B AB 5 C AC 3 D ABGED 9 E ABGE 7 F ABGEF 8 G ABG 6 A BEDA 3 C BC 1 D BCD 2 E BE 1 F BEF 2 G BG 1


 Joy Sharp
 1 years ago
 Views:
Transcription
1 p a. Find the shortest path from A to all other vertices for the graph in Figure 9.8. b. Find the shortest unweighted path from B to all other vertices for the graph in Figure 9.8. A 5 B C D G F E a. source destination path cost A B AB 5 C AC D ABGED 9 E ABGE 7 F ABGEF 8 G ABG 6 b. Source Destination path cost B A BEDA C BC D BCD E BE F BEF G BG p. 9. (ZOJ 56) a. Explain how to modify Dijkstra's algorithm to produce a count of the number of different minimum paths from v to w. b. Explain how to modify Dijkstra's algorithm so that if there is more than one minimum path from v to w, a path with the fewest number of edges is chosen.
2 Answer a: void Dijkstra( Table T ) /* T[ ].Count is initialized to be. T[start].Count = */ vertex v, w; for ( ; ; ) v = smallest unknown distance vertex; if ( v == NotAVertex ) break; T[v].Known = True; for ( each w adjacent to v ) if(!t[w].known ) if( T[v].Dist + Cvw < T[w].Dist ) Decrease( T[w].Dist to T[v]+Cvw ) T[w].Path = v; T[w].Count = T[v].Count; /* NOT T[w].Count = */ else if( T[v].Dist + Cvw == T[w].Dist ) T[w].Count += T[v].Count; /* NOT T[w].Count += */ Answer b: void Dijkstra( Table T ) /* T[ ].Count is initialized to be */ vertex v, w; for ( ; ; ) v = smallest unknown distance vertex; if ( v == NotAVertex ) break; T[v].Known = True; for ( each w adjacent to v ) if(!t[w].known ) if( T[v].Dist + Cvw < T[w].Dist ) Decrease( T[w].Dist to T[v]+Cvw ) T[w].Path = v; T[w].Count = T[v].Count + ; else if( ( T[v].Dist + Cvw == T[w].Dist ) && ( T[v].Count + < T[w].Count ) ) T[w].Count = T[v].Count + ; T[w].Path = v; /* DO NOT forget this */
3 p. 9. Find the maximum flow in the network of Figure Answer: A B C s D E F 6 G H I t p. 9.5 a. Find a minimum spanning tree for the graph in Figure 9.8 using both Prim's and Kruskal's algorithms. b. Is this minimum spanning tree unique? Why? Answer a: They are the same A B C D E F G H I 7 J Answer b: This minimum spanning tree is not unique. For example, another minimum spanning tree obtained from Prim s algorithm is: A B C D E F G H I 7 J
4 p Write a program to find the strongly connected components in a digraph. #define MaxVertices /* maximum number of vertices */ typedef int Vertex; /* vertices are numbered from to MaxVertices */ typedef enum FALSE, TRUE boolean; /* declarations for a graph with adjacency list representation */ #ifndef _Graph_h struct VNode; typedef struct VNode *PtrToVNode; struct GNode; typedef struct GNode *PtrToGNode; typedef PtrToGNode Graph; /* create a graph with NumOfVertices vertices and no edge */ Graph CreateGraph( int NumOfVertices ); /* insert edge V>W to G */ boolean InsertEdge( Vertex V, Vertex W, Graph G ); /* reverse all the edges in G and return the resulting graph Gr */ Graph ReverseGraph( Graph G ); /* free spaces taken by G */ void DeleteGraph( Graph G ); /* implementations of the above functions are omitted */ #endif /*_Graph_h */ struct VNode Vertex Vert; PtrToVNode Next; ; struct GNode int NumOfVertices; int NumOfEdges; PtrToVNode *Array; ; boolean Visited[MaxVertices]; /* global mark for visited vertices */ Vertex DfsOrder[MaxVertices]; /* store vertices in dfs order */ int DfsNum; /* dfs number for vertices */
