Harmonic Filter Design to Mitigate Two Resonant Points in a Distribution Network

Size: px
Start display at page:

Download "Harmonic Filter Design to Mitigate Two Resonant Points in a Distribution Network"

Transcription

1 Journal of Energy and Power Engineering 6 (01) D DAVID PUBLISHING Harmonic Filter Design to Mitigate Two Resonant Points in a Distribution Network Sybrand Bester and Gary Atkinson-Hope Cape Peninsula University of Technology, Belville 7539, South Africa Received: January 7, 01 / Accepted: March 19, 01 / Published: December 31, 01. Abstract: This paper investigates the usage of passive harmonic filters to mitigate harmonic distortions when two resonant points are present in a system caused by shunt capacitors used for power factor correction and bus voltage regulation. Six scenarios were investigated using DIgSILENT 14 power factory software. The investigations are with and without power factor correction and capacitors used to increase bus voltage. Passive harmonic filters are designed to reduce harmonic distortions at the PCC (point of common coupling) to fall within the IEEE 519 harmonic voltage and current limits caused by parallel resonance. The results of the case studies are analysed to evaluate the effectiveness of the filter design. Key words: Capacitors, DIgSILENT, distortions, harmonic filters, resonance. 1. Introduction The increasing unease over harmonic distortions stems from the installation and application of highly non-linear power electronic devices, like VSD (variable speed drives) to control power apparatus in the industry [1]. When supplied by a voltage of 50 Hz, a non-linear load draws harmonic currents that penetrate networks causing waveform distortions []. Inductive loads absorb reactive power. Installing parallel capacitors will improve the power factor, because they provide reactive power [3]. Bus voltages decrease due to increasing of load demand. It is common to strategically place capacitor banks to help raise the voltage profile back to nominal values [4]. The capacitors used to increase the bus voltage and improve the power factor can have harmful effects on the network when harmonics are present in the system as they can cause harmonic resonance to occur. Parallel resonance occurs when the magnitudes of Corresponding author: Gary Atkinson-Hope, Ph.D., research fields: VDC and harmonic analysis, computational studies. atkinsonhopeg@cput.ac.za. the capacitive and inductive reactance are equal. If the parallel resonant peak is aligned with the frequency of a characteristic harmonic injected by the non-linear load, high voltage and currents can flow which can cause damage to equipment in the network. The IEEE Std was created to help the user keep these voltage and current distortions within an acceptable level at the PCC (point of common coupling). The escalating levels of distortion in distribution systems can be best contained by the installation of harmonic filters at strategic locations [5]. The most commonly used harmonic filters are the high-pass filter and the single tuned filter. Refs. [6-8] discuss how voltage and current distortions are brought down to acceptable levels according to the IEEE Std using passive filters. While all these cases investigate a situation where there is one parallel resonant point caused by a capacitor, none of them relates a case where there are two shunt capacitors situated in the network causing two parallel resonant points to occur. For this reason, it was deemed necessary to create a network using simulation software that can conduct harmonic studies

2 Harmonic Filter Design to Mitigate Two Resonant Points in a Distribution Network 019 and could evaluate when parallel resonance occurs if capacitors are installed for power factor correction and bus voltage regulation and then come up with the best solution to reduce the distortions caused by the resonance using harmonic filters. The solutions must ensure that the system is within the IEEE Std voltage and current limitations.. Research Statement The purpose of this research is to investigate a scenario where two resonant points occur in a system caused by power capacitors. The bus voltage is purposefully lowered below the NRS 048-:004 voltage limit of 6% so that the shunt capacitor added to improve the voltage limit to the nominal value together with the power factor capacitor connected at the consumer bus causes resonance in the system [9]. An additional objective is to design single-tuned and high-pass harmonic filters to reduce the harmonic distortions caused by the parallel resonance because of multiple resonant points. The voltage and current distortions must not exceed IEEE Std limitations at the PPC. 3. Methodology The network was simulated in DIgSILENT 14 power factory software. Harmonic studies were first conducted without capacitors and then with capacitors present in the network. High pass filters and single-tuned filters were installed at two different points in the network. During each of the different scenarios, the system was checked to determine at which characteristic harmonic order resonance occurred. The voltage and current distortions at the PCC were also observed to see whether it fell within the IEEE Std Theoretical Background 4.1 Busbar Voltage Regulation The bus voltages were decreased below NRS 048-:004 voltage limit as shown in Table 1 [9]. Table 1 NRS 048- voltage limits. NRS 048- regulation Nominal voltage (V) Minimum voltage (V) Maximum voltage (V) 6% 11, , , % 3, , , Harmonic Filter Design (1) Capacitor size The size of the capacitor for the filters should be determined by the reactive power needed to increase the busbar power factor. The following equation is used to describe the relationship between active and reactive power when deciding the value of capacitance: 1 1 Qc = P{[tan(cos PF 1)] [tan(cos PF )]} (1) Q c is the total capacitive reactive power. PF 1 is the power factor before the capacitor is added and PF is the power factor after the capacitor is added. P is the real power. Real power is calculated by: * S = 3 V I = P + jq () V = phase voltage, I = phase current; P = real power and Q = reactive power. () Single-tuned filter This type of filter consists of a capacitor in series with a reactor. The single-tuned filter is good for trapping a specific harmonic. It gives a portion or all the reactive power required for power factor correction [6]. (3) High-pass filter The filter consists of a capacitor in series with a combination of a resistor and a reactor. A high pass filter is one through which the higher frequencies pass [10]. (4) Filter design equations The formulas listed below can be used to design a high-pass filter and a single-tuned filter. Capacitive reactance (X C ): kv X C = QC (3) Inductive reactance (X L ): X C X L = h (4) n

3 00 Harmonic Filter Design to Mitigate Two Resonant Points in a Distribution Network Characteristic reactance (X n ): X n = X C X L (5) Reactive power of the filter (Q F ): hn Q F = Q C hn 1 (6) Single-tuned resistor (R S ): X n RS = Q (7) High-pass resistor (R H ): RH = X n Q (8) h n = Tuning order; Q = Quality factor. (5) Quality-factor The Q-factor (quality factor) is determined by the value of the filter resistor and determines the sharpness of the frequency to which it is tuned [11]. The Q-factor of a single-tuned filter is normally between 30 and 100 [10]. Harmonic filters with a low Q-factor like the high-pass filter have a Q-factor between 0.5 and 5 [10]. (6) Selection of filter tuning order Filters are tuned 3%-15% below the harmonic order being filtered [1]. 4.3 Calculations for Harmonic Distortion Limits Individual harmonic voltage distortion (HD V ): Vh HDV (9) Total harmonic voltage distortion (THD V ): THD V = V 1 h= V 1 V h (10) V h = harmonic voltage; V 1 = voltage at fundamental frequency (f 1 = 50 H Z ). Individual harmonic current distortion (HD I ): Ih HDI = (11) Total demand distortion (TDD I ): TDD I = h= I L I 1 I h (1) I h = harmonic current magnitude; I L = fundamental component maximum demand load current; I 1 = current at fundamental frequency (f 1 = 50 H Z ). SCR (short circuit ratio): I SC SCR = (13) I L I SC = short circuit current at the PCC. 4.4 IEEE Std Limitations The standard recommends restrictions for harmonic distortions measured at the point of common coupling [13]. The most amount of harmonic current distortion a consumer can inject into the utility network is specified by the limit in Table [14, 15]. Only the data needed to examine distortion limits at the PCC are shown in Tables and 3. The supply of a clean undistorted voltage to the consumers is the responsibility of the utility [14]. The customers can only be guilty of distorting the voltage if they do not meet the harmonic current limits [14]. The harmonic voltage limits are shown in Table 3 [15]. 5. One-Line Diagram The network investigated was modelled in DIgSILENT 14 power factory software. The network consists of three loads; one is non-linear (VSD) with a harmonic spectrum shown in Table 4. BUS 3 is the PCC and the network parameters are given in Fig Simulation Cases Case study 1 The network in Fig. 1 was modelled, simulated and the PCC was observed. The power factor of the customers and the voltage at each bus was also recorded. Case study A capacitor with the value of 8.6 MVAr was connected at BUS to increase the bus voltages of BUS and BUS 5 and increase the power factor of the

