Problem of the Month: Calculating Palindromes

Save this PDF as:

Size: px
Start display at page:

Transcription

2 In the first level of the POM, students are asked to find and list all the ways two counting numbers are added to equal 12. Their task involves making systematic lists. The second part is to find the ways to sum 3 counting numbers that equal 12. In level B, students examine a classic process. It involves finding the difference between the largest and smallest number created from a set of two different digits. The students find the result of the subtraction problem, and then use those digits to repeat the process. Students track and determine patterns that occur from the set of differences. They explain the pattern they found and discuss how those results are related. In level C, students are asked to carry out a similar investigation to level B but with three digits. In level D, the students investigate that same process with 4 digit numbers. In level E, students are asked to find and investigate all the ways to find integers using the sum of consecutive positive integers. Mathematical Concepts The big idea of this POM is number theory the investigation of our real number system and its operations. Number theory is one of the oldest branches of pure mathematics, and one of the largest. Of course, it concerns questions about numbers, usually meaning whole numbers or rational numbers (fractions). Elementary number theory involves divisibility among integers -- the Euclidean algorithm (and thus the existence of greatest common divisors), elementary properties of primes (the unique factorization theorem, the infinitude of primes), etc. Tools for solving some of the number theory questions draw ideas from discrete mathematics. Discrete mathematics is the study of the sets of and operations on discrete objects. Discrete means distinct from others, separate or discontinuous. Basically discrete is not continuous mathematics. Traditionally, K-12 mathematics starts with discrete topics in lower grades, but by secondary mathematics the topics usually focus on continuous mathematics as a preparation for calculus. The real number line is an example of a continuous set of points. But, discrete mathematics plays an important role in higher mathematics courses. Much of the mathematics that comes from real life comes in the form of distinct objects and values. Making sense of this distinct information and quantities is important; thus discrete mathematics has numerous applications to real life. CCSSM Alignment: Problem of the Month Page 2

3 Problem of the Month Level A Find and list all the ways you can add two counting numbers to equal 12. The order that numbers are added doesn t affect whether two number sentences are the same. What patterns do you see in the number sentences? How do you know you have found all possible number sentences? Explain. Find and list all the ways you can add three counting numbers to equal 12. Problem of the Month Page 1 Silicon Valley Mathematics Initiative This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 Unported License (

4 Level B Pick any 2 digit number where not all the digits are equal. Order the digits from highest to lowest to create the largest number. Next order the digits from lowest to highest to create the smallest number. Find the positive difference between the two numbers. Investigate different solutions you find. Are there patterns? If so, what patterns did you find? Problem of the Month Page 2 Silicon Valley Mathematics Initiative This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 Unported License (

5 Level C Pick any 3 digit number where not all the digits are equal. Order the digits from highest to lowest to create the largest number. Next order the digits from lowest to highest to create the smallest number. Find the positive difference between the two numbers. Investigate different solutions you find. Are there patterns? If so, what patterns did you find? Do two different 3 digit numbers produce the same solution (difference) when following the process? What can you predict about the solutions (differences) in terms of specific digits (hundreds, tens, ones)? What other relationships are there between the digits? Explain your findings Problem of the Month Page 3 Silicon Valley Mathematics Initiative This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 Unported License (

6 Level D Pick any 4 digit number where not all the digits are equal. Order the digits from highest to lowest to create the largest number X. Next order the digits from lowest to highest to create the smallest number Y. Subtract to form X Y. Repeat the process with X Y. Continue. Following the process, eventually you will come to a terminating number. What is the terminating number? What makes it terminate? Can you predict the number of steps to the terminating number? What is the maximum number of steps? What are some patterns you notice in the numbers formed along the way to the terminating number? Compare what happens for 3 digit numbers? 2 digit numbers? 5 digit numbers? Problem of the Month Page 4 Silicon Valley Mathematics Initiative This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 Unported License (

7 Level E Numbers may be expressed as the sum of consecutive positive integers. For example: 12 = = = Which numbers can be expressed as consecutive positive integers? How do you know you have found them all? Explain. Which numbers can be expressed as sums of two consecutive integers? Three? How many different ways are there of expressing numbers as sums of consecutive integers? Justify your findings. Investigate numbers that can be expressed as sums of consecutive odd integers. Explain your findings. Problem of the Month Page 5 Silicon Valley Mathematics Initiative This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 Unported License (