5 void PostOrder( Vertex V ) /* store vertices during postorder dfs */ DfsOrder[DfsNum++] = V; void PrintV( Vertex V ) /* print V during postorder dfs */ printf("%d ", V); void PostorderDfs( Vertex V, Graph G, void (*f)(vertex V) ) /* postorder dfs template with visiting function f */ PtrToVNode W; Visited[V] = TRUE; for ( W=G>Array[V]>Next; W; W=W>Next ) if (!Visited[W>Vert] ) PostorderDfs( W>Vert, G, (*f) ); (*f)(v); void StronglyConnectedComponents( Graph G ) /* print the strongly connected components in G */ /* output format: V, V,... V, V, */ Graph Gr; Vertex V; /* Step : mark the postorder dfs number for each vertex in G */ InitializeVisited( G>NumOfVertices ); /* Visited[ ] is initialized to be FALSE */ DfsNum = ; for ( V=; V<G>NumOfVertices; V++ ) if (!Visited[V] ) PostorderDfs( V, G, PostOrder ); /* end for */ /* Step : reverse edges in G and save the resulting graph in Gr */ Gr = ReverseGraph( G ); if (!Gr )
6 printf("program failed: cannot reverse graph.\n"); else /* Step : print components by postorder dfs on Gr */ InitializeVisited( Gr>NumOfVertices ); while ( DfsNum ) /* always start at the vertex with the largest dfs number */ V = DfsOrder[DfsNum]; if (!Visited[V] ) /* print this component in a line*/ printf( " " ); PostorderDfs( V, Gr, PrintV ); printf( "\n" ); /* end  if */ /* end  while */ DeleteGraph( Gr ); /* free space */ /* end  else */ Sketch of the proof of correctness:. V, W Comp(G) Path(V>W) and Path(W>V) in both G and Gr;. V, W Comp(G) V, W DfsT(G) and DfsT(Gr);. For V DfsT(Gr) with X as the root, Path(X>V) in Gr, and hence Path(V>X) in G.. Step V, X DfsT(G); 5. DfsNum(X) > DfsNum(V) V must be numbered before X in DfsT(G); 6. Step 5 V is a descendant of X in DfsT(G) since it was a postorder visit; 7. Step 6 Path(X>V) in G. G/G r DfsT(G) DfsT(G r )
CSE 326, Data Structures. Sample Final Exam. Problem Max Points Score 1 14 (2x7) 2 18 (3x6) 3 4 4 7 5 9 6 16 7 8 8 4 9 8 10 4 Total 92.
Name: Email ID: CSE 326, Data Structures Section: Sample Final Exam Instructions: The exam is closed book, closed notes. Unless otherwise stated, N denotes the number of elements in the data structure
More informationData Structures and Algorithms Written Examination
Data Structures and Algorithms Written Examination 22 February 2013 FIRST NAME STUDENT NUMBER LAST NAME SIGNATURE Instructions for students: Write First Name, Last Name, Student Number and Signature where
More informationSEMITOTAL AND TOTAL BLOCKCUTVERTEX GRAPH
CHAPTER 3 SEMITOTAL AND TOTAL BLOCKCUTVERTEX GRAPH ABSTRACT This chapter begins with the notion of block distances in graphs. Using block distance we defined the central tendencies of a block, like Bradius
More informationHome Page. Data Structures. Title Page. Page 1 of 24. Go Back. Full Screen. Close. Quit
Data Structures Page 1 of 24 A.1. Arrays (Vectors) nelement vector start address + ielementsize 0 +1 +2 +3 +4... +n1 start address continuous memory block static, if size is known at compile time dynamic,
More informationCpt S 223. School of EECS, WSU
The Shortest Path Problem 1 ShortestPath Algorithms Find the shortest path from point A to point B Shortest in time, distance, cost, Numerous applications Map navigation Flight itineraries Circuit wiring
More informationSocial Media Mining. Graph Essentials
Graph Essentials Graph Basics Measures Graph and Essentials Metrics 2 2 Nodes and Edges A network is a graph nodes, actors, or vertices (plural of vertex) Connections, edges or ties Edge Node Measures
More information2. (a) Explain the strassen s matrix multiplication. (b) Write deletion algorithm, of Binary search tree. [8+8]
Code No: R05220502 Set No. 1 1. (a) Describe the performance analysis in detail. (b) Show that f 1 (n)+f 2 (n) = 0(max(g 1 (n), g 2 (n)) where f 1 (n) = 0(g 1 (n)) and f 2 (n) = 0(g 2 (n)). [8+8] 2. (a)
More information12 Abstract Data Types
12 Abstract Data Types 12.1 Source: Foundations of Computer Science Cengage Learning Objectives After studying this chapter, the student should be able to: Define the concept of an abstract data type (ADT).