4 Harmonic Filter Design to Mitigate Two Resonant Points in a Distribution Network 01 Table IEEE STD current distortion limits. Maximum harmonic current distortion (I h ) in percentage of I l Individual harmonic order (odd harmonics) 11 h < 17 h < 3 h < SCR h < h TDD < Table 3 IEEE STD voltage distortion limits. Individual Total harmonic Bus voltage at PCC voltage voltage distortion distortion (%) (%) (HD V ) (THD V ) 69 kv Table 4 Harmonic spectrum of load 3. Harmonic frequency Harmonic current Spectrum ( f ) magnitude (%) angle( ) 5th 0 0 7th th th th th 5. 0 system from 0.9 to Another capacitor (0.9 MVAr) was connected in parallel with load 3 to increase the power factor from 0.88 to Case study 3 A single-tuned filter was designed using the capacitor at BUS. The filter was tuned 5% below the 5th harmonic order i.e. 4.75th. The main idea was to avoid harmonics rather than decrease a specific one. The capacitor at BUS 5 was still connected. Case study 4 The single-tuned filter was removed in case study 3 and replaced with a 4.75th harmonic high-pass filter. This filter was also designed to avoid harmonics. Case study 5 The filter at BUS in case study 4 was replaced with the 8.6 MVAr capacitor and a 4.75th harmonic single-tuned filter was designed from the power factor correction capacitor at BUS 5. Case study 6 The single-tuned filter from case study 5 was replaced with a 4.75th harmonic high-pass filter. The short circuit ratio was found to be in the < 0 category for all cases. The results were recorded at the PCC. 7. Results Capacitors caused two resonances near 5th and 11th. Other harmonics i.e. 7th, 13th, 17th and 19th fell within the IEEE Std. 519 limits. In Fig., the percentage distortions (HD V ) caused by the 5th and 11th harmonic currents can be seen. Fig. 3 shows the total demand distortions (TDD I ) at PCC. Total voltage distortion (THD V ) calculated from voltages at the PCC is shown in Fig. 4. Impedance scans were taken from case studies, 3 and 4 at the PCC. The difference in impedance can be seen in Fig. 5. Impedance scans were taken from case studies, 5 and 6. Fig. 1 One line diagram of the simulated network.

5 0 Harmonic Filter Design to Mitigate Two Resonant Points in a Distribution Network Fig. Comparison of 5th and 11th (HD V ) results of case studies 1-6. Fig. 7 Impedance scan of case study performed at the PCC. The difference in impedance can be seen in Fig Analysis of Results Fig. 3 Comparison of TDDI results of case studies 1-6. Fig. 4 Comparison of THDV results of case studies 1-6. Fig. 5 Comparison of impedance scans of case studies, 3 and 4, performed at the PCC. Fig. 6 Comparison of impedance scans of case study, 5 and 6, performed at the PCC. Case studies 1 and It can be seen from case study 1 that the network was next to no harmonic distortion in the network, before the power factor capacitors and the capacitor to increase the bus voltage were added. The capacitors added in case study caused parallel resonance to occur near the 5th and 11th harmonic order, seen in Fig. 7. The 5th and 11th currents injected by load 3 caused an interaction between the resonant points and the currents and caused a harmonic resonance to occur. This increased the 5th and 11th voltage distortions and the 11th current distortions, including the total demand distortion above the IEEE Std limitations. Case study 3 and 4 The single-tuned and high-pass filters performed almost exactly the same due to the distortion levels they decreased as shown in Figs. 1 and. The resonant points were also successfully moved seen in Fig. 5, and there was success at increasing the bus voltages of the system and improving the power factor. Case studies 5 and 6 Harmonic filters performed the same as the filters in case studies 3 and 4, also due to the decreased distortions shown in Figs. -4 and 7 that were almost exactly the same. The resonant peaks were also successfully moved as shown in Fig. 6. The filters further provided the power factor needed for the customer connected to BUS 5.

6 Harmonic Filter Design to Mitigate Two Resonant Points in a Distribution Network Conclusions This paper has presented the application of single-tuned and high-pass harmonic filters at the utility and at the consumer end when two parallel resonant points are present in the system. Installing harmonic filters at the customer side to remove harmonic distortions proved to be more effective in meeting the harmonic distortion limits when looking at the PCC. This paper also proved that harmonic penetration studies can be performed using DIgSILENT power software. It is recommended that more research should be done when there are three or multiple resonant points present in the network that resonate with characteristic harmonic numbers and to see how harmonic filters would decrease distortion levels when unacceptable distortions are observed at the PCC. Acknowledgments This work was supported by the Electricity Supply Commission of South Africa (Eskom) under a Tertiary Education Support Grant 010. References [1] Y.T. Hsiao, Design of filters for reducing harmonic distortion and correcting power factor in industrial distribution systems, Tamkang Journal of Science and Engineering 4 (3) (001) [] R.S. Vedam, M.S. Sarma, Power Quality: VAR Compensation in Power Systems, CRC Press, Boca Raton, 009, pp [3] R. Natarajan, Power System Capacitors, Taylor and Francis Group, Singapore, 005, pp [4] F.C. de la Rosa, Harmonics and Power Systems, Taylor and Francis Group, Boca Raton, 006, pp [5] J. Arrillaga, N.R. Watson, Power System Harmonics, nd ed., Wiley, West Sussex, 003, pp [6] E.B. Makram, E.V. Subramaniam, A.A. Girgis, R. Catoe, Harmonic filter design using actual recorded data, IEEE Trans. Ind. Appl. 9 (1993) [7] M.E. de Lima Tostes, U.H. Bezerra, R.D.S. Silva, J.A.L. Valente, C.C.M. de Moura, T.M.M. Branco, Impacts over the adoption distribution grid from the adoption of distributed harmonic filters on low-voltage customers, IEEE Trans. Power Del. 0 (005) [8] P.J. McQueen, C. Stemmet, Harmonic analysis and mitigation for an industrial plant, in: Btech Conference, Nov. 13, 009, Vol.13, pp [9] Electricity Supply Quality of Supply Part : Voltage Characteristics, Compatibility Levels, Limits and Assessment Methods, 004, pp [10] G.W. Wakileh, Power System Harmonics Fundamentals, Analysis and Filter Design, Springer, New York, 001. [11] A.B. Nassif, W. Xu, W. Freitas, An investigation on the selection of filter topologies for passive filter applications, IEEE Trans. Power Del. 4 (3) (009) [1] IEEE Std , IEEE Guide for Application and Specification of Harmonic Filter, 003. [13] Variable frequency drive: Operation and application of variable frequency drive (VFD) technology [Online], Carrier Corporation, d_chillers/wp_varfreqdrive.pdf. [14] T.M. Blooming, D.J. Carnovale, Application of IEEE STD harmonic limits, in: Pulp and Paper Industry Technical Conference, WI, USA, June 18-3, 006, pp [15] IEEE Std , IEEE Recommended Practice and Requirements for Harmonic Control in Electrical Power Systems, 1993.

