ! Solve arbitrary instances of the problem. !-approximation algorithm.

Approximation Algorithms Chapter Approximation Algorithms Q Suppose I need to solve an NP-hard problem What should I do? A Theory says you're unlikely to find a poly-time algorithm Must sacrifice one of

### Inverse Optimization by James Orlin

Inverse Optimization by James Orlin based on research that is joint with Ravi Ahuja Jeopardy 000 -- the Math Programming Edition The category is linear objective functions The answer: When you maximize

### Matrix Scaling by Network Flow

Matrix Scaling by Network Flow Günter Rote Martin Zachariasen Abstract A given nonnegative n n matrix A = () is to be scaled, by multiplying its rows and columns by unknown positive multipliers λ i and

### Lecture 3. Linear Programming. 3B1B Optimization Michaelmas 2015 A. Zisserman. Extreme solutions. Simplex method. Interior point method

Lecture 3 3B1B Optimization Michaelmas 2015 A. Zisserman Linear Programming Extreme solutions Simplex method Interior point method Integer programming and relaxation The Optimization Tree Linear Programming

### Graph Theory Problems and Solutions

raph Theory Problems and Solutions Tom Davis tomrdavis@earthlink.net http://www.geometer.org/mathcircles November, 005 Problems. Prove that the sum of the degrees of the vertices of any finite graph is

### CSE 101: Design and Analysis of Algorithms Homework 4 Winter 2016 Due: February 25, 2016

CSE 101: Design and Analysis of Algorithms Homework 4 Winter 2016 Due: February 25, 2016 Exercises (strongly recommended, do not turn in) 1. (DPV textbook, Problem 7.11.) Find the optimal solution to the

### Algorithm Design and Analysis

Algorithm Design and Analysis LECTURE 27 Approximation Algorithms Load Balancing Weighted Vertex Cover Reminder: Fill out SRTEs online Don t forget to click submit Sofya Raskhodnikova 12/6/2011 S. Raskhodnikova;

### Lecture 22: November 10

CS271 Randomness & Computation Fall 2011 Lecture 22: November 10 Lecturer: Alistair Sinclair Based on scribe notes by Rafael Frongillo Disclaimer: These notes have not been subjected to the usual scrutiny

### Discrete Mathematics, Chapter 3: Algorithms

Discrete Mathematics, Chapter 3: Algorithms Richard Mayr University of Edinburgh, UK Richard Mayr (University of Edinburgh, UK) Discrete Mathematics. Chapter 3 1 / 28 Outline 1 Properties of Algorithms

### Cpt S 223. School of EECS, WSU

The Shortest Path Problem 1 Shortest-Path Algorithms Find the shortest path from point A to point B Shortest in time, distance, cost, Numerous applications Map navigation Flight itineraries Circuit wiring

### CS268: Geometric Algorithms Handout #5 Design and Analysis Original Handout #15 Stanford University Tuesday, 25 February 1992

CS268: Geometric Algorithms Handout #5 Design and Analysis Original Handout #15 Stanford University Tuesday, 25 February 1992 Original Lecture #6: 28 January 1991 Topics: Triangulating Simple Polygons

### Lecture 9. 1 Introduction. 2 Random Walks in Graphs. 1.1 How To Explore a Graph? CS-621 Theory Gems October 17, 2012

CS-62 Theory Gems October 7, 202 Lecture 9 Lecturer: Aleksander Mądry Scribes: Dorina Thanou, Xiaowen Dong Introduction Over the next couple of lectures, our focus will be on graphs. Graphs are one of

### The Knapsack Problem. Decisions and State. Dynamic Programming Solution Introduction to Algorithms Recitation 19 November 23, 2011

The Knapsack Problem You find yourself in a vault chock full of valuable items. However, you only brought a knapsack of capacity S pounds, which means the knapsack will break down if you try to carry more

### Theorem (The division theorem) Suppose that a and b are integers with b > 0. There exist unique integers q and r so that. a = bq + r and 0 r < b.