More informationAnalysis of Algorithms, I
Analysis of Algorithms, I CSOR W4231.002 Eleni Drinea Computer Science Department Columbia University Thursday, February 26, 2015 Outline 1 Recap 2 Representing graphs 3 Breadthfirst search (BFS) 4 Applications
More information1. Sorting (assuming sorting into ascending order) a) BUBBLE SORT
DECISION 1 Revision Notes 1. Sorting (assuming sorting into ascending order) a) BUBBLE SORT Make sure you show comparisons clearly and label each pass First Pass 8 4 3 6 1 4 8 3 6 1 4 3 8 6 1 4 3 6 8 1
More informationAlgorithms and Data Structures (INF1) Lecture 14/15 Hua Lu
Algorithms and Data Structures (INF1) Lecture 14/15 Hua Lu Department of Computer Science Aalborg University Fall 2007 This Lecture Shortest paths Problem preliminary Shortest paths in DAG BellmanMoore
More informationMATHEMATICS Unit Decision 1
General Certificate of Education January 2008 Advanced Subsidiary Examination MATHEMATICS Unit Decision 1 MD01 Tuesday 15 January 2008 9.00 am to 10.30 am For this paper you must have: an 8page answer
More informationOutput: 12 18 30 72 90 87. struct treenode{ int data; struct treenode *left, *right; } struct treenode *tree_ptr;
50 20 70 10 30 69 90 14 35 68 85 98 16 22 60 34 (c) Execute the algorithm shown below using the tree shown above. Show the exact output produced by the algorithm. Assume that the initial call is: prob3(root)
More informationDynamic Programming. Applies when the following Principle of Optimality
Dynamic Programming Applies when the following Principle of Optimality holds: In an optimal sequence of decisions or choices, each subsequence must be optimal. Translation: There s a recursive solution.
More informationIE 680 Special Topics in Production Systems: Networks, Routing and Logistics*
IE 680 Special Topics in Production Systems: Networks, Routing and Logistics* Rakesh Nagi Department of Industrial Engineering University at Buffalo (SUNY) *Lecture notes from Network Flows by Ahuja, Magnanti
More informationMinimum Spanning Trees
Minimum Spanning Trees weighted graph API cycles and cuts Kruskal s algorithm Prim s algorithm advanced topics References: Algorithms in Java, Chapter 20 http://www.cs.princeton.edu/introalgsds/54mst 1
More informationEdges = communication links Vertices = computers, switches, routers, etc. For packet inbound at a particular vertex, determine what output edge to use
IP Routing Networks as Graphs Networks are graphs Edges = communication links Vertices = computers, switches, routers, etc For packet inbound at a particular vertex, determine what output edge to use Routers
More informationGRAPH THEORY LECTURE 4: TREES
GRAPH THEORY LECTURE 4: TREES Abstract. 3.1 presents some standard characterizations and properties of trees. 3.2 presents several different types of trees. 3.7 develops a counting method based on a bijection
More informationThe following themes form the major topics of this chapter: The terms and concepts related to trees (Section 5.2).
CHAPTER 5 The Tree Data Model There are many situations in which information has a hierarchical or nested structure like that found in family trees or organization charts. The abstraction that models hierarchical
More informationAny two nodes which are connected by an edge in a graph are called adjacent node.
. iscuss following. Graph graph G consist of a non empty set V called the set of nodes (points, vertices) of the graph, a set which is the set of edges and a mapping from the set of edges to a set of pairs
More informationData Structure [Question Bank]
Unit I (Analysis of Algorithms) 1. What are algorithms and how they are useful? 2. Describe the factor on best algorithms depends on? 3. Differentiate: Correct & Incorrect Algorithms? 4. Write short note:
More informationThe number of marks is given in brackets [ ] at the end of each question or part question. The total number of marks for this paper is 72.