10 Problem of the Month Task Description Level B This task challenges students to use number concepts. The students examine a classic process. It involves finding the difference between the largest and smallest number created from a set of two different digits. The students find the result of the subtraction problem, and then use those digits to repeat the process. Students track and determine patterns that occur from the set of differences. They explain the pattern they found and discuss how those results are related. Common Core State Standards Math Content Standards Operations and Algebraic Thinking Represent and solve problems involving addition and subtraction. 2.OA.1. Use addition and subtraction within 100 to solve one- and two-step word problems involving situations of adding to, taking from, putting together, taking apart, and comparing, with unknowns in all positions, e.g., by using drawings and equations with a symbol for the unknown number to represent the problem. Operations and Algebraic Thinking 3.OA Solve problems involving the four operations, and identify and explain patterns in arithmetic. 8. Solve two-step word problems using the four operations. Represent these problems using equations with a letter standing for the unknown quantity. Assess the reasonableness of answers using mental computation and estimation strategies including rounding. Common Core State Standards Math Standards of Mathematical Practice MP.2 Reason abstractly and quantitatively. Mathematically proficient students make sense of quantities and their relationships in problem situations. They bring two complementary abilities to bear on problems involving quantitative relationships: the ability to decontextualize to abstract a given situation and represent it symbolically and manipulate the representing symbols as if they have a life of their own, without necessarily attending to their referents and the ability to contextualize, to pause as needed during the manipulation process in order to probe into the referents for the symbols involved. Quantitative reasoning entails habits of creating a coherent representation of the problem at hand; considering the units involved; attending to the meaning of quantities, not just how to compute them; and knowing and flexibly using different properties of operations and objects. MP.7 Look for and make use of structure. Mathematically proficient students look closely to discern a pattern or structure. Young students, for example, might notice that three and seven more is the same amount as seven and three more, or they may sort a collection of shapes according to how many sides the shapes have. Later, students will see 7 x 8 equals the well-remembered 7 x x 3, in preparation for learning about the distributive property. In the expression x 2 + 9x + 14, older students can see the 14 as 2 x 7 and the 9 as They recognize the significance of an existing line in a geometric figure and can use the strategy of drawing an auxiliary line for solving problems. They also can step back for an overview and shift perspective. They can see complicated things, such as some algebraic expressions, as single objects or as being composed of several objects. For example, they can see 5 3(x y) 2 as 5 minus a positive number times a square and use that to realize that its value cannot be more than 5 for any real numbers x and y. CCSSM Alignment: Problem of the Month Page 2