Theorem (The division theorem) Suppose that a and b are integers with b > 0. There exist unique integers q and r so that a = bq + r and 0 r < b. We re dividing a by b: q is the quotient and r is the remainder,

### 6.080 / 6.089 Great Ideas in Theoretical Computer Science Spring 2008

MIT OpenCourseWare http://ocw.mit.edu 6.080 / 6.089 Great Ideas in Theoretical Computer Science Spring 008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

### CSL851: Algorithmic Graph Theory Semester I Lecture 4: August 5

CSL851: Algorithmic Graph Theory Semester I 2013-14 Lecture 4: August 5 Lecturer: Naveen Garg Scribes: Utkarsh Ohm Note: LaTeX template courtesy of UC Berkeley EECS dept. Disclaimer: These notes have not

### Shortest Inspection-Path. Queries in Simple Polygons

Shortest Inspection-Path Queries in Simple Polygons Christian Knauer, Günter Rote B 05-05 April 2005 Shortest Inspection-Path Queries in Simple Polygons Christian Knauer, Günter Rote Institut für Informatik,

### 1. What s wrong with the following proofs by induction?

ArsDigita University Month : Discrete Mathematics - Professor Shai Simonson Problem Set 4 Induction and Recurrence Equations Thanks to Jeffrey Radcliffe and Joe Rizzo for many of the solutions. Pasted

### Diversity Coloring for Distributed Data Storage in Networks 1

Diversity Coloring for Distributed Data Storage in Networks 1 Anxiao (Andrew) Jiang and Jehoshua Bruck California Institute of Technology Pasadena, CA 9115, U.S.A. {jax, bruck}@paradise.caltech.edu Abstract

### Nan Kong, Andrew J. Schaefer. Department of Industrial Engineering, Univeristy of Pittsburgh, PA 15261, USA

A Factor 1 2 Approximation Algorithm for Two-Stage Stochastic Matching Problems Nan Kong, Andrew J. Schaefer Department of Industrial Engineering, Univeristy of Pittsburgh, PA 15261, USA Abstract We introduce

### Why? A central concept in Computer Science. Algorithms are ubiquitous.

Analysis of Algorithms: A Brief Introduction Why? A central concept in Computer Science. Algorithms are ubiquitous. Using the Internet (sending email, transferring files, use of search engines, online

### Divisor graphs have arbitrary order and size

Divisor graphs have arbitrary order and size arxiv:math/0606483v1 [math.co] 20 Jun 2006 Le Anh Vinh School of Mathematics University of New South Wales Sydney 2052 Australia Abstract A divisor graph G

### (67902) Topics in Theory and Complexity Nov 2, 2006. Lecture 7

(67902) Topics in Theory and Complexity Nov 2, 2006 Lecturer: Irit Dinur Lecture 7 Scribe: Rani Lekach 1 Lecture overview This Lecture consists of two parts In the first part we will refresh the definition

### A Labeling Algorithm for the Maximum-Flow Network Problem

A Labeling Algorithm for the Maximum-Flow Network Problem Appendix C Network-flow problems can be solved by several methods. In Chapter 8 we introduced this topic by exploring the special structure of

### Homework MA 725 Spring, 2012 C. Huneke SELECTED ANSWERS

Homework MA 725 Spring, 2012 C. Huneke SELECTED ANSWERS 1.1.25 Prove that the Petersen graph has no cycle of length 7. Solution: There are 10 vertices in the Petersen graph G. Assume there is a cycle C

### Incremental Maximum Flows for Fast Envelope Computation

Incremental Maximum Flows for Fast Envelope Computation Nicola Muscettola NASA Ames Research Center Moffett Field, CA 9035 mus@email.arc.nasa.gov Abstract Resource envelopes provide the tightest exact

### Planar Tree Transformation: Results and Counterexample

Planar Tree Transformation: Results and Counterexample Selim G Akl, Kamrul Islam, and Henk Meijer School of Computing, Queen s University Kingston, Ontario, Canada K7L 3N6 Abstract We consider the problem

### (Refer Slide Time 1.50)

Discrete Mathematical Structures Dr. Kamala Krithivasan Department of Computer Science and Engineering Indian Institute of Technology, Madras Module -2 Lecture #11 Induction Today we shall consider proof

### 8.1 Min Degree Spanning Tree

CS880: Approximations Algorithms Scribe: Siddharth Barman Lecturer: Shuchi Chawla Topic: Min Degree Spanning Tree Date: 02/15/07 In this lecture we give a local search based algorithm for the Min Degree

### Unit 4: Layout Compaction

Unit 4: Layout Compaction Course contents Design rules Symbolic layout Constraint-graph compaction Readings: Chapter 6 Unit 4 1 Design rules: restrictions on the mask patterns to increase the probability

### A. V. Gerbessiotis CS Spring 2014 PS 3 Mar 24, 2014 No points

A. V. Gerbessiotis CS 610-102 Spring 2014 PS 3 Mar 24, 2014 No points Problem 1. Suppose that we insert n keys into a hash table of size m using open addressing and uniform hashing. Let p(n, m) be the