ADVANCED SUBSIDIARY GCE UNIT 4736/01 MATHEMATICS Decision Mathematics 1 THURSDAY 14 JUNE 2007 Afternoon Additional Materials: Answer Booklet (8 pages) List of Formulae (MF1) Time: 1 hour 30 minutes INSTRUCTIONS
More informationCS2 Algorithms and Data Structures Note 11. BreadthFirst Search and Shortest Paths
CS2 Algorithms and Data Structures Note 11 BreadthFirst Search and Shortest Paths In this last lecture of the CS2 Algorithms and Data Structures thread we will consider the problem of computing distances
More informationData Structures in Java. Session 16 Instructor: Bert Huang
Data Structures in Java Session 16 Instructor: Bert Huang http://www.cs.columbia.edu/~bert/courses/3134 Announcements Homework 4 due next class Remaining grades: hw4, hw5, hw6 25% Final exam 30% Midterm
More informationData Structure with C
Subject: Data Structure with C Topic : Tree Tree A tree is a set of nodes that either:is empty or has a designated node, called the root, from which hierarchically descend zero or more subtrees, which
More information2.3 Scheduling jobs on identical parallel machines
2.3 Scheduling jobs on identical parallel machines There are jobs to be processed, and there are identical machines (running in parallel) to which each job may be assigned Each job = 1,,, must be processed
More informationCMPS 102 Solutions to Homework 1
CMPS 0 Solutions to Homework Lindsay Brown, lbrown@soe.ucsc.edu September 9, 005 Problem.. p. 3 For inputs of size n insertion sort runs in 8n steps, while merge sort runs in 64n lg n steps. For which
More informationPart 2: Community Detection
Chapter 8: Graph Data Part 2: Community Detection Based on Leskovec, Rajaraman, Ullman 2014: Mining of Massive Datasets Big Data Management and Analytics Outline Community Detection  Social networks 
More informationLoad balancing Static Load Balancing
Chapter 7 Load Balancing and Termination Detection Load balancing used to distribute computations fairly across processors in order to obtain the highest possible execution speed. Termination detection
More informationNetwork (Tree) Topology Inference Based on Prüfer Sequence
Network (Tree) Topology Inference Based on Prüfer Sequence C. Vanniarajan and Kamala Krithivasan Department of Computer Science and Engineering Indian Institute of Technology Madras Chennai 600036 vanniarajanc@hcl.in,
More informationLoad Balancing and Termination Detection
Chapter 7 Load Balancing and Termination Detection 1 Load balancing used to distribute computations fairly across processors in order to obtain the highest possible execution speed. Termination detection
More informationOutline. NPcompleteness. When is a problem easy? When is a problem hard? Today. Euler Circuits
Outline NPcompleteness Examples of Easy vs. Hard problems Euler circuit vs. Hamiltonian circuit Shortest Path vs. Longest Path 2pairs sum vs. general Subset Sum Reducing one problem to another Clique
More informationExam study sheet for CS2711. List of topics
Exam study sheet for CS2711 Here is the list of topics you need to know for the final exam. For each data structure listed below, make sure you can do the following: 1. Give an example of this data structure
More informationWhy? A central concept in Computer Science. Algorithms are ubiquitous.
Analysis of Algorithms: A Brief Introduction Why? A central concept in Computer Science. Algorithms are ubiquitous. Using the Internet (sending email, transferring files, use of search engines, online
More informationCompSci61B, Data Structures Final Exam
Your Name: CompSci61B, Data Structures Final Exam Your 8digit Student ID: Your CS61B Class Account Login: This is a final test for mastery of the material covered in our labs, lectures, and readings.
More informationOrdered Lists and Binary Trees
Data Structures and Algorithms Ordered Lists and Binary Trees Chris Brooks Department of Computer Science University of San Francisco Department of Computer Science University of San Francisco p.1/62 60:
More informationExamination paper for MA0301 Elementær diskret matematikk
Department of Mathematical Sciences Examination paper for MA0301 Elementær diskret matematikk Academic contact during examination: Iris Marjan Smit a, Sverre Olaf Smalø b Phone: a 9285 0781, b 7359 1750
More information5. A full binary tree with n leaves contains [A] n nodes. [B] log n 2 nodes. [C] 2n 1 nodes. [D] n 2 nodes.