12 Problem of the Month: Task Description Level D This task challenges a student to investigate a problem involving number patterns and number theory. The students are asked to carry out a similar investigation to level B and C but with four digits. The students find the result of the subtraction problem, and then use those digits to repeat the process. Students track and determine patterns that occur from the set of differences. They explain the pattern they found and discuss how those results are related. Common Core State Standards Math Content Standards Operations and Algebra Gain familiarity with factors and multiples. 4.OA.4 Find all factor pairs for a whole number in the range Recognize that a whole number is a multiple of each of the factors. Determine whether a given whole number in the range is a multiple of a given one digit number. Determine whether a given whole number in the range is a prime or composite. Expressions and Equations Represent and analyze quantitative relationships between dependent and independent variables. 6.EE.9 Use variables to represent two quantities in a real world problem that change in relationship to one another; write an equation to express one quantity, thought of as the dependent variable, in terms of the other quantity, thought of as the independent variable. Analyze the relationship between the dependent and independent variable using graphs and tables, and relate these to the equations. Solve real life and mathematical problems using numerical and algebraic expressions and equations. 7.EE.4 Use variables to represent quantities in a real world or mathematical problem, and construct simple equations and inequalities to solve problems by reasoning about the quantities. Common Core State Standards Math Standards of Mathematical Practice MP.4 Model with mathematics. Mathematically proficient students can apply the mathematics they know to solve problems arising in everyday life, society, and the workplace. In early grades, this might be as simple as writing an addition equation to describe a situation. In middle grades, a student might apply proportional reasoning to plan a school event or analyze a problem in the community. By high school, a student might use geometry to solve a design problem or use a function to describe how one quantity of interest depends on another. Mathematically proficient students who can apply what they know are comfortable making assumptions and approximations to simplify a complicated situation, realizing that these may need revision later. They are able to identify important quantities in a practical situation and map their relationships using such tools as diagrams, two-way tables, graphs, flowcharts and formulas. They can analyze those relationships mathematically to draw conclusions. They routinely interpret their mathematical results in the context of the situation and reflect on whether the results make sense, possibly improving the model if it has not served its purpose. MP.7 Look for and make use of structure. Mathematically proficient students look closely to discern a pattern or structure. Young students, for example, might notice that three and seven more is the same amount as seven and three more, or they may sort a collection of shapes according to how many sides the shapes have. Later, students will see 7 x 8 equals the well-remembered 7 x x 3, in preparation for learning about the distributive property. In the expression x 2 + 9x + 14, older students can see the 14 as 2 x 7 and the 9 as They recognize the significance of an existing line in a geometric figure and can use the strategy of drawing an auxiliary line for solving problems. They also can step back for an overview and shift perspective. They can see complicated things, such as some algebraic expressions, as single objects or as being composed of several objects. For example, they can see 5 3(x y) 2 as 5 minus a positive number times a square and use that to realize that its value cannot be more than 5 for any real numbers x and y. CCSSM Alignment: Problem of the Month Page 4

13 Problem of the Month Task Description Level E This task challenges a student to investigate problems involving number theory. The students are asked to find and investigate all the ways to find integers using the sum of consecutive positive integers. Common Core State Standards Math Content Standards High School Functions Building Functions Build a function that models a relationship between two quantities. F BF.1 Write a function that describes a relationship between two quantities. Interpret expressions for functions in terms of the situation they model. F LE.5 Interpret the parameters in a linear or exponential function in terms of a context. High School Algebra - Creating Equations Create equations that describe numbers or relationships. A-CED.2. Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales. Common Core State Standards Math Standards of Mathematical Practice MP.7 Look for and make use of structure. Mathematically proficient students look closely to discern a pattern or structure. Young students, for example, might notice that three and seven more is the same amount as seven and three more, or they may sort a collection of shapes according to how many sides the shapes have. Later, students will see 7 x 8 equals the well-remembered 7 x x 3, in preparation for learning about the distributive property. In the expression x 2 + 9x + 14, older students can see the 14 as 2 x 7 and the 9 as They recognize the significance of an existing line in a geometric figure and can use the strategy of drawing an auxiliary line for solving problems. They also can step back for an overview and shift perspective. They can see complicated things, such as some algebraic expressions, as single objects or as being composed of several objects. For example, they can see 5 3(x y) 2 as 5 minus a positive number times a square and use that to realize that its value cannot be more than 5 for any real numbers x and y. MP.8 Look for and express regularity in repeated reasoning. Mathematically proficient students notice if calculations are repeated, and look both for general methods and for shortcuts. Upper elementary students might notice when dividing 25 by 11 that they are repeating the same calculations over and over again, and conclude they have a repeating decimal. By paying attention to the calculation of slope as they repeatedly check whether points are on the line through (1,2) with slope 3, middle school students might abstract the equation (y 2)/(x 1) = 3. Noticing the regularity in the way terms cancel when expanding (x 1)(x+1), (x 1)(x 2 + x + 1), and (x 1)(x 3 + x 2 + x + 1) might lead them to the general formula for the sum of a geometric series. As they work to solve a problem, mathematically proficient students maintain oversight of the process, while attending to the details. They continually evaluate the reasonableness of their intermediate results. CCSSM Alignment: Problem of the Month Page 5

Problem of the Month: Perfect Pair

Problem of the Month: The Problems of the Month (POM) are used in a variety of ways to promote problem solving and to foster the first standard of mathematical practice from the Common Core State Standards:

Problem of the Month: Double Down

Problem of the Month: Double Down The Problems of the Month (POM) are used in a variety of ways to promote problem solving and to foster the first standard of mathematical practice from the Common Core