HARMONIC DISTORTION IN THE ELECTRIC SUPPLY SYSTEM

HARMONIC DISTORTION IN THE ELECTRIC SUPPLY SYSTEM Technical Note No.3 March 2000 HARMONIC DISTORTION IN THE ELECTRIC SUPPLY SYSTEM This Technical Note discusses harmonic distortion, its causes and adverse effects, what levels are unacceptable and how

More information

POWER SYSTEM HARMONICS. A Reference Guide to Causes, Effects and Corrective Measures AN ALLEN-BRADLEY SERIES OF ISSUES AND ANSWERS

POWER SYSTEM HARMONICS. A Reference Guide to Causes, Effects and Corrective Measures AN ALLEN-BRADLEY SERIES OF ISSUES AND ANSWERS A Reference Guide to Causes, Effects and Corrective Measures AN ALLEN-BRADLEY SERIES OF ISSUES AND ANSWERS By: Robert G. Ellis, P. Eng., Rockwell Automation Medium Voltage Business CONTENTS INTRODUCTION...

More information

The Facts About Harmonics and Power Factor. Power Quality: Harmonics & Power Factor Correction

The Facts About Harmonics and Power Factor. Power Quality: Harmonics & Power Factor Correction The Facts About Harmonics and Power Factor Power Quality: Harmonics & Power Factor Correction 1 Agenda I. Harmonic Basics II. Harmonic Mitigation Methods III. Active Harmonic Filters IV. Applications V.

More information

The design and performance of Static Var Compensators for particle accelerators

The design and performance of Static Var Compensators for particle accelerators CERN-ACC-2015-0104 Karsten.Kahle@cern.ch The design and performance of Static Var Compensators for particle accelerators Karsten Kahle, Francisco R. Blánquez, Charles-Mathieu Genton CERN, Geneva, Switzerland,

More information

Product Data Bulletin

Product Data Bulletin Product Data Bulletin Power System Harmonics Causes and Effects of Variable Frequency Drives Relative to the IEEE 519-1992 Standard Raleigh, NC, U.S.A. INTRODUCTION This document describes power system

More information

Interpreting IEEE Std 519 and Meeting its Harmonic Limits in VFD Applications

Interpreting IEEE Std 519 and Meeting its Harmonic Limits in VFD Applications Interpreting IEEE Std 519 and Meeting its Harmonic Limits in VFD Applications Copyright Material IEEE Paper No. PCIC-2003-15 Tony Hoevenaars, P. Eng. Kurt LeDoux, P.E. Matt Colosino Member IEEE Member,

More information

INTRODUCTION TO HARMONIC ASSESSMENT IN POWER SYSTEMS

INTRODUCTION TO HARMONIC ASSESSMENT IN POWER SYSTEMS INTRODUCTION TO HARMONIC ASSESSMENT IN POWER SYSTEMS LIST OF CONTENT 1. INTRODUCTION... 1 2. HARMONIC VOLTAGE ASSESSMENT REQUIREMENT IN THE UK... 2 3. THE ASSESSMENT... 2 3.1. SYSTEM MODELLING...3 3.2.

More information

Introduction. Harmonics and IEEE 519 Page 1 of 19

Introduction. Harmonics and IEEE 519 Page 1 of 19 Introduction In an ideal power system, the voltage supplied to customer equipment, and the resulting load current are perfect sine waves. In practice, however, conditions are never ideal, so these waveforms

More information

EXTENDING THE LIFE OF POWER FACTOR CAPACITORS

EXTENDING THE LIFE OF POWER FACTOR CAPACITORS by John Houdek, President, Allied Industrial Marketing, Inc., and Cesar Chavez, Engineering Manager, ARTECHE / Inelap Abstract: The addition of power factor improvement capacitors to individual motors

More information

Power Quality Analysis and Evaluation at Water Pumping Station Supplied by Medium Voltage

Power Quality Analysis and Evaluation at Water Pumping Station Supplied by Medium Voltage Power Quality Analysis and Evaluation at Water Pumping Station Supplied by Medium Voltage Mustafa SEKKELI 1,*, Süleyman EROL 2 1 Sutcu Imam University, Faculty of Engineering, Electrical and Electronics

More information

HOW HARMONICS HAVE CONTRIBUTED TO MANY POWER FACTOR MISCONCEPTIONS

HOW HARMONICS HAVE CONTRIBUTED TO MANY POWER FACTOR MISCONCEPTIONS White Paper: MIRUS-TP003-A January 15, 2014 HOW HARMONICS HAVE CONTRIBUTED TO MANY POWER FACTOR MISCONCEPTIONS Prepared by: Anthony (Tony) Hoevenaars, P. Eng President and CEO Mirus International Inc.

More information

VARIABLE FREQUENCY DRIVE OPERATION AND APPLICATION OF VARIABLE FREQUENCY DRIVE (VFD) TECHNOLOGY

VARIABLE FREQUENCY DRIVE OPERATION AND APPLICATION OF VARIABLE FREQUENCY DRIVE (VFD) TECHNOLOGY VARIABLE FREQUENCY DRIVE OPERATION AND APPLICATION OF VARIABLE FREQUENCY DRIVE (VFD) TECHNOLOGY Carrier Corporation Syracuse, New York October 2005 TABLE OF CONTENTS INTRODUCTION..........................2

More information

Harmonic Distortion and Variable Frequency Drives

Harmonic Distortion and Variable Frequency Drives Harmonic Distortion and Variable Frequency Drives Definitions Variable Frequency Drives (VFDs); sometimes referred to as variable speed drives. Harmonic Distortion is a measure of the amount of deviation

More information

Typical Data Requirements Data Required for Power System Evaluation

Typical Data Requirements Data Required for Power System Evaluation Summary 66 Carey Road Queensbury, NY 12804 Ph: (518) 792-4776 Fax: (518) 792-5767 www.nepsi.com sales@nepsi.com Harmonic Filter & Power Capacitor Bank Application Studies This document describes NEPSI