1. The advantage of.. is that they solve the problem if sequential storage representation. But disadvantage in that is they are sequential lists. [A] Lists [B] Linked Lists [A] Trees [A] Queues 2. The
More informationHandout #Ch7 San Skulrattanakulchai Gustavus Adolphus College Dec 6, 2010. Chapter 7: Digraphs
MCS236: Graph Theory Handout #Ch7 San Skulrattanakulchai Gustavus Adolphus College Dec 6, 2010 Chapter 7: Digraphs Strong Digraphs Definitions. A digraph is an ordered pair (V, E), where V is the set
More information2.3 WINDOWTOVIEWPORT COORDINATE TRANSFORMATION
2.3 WINDOWTOVIEWPORT COORDINATE TRANSFORMATION A worldcoordinate area selected for display is called a window. An area on a display device to which a window is mapped is called a viewport. The window
More informationLoad Balancing and Termination Detection
Chapter 7 slides71 Load Balancing and Termination Detection slides72 Load balancing used to distribute computations fairly across processors in order to obtain the highest possible execution speed. Termination
More informationA Review And Evaluations Of Shortest Path Algorithms
A Review And Evaluations Of Shortest Path Algorithms Kairanbay Magzhan, Hajar Mat Jani Abstract: Nowadays, in computer networks, the routing is based on the shortest path problem. This will help in minimizing
More information1) The postfix expression for the infix expression A+B*(C+D)/F+D*E is ABCD+*F/DE*++
Answer the following 1) The postfix expression for the infix expression A+B*(C+D)/F+D*E is ABCD+*F/DE*++ 2) Which data structure is needed to convert infix notations to postfix notations? Stack 3) The
More informationSolutions to Homework 6
Solutions to Homework 6 Debasish Das EECS Department, Northwestern University ddas@northwestern.edu 1 Problem 5.24 We want to find light spanning trees with certain special properties. Given is one example
More informationBSc (Hons) Business Information Systems, BSc (Hons) Computer Science with Network Security. & BSc. (Hons.) Software Engineering
BSc (Hons) Business Information Systems, BSc (Hons) Computer Science with Network Security & BSc. (Hons.) Software Engineering Cohort: BIS/05/FT BCNS/05/FT BSE/05/FT Examinations for 20052006 / Semester
More informationData Structures and Algorithms
Data Structures and Algorithms CS2452016S06 Binary Search Trees David Galles Department of Computer Science University of San Francisco 060: Ordered List ADT Operations: Insert an element in the list
More informationChapter 7 Load Balancing and Termination Detection
Chapter 7 Load Balancing and Termination Detection Load balancing used to distribute computations fairly across processors in order to obtain the highest possible execution speed. Termination detection
More information10. Graph Matrices Incidence Matrix
10 Graph Matrices Since a graph is completely determined by specifying either its adjacency structure or its incidence structure, these specifications provide far more efficient ways of representing a
More informationLoad Balancing and Termination Detection
Chapter 7 Slide 1 Slide 2 Load Balancing and Termination Detection Load balancing used to distribute computations fairly across processors in order to obtain the highest possible execution speed. Termination
More informationComputer Algorithms. NPComplete Problems. CISC 4080 Yanjun Li
Computer Algorithms NPComplete Problems NPcompleteness The quest for efficient algorithms is about finding clever ways to bypass the process of exhaustive search, using clues from the input in order
More informationDirected Graphs. Directed Graphs. Digraph Applications. Ecological Food Web. Digraph. Set of objects with oriented pairwise connections.
Directed Graphs Directed Graphs Digraph. Set of objects with oriented pairwise connections. Ex. Oneway street, hyperlink. Reference: Chapter 9, Algorithms in Java, rd Edition, Robert Sedgewick Robert
More informationSociology and CS. Small World. Sociology Problems. Degree of Separation. Milgram s Experiment. How close are people connected? (Problem Understanding)
Sociology Problems Sociology and CS Problem 1 How close are people connected? Small World Philip Chan Problem 2 Connector How close are people connected? (Problem Understanding) Small World Are people
More informationMining Social Network Graphs
Mining Social Network Graphs Debapriyo Majumdar Data Mining Fall 2014 Indian Statistical Institute Kolkata November 13, 17, 2014 Social Network No introduc+on required Really? We s7ll need to understand
More informationWAN Wide Area Networks. Packet Switch Operation. Packet Switches. COMP476 Networked Computer Systems. WANs are made of store and forward switches.
Routing WAN Wide Area Networks WANs are made of store and forward switches. To there and back again COMP476 Networked Computer Systems A packet switch with two types of I/O connectors: one type is used
More informationDynamic programming. Doctoral course Optimization on graphs  Lecture 4.1. Giovanni Righini. January 17 th, 2013
Dynamic programming Doctoral course Optimization on graphs  Lecture.1 Giovanni Righini January 1 th, 201 Implicit enumeration Combinatorial optimization problems are in general NPhard and we usually
More informationBicolored Shortest Paths in Graphs with Applications to Network Overlay Design
Bicolored Shortest Paths in Graphs with Applications to Network Overlay Design Hongsik Choi and HyeongAh Choi Department of Electrical Engineering and Computer Science George Washington University Washington,
More informationDivideandConquer. Three main steps : 1. divide; 2. conquer; 3. merge.