Problem of the Month: William s Polygons

Problem of the Month: William s Polygons The Problems of the Month (POM) are used in a variety of ways to promote problem solving and to foster the first standard of mathematical practice from the Common

Problem of the Month: Digging Dinosaurs

: The Problems of the Month (POM) are used in a variety of ways to promote problem solving and to foster the first standard of mathematical practice from the Common Core State Standards: Make sense of

Problem of the Month: Once Upon a Time

Problem of the Month: The Problems of the Month (POM) are used in a variety of ways to promote problem solving and to foster the first standard of mathematical practice from the Common Core State Standards:

Problem of the Month The Wheel Shop

Problem of the Month The Wheel Shop The Problems of the Month (POM) are used in a variety of ways to promote problem solving and to foster the first standard of mathematical practice from the Common Core

PA Common Core Standards Standards for Mathematical Practice Grade Level Emphasis*

Habits of Mind of a Productive Thinker Make sense of problems and persevere in solving them. Attend to precision. PA Common Core Standards The Pennsylvania Common Core Standards cannot be viewed and addressed

Measurement with Ratios

Grade 6 Mathematics, Quarter 2, Unit 2.1 Measurement with Ratios Overview Number of instructional days: 15 (1 day = 45 minutes) Content to be learned Use ratio reasoning to solve real-world and mathematical

Problem of the Month: On Balance

Problem of the Month: On Balance The Problems of the Month (POM) are used in a variety of ways to promote problem solving and to foster the first standard of mathematical practice from the Common Core

Problem of the Month Through the Grapevine

The Problems of the Month (POM) are used in a variety of ways to promote problem solving and to foster the first standard of mathematical practice from the Common Core State Standards: Make sense of problems

Unit 1: Place value and operations with whole numbers and decimals

Unit 1: Place value and operations with whole numbers and decimals Content Area: Mathematics Course(s): Generic Course Time Period: 1st Marking Period Length: 10 Weeks Status: Published Unit Overview Students

Problem of the Month: Fair Games

Problem of the Month: The Problems of the Month (POM) are used in a variety of ways to promote problem solving and to foster the first standard of mathematical practice from the Common Core State Standards:

Creating, Solving, and Graphing Systems of Linear Equations and Linear Inequalities

Algebra 1, Quarter 2, Unit 2.1 Creating, Solving, and Graphing Systems of Linear Equations and Linear Inequalities Overview Number of instructional days: 15 (1 day = 45 60 minutes) Content to be learned

Problem of the Month Diminishing Return

The Problems of the Month (POM) are used in a variety of ways to promote problem solving and to foster the first standard of mathematical practice from the Common Core State Standards: Make sense of problems

Integer Operations. Overview. Grade 7 Mathematics, Quarter 1, Unit 1.1. Number of Instructional Days: 15 (1 day = 45 minutes) Essential Questions

Grade 7 Mathematics, Quarter 1, Unit 1.1 Integer Operations Overview Number of Instructional Days: 15 (1 day = 45 minutes) Content to Be Learned Describe situations in which opposites combine to make zero.

Standards for Mathematical Practice: Commentary and Elaborations for 6 8

Standards for Mathematical Practice: Commentary and Elaborations for 6 8 c Illustrative Mathematics 6 May 2014 Suggested citation: Illustrative Mathematics. (2014, May 6). Standards for Mathematical Practice:

Grades K-6. Correlated to the Common Core State Standards

Grades K-6 Correlated to the Common Core State Standards Kindergarten Standards for Mathematical Practice Common Core State Standards Standards for Mathematical Practice Kindergarten The Standards for

Division with Whole Numbers and Decimals

Grade 5 Mathematics, Quarter 2, Unit 2.1 Division with Whole Numbers and Decimals Overview Number of Instructional Days: 15 (1 day = 45 60 minutes) Content to be Learned Divide multidigit whole numbers

Problem of the Month Pick a Pocket

The Problems of the Month (POM) are used in a variety of ways to promote problem solving and to foster the first standard of mathematical practice from the Common Core State Standards: Make sense of problems