More information

Pierre Archambault, PEng. VP Engineering Power Survey International Inc. 16 September 2009

Pierre Archambault, PEng. VP Engineering Power Survey International Inc. 16 September 2009 PotashCorp New Brunswick Division Picadilly Potash Project ETAP SIMULATION Prepared by: Carlos Reinel Senior Engineer R&D Department Power Survey International Approved by: Pierre Archambault, PEng. VP

More information

SURVEY OF HARMONIC DISTORTION IN LV AND MV NETWORKS: RESULTS AND CORRECTIVE STRATEGIES

SURVEY OF HARMONIC DISTORTION IN LV AND MV NETWORKS: RESULTS AND CORRECTIVE STRATEGIES SURVEY OF HARMONIC DISTORTION IN LV AND MV NETWORKS: RESULTS AND CORRECTIVE STRATEGIES E Bompard*, E Carpaneto*, R Napoli*, P Ribaldone**, C Vercellino** * Dipartimento di Ingegneria Elettrica Industriale,

More information

Advantages of 6-Pulse VFD with Lineator AUHF vs Active Front End (AFE) Drives

Advantages of 6-Pulse VFD with Lineator AUHF vs Active Front End (AFE) Drives White Paper: AUHF-WP001-A1 August 20, 2015 Advantages of 6-Pulse VFD with Lineator AUHF vs Active Front End (AFE) Drives Prepared by: Anthony (Tony) Hoevenaars, P. Eng President and CEO Mirus International

More information

EMTP STUDIES PERFORMED TO INSERT LONG AC CABLES IN THE FRENCH GRID

EMTP STUDIES PERFORMED TO INSERT LONG AC CABLES IN THE FRENCH GRID Tension (kv) Impedance (Ohms) EMTP STUDIES PERFORMED TO INSERT LONG AC CABLES IN THE FRENCH GRID frequency (Hz) Simon DESCHANVRES Yannick VERNAY RTE, CNER, Substations Department t (ms) EMTP-RV Users Group

More information

Harmonic components: electrical network polluters. LV and MV networks are becoming increasingly polluted by current and voltage harmonics. Harmonics a

Harmonic components: electrical network polluters. LV and MV networks are becoming increasingly polluted by current and voltage harmonics. Harmonics a Harmonics and transformers Harmonic component filter Harmonic components: electrical network polluters. LV and MV networks are becoming increasingly polluted by current and voltage harmonics. Harmonics

More information

New Control Strategy To Improve Power Quality Using A Hybrid Power Filter

New Control Strategy To Improve Power Quality Using A Hybrid Power Filter New Control Strategy o Improve Power Quality Using A Hybrid Power Filter S. P. Litrán, P. Salmerón, R. S. Herrera, and J. R. Vázquez Department of Electrical Engineering Escuela Politécnica Superior, University

More information

Line Reactors and AC Drives

Line Reactors and AC Drives Line Reactors and AC Drives Rockwell Automation Mequon Wisconsin Quite often, line and load reactors are installed on AC drives without a solid understanding of why or what the positive and negative consequences

More information

Understanding Power Factor and How it Affects Your Electric Bill. Presented by Scott Peele PE

Understanding Power Factor and How it Affects Your Electric Bill. Presented by Scott Peele PE Understanding Power Factor and How it Affects Your Electric Bill Presented by Scott Peele PE Understanding Power Factor Definitions kva, kvar, kw, Apparent Power vs. True Power Calculations Measurements

More information

Control Strategy for Three Phase Shunt Active Power Filter with Minimum Current Measurements

Control Strategy for Three Phase Shunt Active Power Filter with Minimum Current Measurements International Journal of Electrical and Computer Engineering (IJECE) Vol.1, No.1, September 2011, pp. 31~ 42 ISSN: 2088-8708 31 Control Strategy for Three Phase Shunt Active Power Filter with Minimum Current

More information

Design a Phase Interleaving PFC Buck Boost Converter to Improve the Power Factor

Design a Phase Interleaving PFC Buck Boost Converter to Improve the Power Factor International Journal of Innovation and Scientific Research ISSN 2351-8014 Vol. 11 No. 2 Nov. 2014, pp. 445-449 2014 Innovative Space of Scientific Research Journals http://www.ijisr.issr-journals.org/

More information

Sensitivity Analysis of Waveform Distortion Assessment for Wind Plants

Sensitivity Analysis of Waveform Distortion Assessment for Wind Plants Sensitivity Analysis of Waveform Distortion Assessment for Wind Plants Mariana B. Pereira 1, Einar V. Larsen 2, Sebastian A. Achilles 3 Energy Consulting General Electric 1 Av. Magalhães de Castro 4800,

More information

Variable Frequency Drives - a Comparison of VSI versus LCI Systems

Variable Frequency Drives - a Comparison of VSI versus LCI Systems Variable Frequency Drives - a Comparison of VSI versus LCI Systems Introduction TMEIC is a leader in the innovative design and manufacture of large ac variable f requency drive systems. TMEIC has been

More information

A Low Cost Power Quality and Energy Savings Laboratory for Undergraduate Education and Research

A Low Cost Power Quality and Energy Savings Laboratory for Undergraduate Education and Research Session #3133 A Low Cost Power Quality and Energy Savings Laboratory for Undergraduate Education and Research Abdullatif Bagegni, Vance Poteat Merrimack College Abstract This paper describes the design

More information

Triplen Harmonics Mitigation 3 Phase Four-Wire Electrical Distribution System Using Wye- Zig-Zag Transformers

Triplen Harmonics Mitigation 3 Phase Four-Wire Electrical Distribution System Using Wye- Zig-Zag Transformers Journal Journal of of Emerging Emerging Trends Trends in in Engineering Engineering and and Applied Applied Sciences Sciences (JETEAS) (JETEAS) 1 1 (1): (1): 72-78 72-78 Scholarlink Research Institute

More information

APPLICATION OF IEEE STD 519-1992 HARMONIC LIMITS

APPLICATION OF IEEE STD 519-1992 HARMONIC LIMITS APPLCATON OF EEE STD 519-199 HARMONC LMTS Thomas M. Blooming, P.E. t.blooming@ieee.org Eaton Electrical Asheville, North Carolina Daniel J. Carnovale, P.E. DanielJCarnovale@eaton.com Eaton Electrical Pittsburgh,

More information

Three phase circuits

Three phase circuits Three phase circuits THREE PHASE CIRCUITS THREE-PHASE ADVANTAGES 1. The horsepower rating of three-phase motors and the kva rating of three-phase transformers are 150% greater than single-phase motors

More information

Application Guide. Power Factor Correction (PFC) Basics

Application Guide. Power Factor Correction (PFC) Basics Power Factor Correction (PFC) Basics Introduction Power Factor, in simple terms, is a number between zero and one that represents the ratio of the real power to apparent power. Real power (P), measured