DivideandConquer Three main steps : 1. divide; 2. conquer; 3. merge. 1 Let I denote the (sub)problem instance and S be its solution. The divideandconquer strategy can be described as follows. Procedure
More informationChapter 6: Graph Theory
Chapter 6: Graph Theory Graph theory deals with routing and network problems and if it is possible to find a best route, whether that means the least expensive, least amount of time or the least distance.
More informationAn Introduction to APGL
An Introduction to APGL Charanpal Dhanjal February 2012 Abstract Another Python Graph Library (APGL) is a graph library written using pure Python, NumPy and SciPy. Users new to the library can gain an
More informationReductions & NPcompleteness as part of Foundations of Computer Science undergraduate course
Reductions & NPcompleteness as part of Foundations of Computer Science undergraduate course Alex Angelopoulos, NTUA January 22, 2015 Outline Alex Angelopoulos (NTUA) FoCS: Reductions & NPcompleteness
More informationMathematics for Algorithm and System Analysis
Mathematics for Algorithm and System Analysis for students of computer and computational science Edward A. Bender S. Gill Williamson c Edward A. Bender & S. Gill Williamson 2005. All rights reserved. Preface
More informationSimple Graphs Degrees, Isomorphism, Paths
Mathematics for Computer Science MIT 6.042J/18.062J Simple Graphs Degrees, Isomorphism, Types of Graphs Simple Graph this week MultiGraph Directed Graph next week Albert R Meyer, March 10, 2010 lec 6W.1
More informationInternational Journal of Software and Web Sciences (IJSWS) www.iasir.net
International Association of Scientific Innovation and Research (IASIR) (An Association Unifying the Sciences, Engineering, and Applied Research) ISSN (Print): 22790063 ISSN (Online): 22790071 International
More informationDecision Mathematics 1 TUESDAY 22 JANUARY 2008
ADVANCED SUBSIDIARY GCE 4736/01 MATHEMATICS Decision Mathematics 1 TUESDAY 22 JANUARY 2008 Additional materials: Answer Booklet (8 pages) Graph paper Insert for Questions 3 and 4 List of Formulae (MF1)
More informationData Structures. Chapter 8
Chapter 8 Data Structures Computer has to process lots and lots of data. To systematically process those data efficiently, those data are organized as a whole, appropriate for the application, called a
More informationOPTIMAL DESIGN OF DISTRIBUTED SENSOR NETWORKS FOR FIELD RECONSTRUCTION
OPTIMAL DESIGN OF DISTRIBUTED SENSOR NETWORKS FOR FIELD RECONSTRUCTION Sérgio Pequito, Stephen Kruzick, Soummya Kar, José M. F. Moura, A. Pedro Aguiar Department of Electrical and Computer Engineering
More informationDirected Graphs. digraph search transitive closure topological sort strong components. References: Algorithms in Java, Chapter 19
Directed Graphs digraph search transitive closure topological sort strong components References: Algorithms in Java, Chapter 19 http://www.cs.princeton.edu/introalgsds/52directed 1 Directed graphs (digraphs)
More informationV. Adamchik 1. Graph Theory. Victor Adamchik. Fall of 2005
V. Adamchik 1 Graph Theory Victor Adamchik Fall of 2005 Plan 1. Basic Vocabulary 2. Regular graph 3. Connectivity 4. Representing Graphs Introduction A.Aho and J.Ulman acknowledge that Fundamentally, computer
More information3. The Junction Tree Algorithms
A Short Course on Graphical Models 3. The Junction Tree Algorithms Mark Paskin mark@paskin.org 1 Review: conditional independence Two random variables X and Y are independent (written X Y ) iff p X ( )
More informationExponential time algorithms for graph coloring
Exponential time algorithms for graph coloring Uriel Feige Lecture notes, March 14, 2011 1 Introduction Let [n] denote the set {1,..., k}. A klabeling of vertices of a graph G(V, E) is a function V [k].