### Lecture 15 An Arithmetic Circuit Lowerbound and Flows in Graphs

CSE599s: Extremal Combinatorics November 21, 2011 Lecture 15 An Arithmetic Circuit Lowerbound and Flows in Graphs Lecturer: Anup Rao 1 An Arithmetic Circuit Lower Bound An arithmetic circuit is just like

### Combinatorics: The Fine Art of Counting

Combinatorics: The Fine Art of Counting Week 9 Lecture Notes Graph Theory For completeness I have included the definitions from last week s lecture which we will be using in today s lecture along with

### Euler Paths and Euler Circuits

Euler Paths and Euler Circuits An Euler path is a path that uses every edge of a graph exactly once. An Euler circuit is a circuit that uses every edge of a graph exactly once. An Euler path starts and

### Theorem A graph T is a tree if, and only if, every two distinct vertices of T are joined by a unique path.

Chapter 3 Trees Section 3. Fundamental Properties of Trees Suppose your city is planning to construct a rapid rail system. They want to construct the most economical system possible that will meet the

### Dynamic Programming 11.1 AN ELEMENTARY EXAMPLE

Dynamic Programming Dynamic programming is an optimization approach that transforms a complex problem into a sequence of simpler problems; its essential characteristic is the multistage nature of the optimization

### Dynamic Programming. Applies when the following Principle of Optimality

Dynamic Programming Applies when the following Principle of Optimality holds: In an optimal sequence of decisions or choices, each subsequence must be optimal. Translation: There s a recursive solution.

### DO NOT RE-DISTRIBUTE THIS SOLUTION FILE

Professor Kindred Math 04 Graph Theory Homework 7 Solutions April 3, 03 Introduction to Graph Theory, West Section 5. 0, variation of 5, 39 Section 5. 9 Section 5.3 3, 8, 3 Section 7. Problems you should

### Lecture 7 - Linear Programming

COMPSCI 530: Design and Analysis of Algorithms DATE: 09/17/2013 Lecturer: Debmalya Panigrahi Lecture 7 - Linear Programming Scribe: Hieu Bui 1 Overview In this lecture, we cover basics of linear programming,

### Scheduling Home Health Care with Separating Benders Cuts in Decision Diagrams

Scheduling Home Health Care with Separating Benders Cuts in Decision Diagrams André Ciré University of Toronto John Hooker Carnegie Mellon University INFORMS 2014 Home Health Care Home health care delivery

### Notes on Matrix Multiplication and the Transitive Closure

ICS 6D Due: Wednesday, February 25, 2015 Instructor: Sandy Irani Notes on Matrix Multiplication and the Transitive Closure An n m matrix over a set S is an array of elements from S with n rows and m columns.

### HOMEWORK 5 SOLUTIONS. n!f n (1) lim. ln x n! + xn x. 1 = G n 1 (x). (2) k + 1 n. (n 1)!

Math 7 Fall 205 HOMEWORK 5 SOLUTIONS Problem. 2008 B2 Let F 0 x = ln x. For n 0 and x > 0, let F n+ x = 0 F ntdt. Evaluate n!f n lim n ln n. By directly computing F n x for small n s, we obtain the following

Answers to Homework 1 p. 13 1.2 3 What is the smallest value of n such that an algorithm whose running time is 100n 2 runs faster than an algorithm whose running time is 2 n on the same machine? Find the

### Computer Algorithms. NP-Complete Problems. CISC 4080 Yanjun Li

Computer Algorithms NP-Complete Problems NP-completeness The quest for efficient algorithms is about finding clever ways to bypass the process of exhaustive search, using clues from the input in order

### On the independence number of graphs with maximum degree 3

On the independence number of graphs with maximum degree 3 Iyad A. Kanj Fenghui Zhang Abstract Let G be an undirected graph with maximum degree at most 3 such that G does not contain any of the three graphs

### Math Real Analysis I

Math 431 - Real Analysis I Solutions to Homework due October 1 In class, we learned of the concept of an open cover of a set S R n as a collection F of open sets such that S A. A F We used this concept

### Near Optimal Solutions

Near Optimal Solutions Many important optimization problems are lacking efficient solutions. NP-Complete problems unlikely to have polynomial time solutions. Good heuristics important for such problems.

### Handout #Ch7 San Skulrattanakulchai Gustavus Adolphus College Dec 6, 2010. Chapter 7: Digraphs

MCS-236: Graph Theory Handout #Ch7 San Skulrattanakulchai Gustavus Adolphus College Dec 6, 2010 Chapter 7: Digraphs Strong Digraphs Definitions. A digraph is an ordered pair (V, E), where V is the set