More information

Improvements of Reliability of Micro Hydro Power Plants in Sri Lanka

Improvements of Reliability of Micro Hydro Power Plants in Sri Lanka Improvements of Reliability of Micro Hydro Power Plants in Sri Lanka S S B Udugampala, V Vijayarajah, N T L W Vithanawasam, W M S C Weerasinghe, Supervised by: Eng J Karunanayake, Dr. K T M U Hemapala

More information

Electromagnetic Compatibility (EMC) Low-Frequency Standards. Standards on Low-Frequency Emission: IEC 61000-3-2

Electromagnetic Compatibility (EMC) Low-Frequency Standards. Standards on Low-Frequency Emission: IEC 61000-3-2 Electromagnetic Compatibility (EMC) Low-Frequency Standards Summary IEC 61000-3-2: Limits for harmonic current emissions (equipment input current 16A per phase) IEC 61000-3-4: Limitation of emission of

More information

Voltage Stability Improvement using Static Var Compensator in Power Systems

Voltage Stability Improvement using Static Var Compensator in Power Systems Leonardo Journal of Sciences ISSN 1583-0233 Issue 14, January-June 2009 p. 167-172 Voltage Stability Improvement using Static Var Compensator in Power Systems Department of Electrical/Computer Engineering,

More information

How To Improve Power Quality

How To Improve Power Quality Power Quality Improvement Of Three Phase Four Wire Distribution System Using VSC With A Zig-Zag Transformer Sajith Shaik *, I.Raghavendar ** *(Department of Electrical Engineering, Teegala Krishna Reddy

More information

A Fuzzy Based Solution for Improving Power Quality in Electric Railway Networks

A Fuzzy Based Solution for Improving Power Quality in Electric Railway Networks A Fuzzy Based Solution for Improving Power Quality in Electric Railway Networks Mohammad Ali Sandidzadeh School of Railway Engineering, Iran University of Science & Technology, Tehran, Iran Tel: 98-21-7749-1030

More information

Chapter 3 AUTOMATIC VOLTAGE CONTROL

Chapter 3 AUTOMATIC VOLTAGE CONTROL Chapter 3 AUTOMATIC VOLTAGE CONTROL . INTRODUCTION TO EXCITATION SYSTEM The basic function of an excitation system is to provide necessary direct current to the field winding of the synchronous generator.

More information

Harmonic Reduction and Load Balancing of Three Phase Four Wire DSTATCOM using Three Leg VSC and a Zig Zag Transformer

Harmonic Reduction and Load Balancing of Three Phase Four Wire DSTATCOM using Three Leg VSC and a Zig Zag Transformer IJSRD - International Journal for Scientific Research & Development Vol. 3, Issue 05, 2015 ISSN (online): 2321-0613 Harmonic Reduction and Load Balancing of Three Phase Four Wire DSTATCOM using Three Leg

More information

Impedance Matching and Matching Networks. Valentin Todorow, December, 2009

Impedance Matching and Matching Networks. Valentin Todorow, December, 2009 Impedance Matching and Matching Networks Valentin Todorow, December, 2009 RF for Plasma Processing - Definition of RF What is RF? The IEEE Standard Dictionary of Electrical and Electronics Terms defines

More information

Power System review W I L L I A M V. T O R R E A P R I L 1 0, 2 0 1 3

Power System review W I L L I A M V. T O R R E A P R I L 1 0, 2 0 1 3 Power System review W I L L I A M V. T O R R E A P R I L 1 0, 2 0 1 3 Basics of Power systems Network topology Transmission and Distribution Load and Resource Balance Economic Dispatch Steady State System

More information

Power Quality Standards for Electric Service

Power Quality Standards for Electric Service Power Quality Standards for Electric Service Effective June 1, 2008 A transition period will exist from June 1 through December 31, 2008 in which installations may be approved and connected as long as

More information

APPLICATION OF IEEE STD 519-1992 HARMONIC LIMITS

APPLICATION OF IEEE STD 519-1992 HARMONIC LIMITS APPLCATON OF EEE STD 19-199 HARMONC LMTS Thomas M. Blooming, P.E. t.blooming@ieee.org Eaton Electrical Asheville, North Carolina Daniel J. Carnovale, P.E. DanielJCarnovale@eaton.com Eaton Electrical Pittsburgh,

More information

MINISTERIE VAN ECONOMISCHE ZAKEN GENERAL COST COMPARISON BETWEEN UNDERGROUND CABLES AND O.H. LINE SYSTEMS FOR H.V. TRANSMISSION

MINISTERIE VAN ECONOMISCHE ZAKEN GENERAL COST COMPARISON BETWEEN UNDERGROUND CABLES AND O.H. LINE SYSTEMS FOR H.V. TRANSMISSION MINISTERIE VAN ECONOMISCHE ZAKEN GENERAL COST COMPARISON BETWEEN UNDERGROUND CABLES AND O.H. LINE SYSTEMS FOR H.V. TRANSMISSION REPORT ON NETWORK RELIABILITY ASPECTS OF THE CHOICE LINE VERSUS CABLE FOR

More information

Low Frequency AC Transmission System

Low Frequency AC Transmission System , pp. 315-326 http://dx.doi.org/10.14257/ijsip.2015.8.5.32 Low Frequency AC Transmission System G. Sirisha Kumari 1 and K.Veerendranath 2 1 M. Tech student in EEE Department 2 Asst. Professor in EEE Department

More information

Session 10: General Overview of Interconnection Standards & Grid Codes for High Penetration PV October 21, 2015 Santiago, Chile

Session 10: General Overview of Interconnection Standards & Grid Codes for High Penetration PV October 21, 2015 Santiago, Chile Session 10: General Overview of Interconnection Standards & Grid Codes for High Penetration PV October 21, 2015 Santiago, Chile Michael Coddington National Renewable Energy Laboratory Golden, Colorado,

More information

Survey of Harmonics Measurements in Electrical Distribution System of a Technical Institution

Survey of Harmonics Measurements in Electrical Distribution System of a Technical Institution Survey of Harmonics Measurements in Electrical Distribution System of a Technical Institution Nandita Dey, Dr.A.K.Chakraborty Lecturer, Electrical Engineering Department, Tripura University Suryamaninagar

More information

Apprentice Telecommunications Technician Test (CTT) Study Guide

Apprentice Telecommunications Technician Test (CTT) Study Guide Apprentice Telecommunications Technician Test (CTT) Study Guide 1 05/2014 Study Guide for Pacific Gas & Electric Company Apprentice Telecommunications Technician Qualifying Test (CTT) About the Test The

More information

Renewable Energy Interconnection at Distribution Level to Improve Power Quality

Renewable Energy Interconnection at Distribution Level to Improve Power Quality Research Inventy: International Journal Of Engineering And Science Issn: 2278-4721, Vol. 2, Issue 5 (February 2013), Pp 39-48 Www.Researchinventy.Com Renewable Energy Interconnection at Distribution Level