More informationCMPT 280 Intermediate Data Structures and Algorithms
The University of Saskatchewan Saskatoon, Canada Department of Computer Science CMPT 280 Intermediate Data Structures and Algorithms 1 Purpose Assignment 5 Date Due: February 23, 2010, 10:00pm The purpose
More informationApproximation Algorithms
Approximation Algorithms or: How I Learned to Stop Worrying and Deal with NPCompleteness Ong Jit Sheng, Jonathan (A0073924B) March, 2012 Overview Key Results (I) General techniques: Greedy algorithms
More informationPicture Maze Generation by Successive Insertion of Path Segment
1 2 3 Picture Maze Generation by Successive Insertion of Path Segment 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32. ABSTRACT Tomio Kurokawa 1* 1 Aichi Institute of Technology,
More informationDecision Mathematics D1 Advanced/Advanced Subsidiary. Tuesday 5 June 2007 Afternoon Time: 1 hour 30 minutes
Paper Reference(s) 6689/01 Edexcel GCE Decision Mathematics D1 Advanced/Advanced Subsidiary Tuesday 5 June 2007 Afternoon Time: 1 hour 30 minutes Materials required for examination Nil Items included with
More informationThe UnionFind Problem Kruskal s algorithm for finding an MST presented us with a problem in datastructure design. As we looked at each edge,
The UnionFind Problem Kruskal s algorithm for finding an MST presented us with a problem in datastructure design. As we looked at each edge, cheapest first, we had to determine whether its two endpoints
More informationLecture 15 An Arithmetic Circuit Lowerbound and Flows in Graphs
CSE599s: Extremal Combinatorics November 21, 2011 Lecture 15 An Arithmetic Circuit Lowerbound and Flows in Graphs Lecturer: Anup Rao 1 An Arithmetic Circuit Lower Bound An arithmetic circuit is just like
More informationUPPER BOUNDS ON THE L(2, 1)LABELING NUMBER OF GRAPHS WITH MAXIMUM DEGREE
UPPER BOUNDS ON THE L(2, 1)LABELING NUMBER OF GRAPHS WITH MAXIMUM DEGREE ANDREW LUM ADVISOR: DAVID GUICHARD ABSTRACT. L(2,1)labeling was first defined by Jerrold Griggs [Gr, 1992] as a way to use graphs
More informationProblem Set 7 Solutions
8 8 Introduction to Algorithms May 7, 2004 Massachusetts Institute of Technology 6.046J/18.410J Professors Erik Demaine and Shafi Goldwasser Handout 25 Problem Set 7 Solutions This problem set is due in
More informationDiversity Coloring for Distributed Data Storage in Networks 1
Diversity Coloring for Distributed Data Storage in Networks 1 Anxiao (Andrew) Jiang and Jehoshua Bruck California Institute of Technology Pasadena, CA 9115, U.S.A. {jax, bruck}@paradise.caltech.edu Abstract
More informationInternational Journal of Advanced Research in Computer Science and Software Engineering
Volume 3, Issue 7, July 23 ISSN: 2277 28X International Journal of Advanced Research in Computer Science and Software Engineering Research Paper Available online at: www.ijarcsse.com Greedy Algorithm:
More informationBinary storage of graphs and related data
EÖTVÖS LORÁND UNIVERSITY Faculty of Informatics Department of Algorithms and their Applications Binary storage of graphs and related data BSc thesis Author: Frantisek Csajka fulltime student Informatics
More informationGraph Theory Algorithms for Mobile Ad Hoc Networks
Informatica 36 (2012) 185200 185 Graph Theory Algorithms for Mobile Ad Hoc Networks Natarajan Meghanathan Department of Computer Science, Jackson State University Jackson, MS 39217, USA Email: natarajan.meghanathan@jsums.edu
More informationQuestion 1. [7 points] Consider the following scenario and assume host H s routing table is the one given below:
Computer Networks II Master degree in Computer Engineering Exam session: 11/02/2009 Teacher: Emiliano Trevisani Last name First name Student Identification number You are only allowed to use a pen and
More informationhttp://www.castlelearning.com/review/teacher/assignmentprinting.aspx 5. 2 6. 2 1. 10 3. 70 2. 55 4. 180 7. 2 8. 4
of 9 1/28/2013 8:32 PM Teacher: Mr. Sime Name: 2 What is the slope of the graph of the equation y = 2x? 5. 2 If the ratio of the measures of corresponding sides of two similar triangles is 4:9, then the
More informationWarshall s Algorithm: Transitive Closure
CS 0 Theory of Algorithms / CS 68 Algorithms in Bioinformaticsi Dynamic Programming Part II. Warshall s Algorithm: Transitive Closure Computes the transitive closure of a relation (Alternatively: all paths
More informationMATHEMATICS Unit Decision 1
General Certificate of Education January 2007 Advanced Subsidiary Examination MATHEMATICS Unit Decision 1 MD01 Tuesday 16 January 2007 9.00 am to 10.30 am For this paper you must have: an 8page answer
More informationHow to Write a Checker in 24 Hours
How to Write a Checker in 24 Hours Clang Static Analyzer Anna Zaks and Jordan Rose Apple Inc. What is this talk about? The Clang Static Analyzer is a bug finding tool It can be extended with custom checkers
More informationOPTIMAL BINARY SEARCH TREES
OPTIMAL BINARY SEARCH TREES 1. PREPARATION BEFORE LAB DATA STRUCTURES An optimal binary search tree is a binary search tree for which the nodes are arranged on levels such that the tree cost is minimum.