For example, estimate the population of the United States as 3 times 10⁸ and the

CCSS: Mathematics The Number System CCSS: Grade 8 8.NS.A. Know that there are numbers that are not rational, and approximate them by rational numbers. 8.NS.A.1. Understand informally that every number

Performance Assessment Task Bikes and Trikes Grade 4. Common Core State Standards Math - Content Standards

Performance Assessment Task Bikes and Trikes Grade 4 The task challenges a student to demonstrate understanding of concepts involved in multiplication. A student must make sense of equal sized groups of

Problem of the Month: Cutting a Cube

Problem of the Month: The Problems of the Month (POM) are used in a variety of ways to promote problem solving and to foster the first standard of mathematical practice from the Common Core State Standards:

Overview. Essential Questions. Grade 4 Mathematics, Quarter 4, Unit 4.1 Dividing Whole Numbers With Remainders

Dividing Whole Numbers With Remainders Overview Number of instruction days: 7 9 (1 day = 90 minutes) Content to Be Learned Solve for whole-number quotients with remainders of up to four-digit dividends

Polynomial Operations and Factoring

Algebra 1, Quarter 4, Unit 4.1 Polynomial Operations and Factoring Overview Number of instructional days: 15 (1 day = 45 60 minutes) Content to be learned Identify terms, coefficients, and degree of polynomials.

Operations and Algebraic Thinking Represent and solve problems involving multiplication and division.

Performance Assessment Task The Answer is 36 Grade 3 The task challenges a student to use knowledge of operations and their inverses to complete number sentences that equal a given quantity. A student

Performance Assessment Task Gym Grade 6. Common Core State Standards Math - Content Standards

Performance Assessment Task Gym Grade 6 This task challenges a student to use rules to calculate and compare the costs of memberships. Students must be able to work with the idea of break-even point to

CORE Assessment Module Module Overview

CORE Assessment Module Module Overview Content Area Mathematics Title Speedy Texting Grade Level Grade 7 Problem Type Performance Task Learning Goal Students will solve real-life and mathematical problems

1 ST GRADE COMMON CORE STANDARDS FOR SAXON MATH

1 ST GRADE COMMON CORE STANDARDS FOR SAXON MATH Calendar The following tables show the CCSS focus of The Meeting activities, which appear at the beginning of each numbered lesson and are taught daily,

Evaluation Tool for Assessment Instrument Quality

REPRODUCIBLE Figure 4.4: Evaluation Tool for Assessment Instrument Quality Assessment indicators Description of Level 1 of the Indicator Are Not Present Limited of This Indicator Are Present Substantially

Performance Assessment Task Baseball Players Grade 6. Common Core State Standards Math - Content Standards

Performance Assessment Task Baseball Players Grade 6 The task challenges a student to demonstrate understanding of the measures of center the mean, median and range. A student must be able to use the measures

Problem of the Month: Circular Reasoning

Problem of the Month: Circular Reasoning The Problems of the Month (POM) are used in a variety of ways to promote problem solving and to foster the first standard of mathematical practice from the Common

N Q.3 Choose a level of accuracy appropriate to limitations on measurement when reporting quantities.

Performance Assessment Task Swimming Pool Grade 9 The task challenges a student to demonstrate understanding of the concept of quantities. A student must understand the attributes of trapezoids, how to

Pearson Algebra 1 Common Core 2015

A Correlation of Pearson Algebra 1 Common Core 2015 To the Common Core State Standards for Mathematics Traditional Pathways, Algebra 1 High School Copyright 2015 Pearson Education, Inc. or its affiliate(s).

Describing and Solving for Area and Perimeter

Grade 3 Mathematics, Quarter 2,Unit 2.2 Describing and Solving for Area and Perimeter Overview Number of instruction days: 8-10 (1 day = 90 minutes) Content to Be Learned Distinguish between linear and

#1 Make sense of problems and persevere in solving them.

#1 Make sense of problems and persevere in solving them. 1. Make sense of problems and persevere in solving them. Interpret and make meaning of the problem looking for starting points. Analyze what is

Performance Assessment Task Leapfrog Fractions Grade 4 task aligns in part to CCSSM grade 3 This task challenges a student to use their knowledge and understanding of ways of representing numbers and fractions

G C.3 Construct the inscribed and circumscribed circles of a triangle, and prove properties of angles for a quadrilateral inscribed in a circle.