More information

Power Quality Issues, Impacts, and Mitigation for Industrial Customers

Power Quality Issues, Impacts, and Mitigation for Industrial Customers Power Quality Issues, Impacts, and Mitigation for Industrial Customers By Kevin Olikara, Power and Energy Management Products Rockwell Automation, Inc. Now, more than ever, electronic equipment and computing

More information

IJESRT. Scientific Journal Impact Factor: 3.449 (ISRA), Impact Factor: 2.114 [633] [Choudhary, 3(12): December, 2014] ISSN: 2277-9655

IJESRT. Scientific Journal Impact Factor: 3.449 (ISRA), Impact Factor: 2.114 [633] [Choudhary, 3(12): December, 2014] ISSN: 2277-9655 IJESRT INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY Performance of Capacitor Supported SRF based DSTATCOM in Three-Phase Four-Wire Distribution System under Linear and Non-Linear

More information

HVDC 2000 a new generation of high-voltage DC converter stations

HVDC 2000 a new generation of high-voltage DC converter stations HVDC 2000 a new generation of high-voltage DC converter stations Improved performance and robustness, shorter lead times and faster delivery, plus reduced maintenance needs, were the development goals

More information

COMPARISON OF THE FACTS EQUIPMENT OPERATION IN TRANSMISSION AND DISTRIBUTION SYSTEMS

COMPARISON OF THE FACTS EQUIPMENT OPERATION IN TRANSMISSION AND DISTRIBUTION SYSTEMS COMPARISON OF THE FACTS EQUIPMENT OPERATION IN TRANSMISSION AND DISTRIBUTION SYSTEMS Afshin LASHKAR ARA Azad University of Dezfoul - Iran A_lashkarara@hotmail.com Seyed Ali NABAVI NIAKI University of Mazandaran

More information

Practical Overview of Mine Power System Harmonics

Practical Overview of Mine Power System Harmonics Practical Overview of Mine Harmonics Western Mining Electrical Association Tucson, Arizona November 1999 11/20/2003 10:26:46 PM wmea-harmonic-1.ppt Slide 1 Harmonic Topics What are harmonics? Where do

More information

Impedance Matching. Using transformers Using matching networks

Impedance Matching. Using transformers Using matching networks Impedance Matching The plasma industry uses process power over a wide range of frequencies: from DC to several gigahertz. A variety of methods are used to couple the process power into the plasma load,

More information

Fringe Field of Parallel Plate Capacitor

Fringe Field of Parallel Plate Capacitor Fringe Field of Parallel Plate Capacitor Shiree Burt Nathan Finney Jack Young ********************************** Santa Rosa Junior College Department of Engineering and Physics 1501 Mendocino Ave. Santa

More information

Power System Harmonic Fundamental Considerations: Tips and Tools for Reducing Harmonic Distortion in Electronic Drive Applications

Power System Harmonic Fundamental Considerations: Tips and Tools for Reducing Harmonic Distortion in Electronic Drive Applications Power System Harmonic Fundamental Considerations: Tips and Tools for Reducing Harmonic Distortion in Electronic Drive Applications October 2011/AT313 by Larry Ray, P.E. Louis Hapeshis, P.E. Make the most

More information

Laboratory and field measurements of the power factor and the harmonic emission from energy-efficient lamps

Laboratory and field measurements of the power factor and the harmonic emission from energy-efficient lamps Laboratory and field measurements of the power factor and the harmonic emission from energy-efficient lamps Sarah K. Rönnberg (1), Math H.J. Bollen (1,2), Mats Wahlberg (1,3) (1) Luleå University of Technology,

More information

HARMONICS AND HOW THEY RELATE TO POWER FACTOR. W. Mack Grady The University of Texas at Austin Austin, Texas 78712

HARMONICS AND HOW THEY RELATE TO POWER FACTOR. W. Mack Grady The University of Texas at Austin Austin, Texas 78712 Abstract HARMONICS AND HOW THEY RELATE TO POWER FACTOR W. Mack Grady The University of Texas at Austin Austin, Texas 787 Robert J. Gilleskie San Diego Gas & Electric San Diego, California 93 We are all

More information

UNDERSTANDING POWER FACTOR AND INPUT CURRENT HARMONICS IN SWITCHED MODE POWER SUPPLIES

UNDERSTANDING POWER FACTOR AND INPUT CURRENT HARMONICS IN SWITCHED MODE POWER SUPPLIES UNDERSTANDING POWER FACTOR AND INPUT CURRENT HARMONICS IN SWITCHED MODE POWER SUPPLIES WHITE PAPER: TW0062 36 Newburgh Road Hackettstown, NJ 07840 Feb 2009 Alan Gobbi About the Author Alan Gobbi Alan Gobbi

More information

International ejournals

International ejournals ISSN 2249 5460 Available online at www.internationalejournals.com International ejournals International Journal of Mathematical Sciences, Technology and Humanities 113 (2014) 1221 1227 NEUTRAL CURRENT

More information

Changes PN532_Breakout board

Changes PN532_Breakout board Changes PN532_Breakout board Document: Changes PN532_Breakout board Department / Faculty : TechnoCentrum - Radboud University Nijmegen Contact: René Habraken Date: 17 May 2011 Doc. Version: 1.0 Contents

More information

Output Ripple and Noise Measurement Methods for Ericsson Power Modules

Output Ripple and Noise Measurement Methods for Ericsson Power Modules Output Ripple and Noise Measurement Methods for Ericsson Power Modules Design Note 022 Ericsson Power Modules Ripple and Noise Abstract There is no industry-wide standard for measuring output ripple and

More information

2. A conductor of length 2m moves at 4m/s at 30 to a uniform magnetic field of 0.1T. Which one of the following gives the e.m.f. generated?

2. A conductor of length 2m moves at 4m/s at 30 to a uniform magnetic field of 0.1T. Which one of the following gives the e.m.f. generated? Extra Questions - 2 1. A straight length of wire moves through a uniform magnetic field. The e.m.f. produced across the ends of the wire will be maximum if it moves: a) along the lines of magnetic flux

More information

POWER QUALITY ISSUES IN A STAND-ALONE MICROGRID BASED ON RENEWABLE ENERGY

POWER QUALITY ISSUES IN A STAND-ALONE MICROGRID BASED ON RENEWABLE ENERGY POWER QUALITY ISSUES IN A STAND-ALONE MICROGRID BASED ON RENEWABLE ENERGY IOAN ŞERBAN, CORNELIU MARINESCU Key words: Microgrid (MG), Power quality, Dump load, Frequency control. The paper presents several

More information

Power Electronics Testings

Power Electronics Testings Power Electronics Testings PV Inverter Test Solution www.chromaate.com Turnkey Test & Automation Solution Provider w w w.chromaate.com A PV system is an energy system which directly converts energy from

More information

Since any real component also has loss due to the resistive component, the average power dissipated is 2 2R

Since any real component also has loss due to the resistive component, the average power dissipated is 2 2R Quality factor, Q Reactive components such as capacitors and inductors are often described with a figure of merit called Q. While it can be defined in many ways, it s most fundamental description is: Q