More informationComputational Geometry. Lecture 1: Introduction and Convex Hulls
Lecture 1: Introduction and convex hulls 1 Geometry: points, lines,... Plane (twodimensional), R 2 Space (threedimensional), R 3 Space (higherdimensional), R d A point in the plane, 3dimensional space,
More informationMATHEMATICAL THOUGHT AND PRACTICE. Chapter 7: The Mathematics of Networks The Cost of Being Connected
MATHEMATICAL THOUGHT AND PRACTICE Chapter 7: The Mathematics of Networks The Cost of Being Connected Network A network is a graph that is connected. In this context the term is most commonly used when
More informationProject Report BIGDATA CONTENT RETRIEVAL, STORAGE AND ANALYSIS FOUNDATIONS OF DATAINTENSIVE COMPUTING. Masters in Computer Science
Data Intensive Computing CSE 486/586 Project Report BIGDATA CONTENT RETRIEVAL, STORAGE AND ANALYSIS FOUNDATIONS OF DATAINTENSIVE COMPUTING Masters in Computer Science University at Buffalo Website: http://www.acsu.buffalo.edu/~mjalimin/
More informationBoolean Algebra Part 1
Boolean Algebra Part 1 Page 1 Boolean Algebra Objectives Understand Basic Boolean Algebra Relate Boolean Algebra to Logic Networks Prove Laws using Truth Tables Understand and Use First Basic Theorems
More informationHomework Exam 1, Geometric Algorithms, 2016
Homework Exam 1, Geometric Algorithms, 2016 1. (3 points) Let P be a convex polyhedron in 3dimensional space. The boundary of P is represented as a DCEL, storing the incidence relationships between the
More informationGraph Algorithms. Ananth Grama, Anshul Gupta, George Karypis, and Vipin Kumar
Graph Algorithms Ananth Grama, Anshul Gupta, George Karypis, and Vipin Kumar To accompany the text Introduction to Parallel Computing, Addison Wesley, 3. Topic Overview Definitions and Representation Minimum
More informationAsynchronous Computations
Asynchronous Computations Asynchronous Computations Computations in which individual processes operate without needing to synchronize with other processes. Synchronizing processes is an expensive operation
More information5.1 Midsegment Theorem and Coordinate Proof
5.1 Midsegment Theorem and Coordinate Proof Obj.: Use properties of midsegments and write coordinate proofs. Key Vocabulary Midsegment of a triangle  A midsegment of a triangle is a segment that connects
More informationCMPSCI611: Approximating MAXCUT Lecture 20
CMPSCI611: Approximating MAXCUT Lecture 20 For the next two lectures we ll be seeing examples of approximation algorithms for interesting NPhard problems. Today we consider MAXCUT, which we proved to
More informationUnionFind Algorithms. network connectivity quick find quick union improvements applications
UnionFind Algorithms network connectivity quick find quick union improvements applications 1 Subtext of today s lecture (and this course) Steps to developing a usable algorithm. Define the problem. Find
More information8.1 Min Degree Spanning Tree
CS880: Approximations Algorithms Scribe: Siddharth Barman Lecturer: Shuchi Chawla Topic: Min Degree Spanning Tree Date: 02/15/07 In this lecture we give a local search based algorithm for the Min Degree
More informationThe Classes P and NP. mohamed@elwakil.net
Intractable Problems The Classes P and NP Mohamed M. El Wakil mohamed@elwakil.net 1 Agenda 1. What is a problem? 2. Decidable or not? 3. The P class 4. The NP Class 5. TheNP Complete class 2 What is a
More information