More information

ISSCC 2003 / SESSION 10 / HIGH SPEED BUILDING BLOCKS / PAPER 10.5

ISSCC 2003 / SESSION 10 / HIGH SPEED BUILDING BLOCKS / PAPER 10.5 ISSCC 2003 / SESSION 10 / HIGH SPEED BUILDING BLOCKS / PAPER 10.5 10.5 Broadband ESD Protection Circuits in CMOS Technology Sherif Galal, Behzad Razavi Electrical Engineering Department, University of

More information

ENERGY AND ENVIRONMENTAL SAVINGS IN STEEL MAKING BY MEANS OF SVC LIGHT

ENERGY AND ENVIRONMENTAL SAVINGS IN STEEL MAKING BY MEANS OF SVC LIGHT ENERGY AND ENVIRONMENTAL SAVINGS IN STEEL MAKING BY MEANS OF SVC LIGHT Rolf Grünbaum, Tomas Gustafsson ABB Power Systems AB AC Systems Division SE-721 64 Vasteras Sweden Phone: +46 21 32 40 00 rolf.grunbaum,

More information

Harmonics and Noise in Photovoltaic (PV) Inverter and the Mitigation Strategies

Harmonics and Noise in Photovoltaic (PV) Inverter and the Mitigation Strategies Soonwook Hong, Ph. D. Michael Zuercher Martinson Harmonics and Noise in Photovoltaic (PV) Inverter and the Mitigation Strategies 1. Introduction PV inverters use semiconductor devices to transform the

More information

Impact of Distributed Generation on Voltage Profile in Deregulated Distribution System

Impact of Distributed Generation on Voltage Profile in Deregulated Distribution System Impact of Distributed Generation on Voltage Profile in Deregulated Distribution System W. EL-KHATTAM M. M. A. SALAMA Electrical & Computer Engineering, Waterloo University, Ontario, Canada Abstract: Due

More information

INTERNATIONAL JOURNAL OF ELECTRICAL ENGINEERING & TECHNOLOGY (IJEET)

INTERNATIONAL JOURNAL OF ELECTRICAL ENGINEERING & TECHNOLOGY (IJEET) INTERNATIONAL JOURNAL OF ELECTRICAL ENGINEERING & TECHNOLOGY (IJEET) International Journal of Electrical Engineering and Technology (IJEET), ISSN 0976 ISSN 0976 6545(Print) ISSN 0976 6553(Online) Volume

More information

Modeling and Analysis of DC Link Bus Capacitor and Inductor Heating Effect on AC Drives (Part I)

Modeling and Analysis of DC Link Bus Capacitor and Inductor Heating Effect on AC Drives (Part I) 00-00-//$0.00 (c) IEEE IEEE Industry Application Society Annual Meeting New Orleans, Louisiana, October -, Modeling and Analysis of DC Link Bus Capacitor and Inductor Heating Effect on AC Drives (Part

More information

Control of a 3-phase 4-leg active power filter under non-ideal mains voltage condition

Control of a 3-phase 4-leg active power filter under non-ideal mains voltage condition Available online at www.sciencedirect.com Electric Power Systems Research 78 (008) 58 73 Control of a 3-phase 4-leg active power filter under non-ideal mains voltage condition Mehmet Ucar, Engin Ozdemir

More information

A MULTILEVEL INVERTER FOR SYNCHRONIZING THE GRID WITH RENEWABLE ENERGY SOURCES BY IMPLEMENTING BATTERY CUM DC-DC CONERTER

A MULTILEVEL INVERTER FOR SYNCHRONIZING THE GRID WITH RENEWABLE ENERGY SOURCES BY IMPLEMENTING BATTERY CUM DC-DC CONERTER A MULTILEVEL INVERTER FOR SYNCHRONIZING THE GRID WITH RENEWABLE ENERGY SOURCES BY IMPLEMENTING BATTERY CUM DC-DC CONERTER 1 KARUNYA CHRISTOBAL LYDIA. S, 2 SHANMUGASUNDARI. A, 3 ANANDHI.Y 1,2,3 Electrical

More information

DC TRANSMISSION BASED ON VOLTAGE SOURCE CONVERTERS

DC TRANSMISSION BASED ON VOLTAGE SOURCE CONVERTERS DC TRANSMISSION BASED ON VOLTAGE SOURCE CONVERTERS by Gunnar Asplund, Kjell Eriksson, Hongbo Jiang, Johan Lindberg, Rolf Pålsson, Kjell Svensson ABB Power Systems AB Sweden SUMMARY Voltage Source Converters

More information

Performance Analysis of Grid connected Wind Energy Conversion System with a DFIG during Fault Condition

Performance Analysis of Grid connected Wind Energy Conversion System with a DFIG during Fault Condition Performance Analysis of Grid connected Wind Energy Conversion System with a DFIG during Fault Condition Sasi.C Assistant Professor Department of Electrical Engineering Annamalai University Chidambaram,

More information

Meeting Harmonic Limits on Marine Vessels

Meeting Harmonic Limits on Marine Vessels Meeting Harmonic Limits on Marine Vessels I. C. Evans, A. H. Hoevenaars, P.Eng, Member, IEEE Abstract Recent advances in power electronic drive converters have led to an increased use of this technology

More information

Considering the effects of UPS operation with leading power factor loads

Considering the effects of UPS operation with leading power factor loads Considering the effects of UPS operation with leading power factor loads Over the past five years, a new generation of data processing and communications equipment has become prevalent in modern data centers

More information

Integration of Distributed Generation in the Power System. IEEE Press Series on Power Engineering

Integration of Distributed Generation in the Power System. IEEE Press Series on Power Engineering Brochure More information from http://www.researchandmarkets.com/reports/2171489/ Integration of Distributed Generation in the Power System. IEEE Press Series on Power Engineering Description: A forward

More information

PIEZO FILTERS INTRODUCTION

PIEZO FILTERS INTRODUCTION For more than two decades, ceramic filter technology has been instrumental in the proliferation of solid state electronics. A view of the future reveals that even greater expectations will be placed on

More information

Positive Feedback and Oscillators

Positive Feedback and Oscillators Physics 3330 Experiment #6 Fall 1999 Positive Feedback and Oscillators Purpose In this experiment we will study how spontaneous oscillations may be caused by positive feedback. You will construct an active

More information

Transformers. Special transformers Reactors products

Transformers. Special transformers Reactors products Transformers Special transformers Reactors products Reactors Custom designed, custom built ABB Oy Transformers has extensive experience and numerous references from different reactor applications, having

More information

Analysis of AC-DC Converter Based on Power Factor and THD

Analysis of AC-DC Converter Based on Power Factor and THD Website: www.ijetae.com (SSN 50-459, SO 900:008 Certified Journal, Volume 3, ssue, February 03) Analysis of AC-DC Converter Based on Power Factor and THD Shiney.S.Varghese, Sincy George Department of Electrical

More information

How To Improve Power Quality

How To Improve Power Quality Neutral Current compensation in three phase four wire DSTATCOM using Three Leg VSC and a Zig Zag Transformer 1 Ramya A R, 2 T.M.Vasantha Kumar, 3 K.R.Mohan 1,2,3 Dept. of Electrical and Electronics Engineering

More information

MODELING AND SIMULATION OF A THREE-PHASE INVERTER WITH RECTIFIER-TYPE NONLINEAR LOADS

MODELING AND SIMULATION OF A THREE-PHASE INVERTER WITH RECTIFIER-TYPE NONLINEAR LOADS , pp. 7-1 MODELING AND SIMULAION OF A HREE-PHASE INERER WIH RECIFIER-YPE NONLINEAR LOADS Jawad Faiz 1 and Ghazanfar Shahgholian 2 1 School of Electrical and Computer Engineering, Faculty of Engineering,

More information

Hybrid Power System with A Two-Input Power Converter

Hybrid Power System with A Two-Input Power Converter Hybrid Power System with A Two-Input Power Converter Y. L. Juan and H. Y. Yang Department of Electrical Engineering National Changhua University of Education Jin-De Campus, Address: No.1, Jin-De Road,

More information

100% Stator Ground Fault Detection Implementation at Hibbard Renewable Energy Center. 598 N. Buth Rd 3215 Arrowhead Rd

100% Stator Ground Fault Detection Implementation at Hibbard Renewable Energy Center. 598 N. Buth Rd 3215 Arrowhead Rd 100% Stator Ground Fault Detection Implementation at Hibbard Renewable Energy Center Introduction Roger Hedding Steven Schoenherr, P.E. ABB Inc. Minnesota Power 598 N. Buth Rd 3215 Arrowhead Rd Dousman,

More information

7-41 POWER FACTOR CORRECTION

7-41 POWER FACTOR CORRECTION POWER FTOR CORRECTION INTRODUCTION Modern electronic equipment can create noise that will cause problems with other equipment on the same supply system. To reduce system disturbances it is therefore essential

More information

7. Reactive energy compensation

7. Reactive energy compensation 593 7. Reactive energy compensation 594 7. REACTIVE ENERGY COMPENSATION Reactive energy compensation is an important element for reducing the electricity bill and improving the quality of the electrical

More information

Power System Harmonics

Power System Harmonics Pacific Gas and Electric Company Power System Harmonics What are power system harmonics? Ideally, voltage and current waveforms are perfect sinusoids. However, because of the increased popularity of electronic

More information

SOLAR WIND INTEGRATED SYSTEM ON OFFSHORE WITH LOW FREQUENCY POWER TRANSMISSION

SOLAR WIND INTEGRATED SYSTEM ON OFFSHORE WITH LOW FREQUENCY POWER TRANSMISSION SOLAR WIND INTEGRATED SYSTEM ON OFFSHORE WITH LOW FREQUENCY POWER TRANSMISSION Baggu Rajesh Kumar 1, D.Revathi 2 PG Student, Department of EEE, KIET, Kakinada, India. 1 Asst.Professor, Department of EEE,

More information

MOBILE SYSTEM FOR DIAGNOSIS OF HIGH VOLTAGE CABLES (132KV/220KV) VLF-200 HVCD

MOBILE SYSTEM FOR DIAGNOSIS OF HIGH VOLTAGE CABLES (132KV/220KV) VLF-200 HVCD MOBILE SYSTEM FOR DIAGNOSIS OF HIGH VOLTAGE CABLES (132KV/220KV) VLF-200 HVCD VERY LOW FREQUENCY (VLF) - PARTIAL DISCHARGES AND TANGENT DELTA HV/EHV POWER CABLES DIAGNOSTIC AND ON-SITE FIELD TESTING WITH

More information

Survey of Harmonics Measurements in Electrical Distribution Systems

Survey of Harmonics Measurements in Electrical Distribution Systems Survey of Harmonics Measurements in Electrical Distribution Systems Leon M. Tolbert, Member, IEEE Oak Ridge National Laboratory* P.O. Box 28, Bldg Oak Ridge, TN 3783-6334 Alexandria, VA 2235-3862 Phone:

More information

Harmonics in your electrical system

Harmonics in your electrical system Harmonics in your electrical system What they are, how they can be harmful, and what to do about them Abstract Harmonic currents, generated by non-linear electronic loads, increase power system heat losses

More information

Diodes have an arrow showing the direction of the flow.

Diodes have an arrow showing the direction of the flow. The Big Idea Modern circuitry depends on much more than just resistors and capacitors. The circuits in your computer, cell phone, Ipod depend on circuit elements called diodes, inductors, transistors,

More information

Chapter 12: Three Phase Circuits

Chapter 12: Three Phase Circuits Chapter 12: Three Phase Circuits 12.1 What Is a Three Phase Circuit? 12.2 Balance Three Phase Voltages 12.3 Balance Three Phase Y to Y Connection 12.4 Other Balance Three Phase Connections 12.5 Power in

More information

A COMPARISON ON PERFORMANCE OF TCSC/SSSC FOR A RADIAL SYSTEM

A COMPARISON ON PERFORMANCE OF TCSC/SSSC FOR A RADIAL SYSTEM IMPACT: International Journal of Research in Engineering & Technology (IMPACT: IJRET) ISSN(E): 31-8843; ISSN(P): 347-4599 Vol. 3, Issue 9, Sep 015, 7-18 Impact Journals A COMPARISON ON PERFORMANCE OF TCSC/SSSC

More information

An Efficient AC/DC Converter with Power Factor Correction

An Efficient AC/DC Converter with Power Factor Correction An Efficient AC/DC Converter with Power Factor Correction Suja C Rajappan 1, K. Sarabose 2, Neetha John 3 1,3 PG Scholar, Sri Shakthi Institute of Engineering & Technology, L&T Bypass Road, Coimbatore-62,

More information

Power Quality Centre VOLTAGE FLUCTUATIONS IN THE ELECTRIC SUPPLY SYSTEM. Technical Note No. 7 August 2003

Power Quality Centre VOLTAGE FLUCTUATIONS IN THE ELECTRIC SUPPLY SYSTEM. Technical Note No. 7 August 2003 Technical Note No. 7 August 2003 Power Quality Centre VOLTAGE FLUCTUATIONS IN THE ELECTRIC SUPPLY SYSTEM This Technical Note discusses voltage fluctuations, their causes and adverse effects, what levels

More information

DESIGNING MODERN ELECTRICAL SYSTEMS WITH TRANSFORMERS THAT INHERENTLY REDUCE HARMONIC DISTORTION IN A PC-RICH ENVIRONMENT

DESIGNING MODERN ELECTRICAL SYSTEMS WITH TRANSFORMERS THAT INHERENTLY REDUCE HARMONIC DISTORTION IN A PC-RICH ENVIRONMENT DESIGNING MODERN ELECTRICAL SYSTEMS WITH TRANSFORMERS THAT INHERENTLY REDUCE HARMONIC DISTORTION IN A PC-RICH ENVIRONMENT by Philip J. A. Ling, P.Eng. Cyril J. Eldridge, B. Sc. POWERSMITHS INTERNATIONAL

More information