Performance Assessment Task Circle and Squares Grade 10 This task challenges a student to analyze characteristics of 2 dimensional shapes to develop mathematical arguments about geometric relationships.

Overview. Essential Questions. Precalculus, Quarter 3, Unit 3.4 Arithmetic Operations With Matrices

Arithmetic Operations With Matrices Overview Number of instruction days: 6 8 (1 day = 53 minutes) Content to Be Learned Use matrices to represent and manipulate data. Perform arithmetic operations with

Overview. Essential Questions. Precalculus, Quarter 4, Unit 4.5 Build Arithmetic and Geometric Sequences and Series

Sequences and Series Overview Number of instruction days: 4 6 (1 day = 53 minutes) Content to Be Learned Write arithmetic and geometric sequences both recursively and with an explicit formula, use them

High School Functions Interpreting Functions Understand the concept of a function and use function notation.

Performance Assessment Task Printing Tickets Grade 9 The task challenges a student to demonstrate understanding of the concepts representing and analyzing mathematical situations and structures using algebra.

Operations and Algebraic Thinking Represent and solve problems involving addition and subtraction. Add and subtract within 20. MP.

Performance Assessment Task Incredible Equations Grade 2 The task challenges a student to demonstrate understanding of concepts involved in addition and subtraction. A student must be able to understand

Modeling in Geometry

Modeling in Geometry Overview Number of instruction days: 8-10 (1 day = 53 minutes) Content to Be Learned Mathematical Practices to Be Integrated Use geometric shapes and their components to represent

Grade Level Year Total Points Core Points % At Standard 9 2003 10 5 7 %

Performance Assessment Task Number Towers Grade 9 The task challenges a student to demonstrate understanding of the concepts of algebraic properties and representations. A student must make sense of the

a) Three faces? b) Two faces? c) One face? d) No faces? What if it s a 15x15x15 cube? How do you know, without counting?

Painted Cube (Task) Imagine a large 3x3x3 cube made out of unit cubes. The large cube falls into a bucket of paint, so that the faces of the large cube are painted blue. Now suppose you broke the cube

Performance Assessment Task Picking Fractions Grade 4. Common Core State Standards Math - Content Standards

Performance Assessment Task Picking Fractions Grade 4 The task challenges a student to demonstrate understanding of the concept of equivalent fractions. A student must understand how the number and size

Solve addition and subtraction word problems, and add and subtract within 10, e.g., by using objects or drawings to represent the problem.

Solve addition and subtraction word problems, and add and subtract within 10, e.g., by using objects or drawings to represent the problem. Solve word problems that call for addition of three whole numbers

PowerTeaching i3: Algebra I Mathematics

PowerTeaching i3: Algebra I Mathematics Alignment to the Common Core State Standards for Mathematics Standards for Mathematical Practice and Standards for Mathematical Content for Algebra I Key Ideas and

Math at a Glance for April

Audience: School Leaders, Regional Teams Math at a Glance for April The Math at a Glance tool has been developed to support school leaders and region teams as they look for evidence of alignment to Common

Composing and Decomposing Whole Numbers

Grade 2 Mathematics, Quarter 1, Unit 1.1 Composing and Decomposing Whole Numbers Overview Number of instructional days: 10 (1 day = 45 60 minutes) Content to be learned Demonstrate understanding of mathematical

INDIANA ACADEMIC STANDARDS. Mathematics: Grade 6 Draft for release: May 1, 2014

INDIANA ACADEMIC STANDARDS Mathematics: Grade 6 Draft for release: May 1, 2014 I. Introduction The Indiana Academic Standards for Mathematics are the result of a process designed to identify, evaluate,

Geometry Solve real life and mathematical problems involving angle measure, area, surface area and volume.

Performance Assessment Task Pizza Crusts Grade 7 This task challenges a student to calculate area and perimeters of squares and rectangles and find circumference and area of a circle. Students must find

5 th Grade Common Core State Standards. Flip Book

5 th Grade Common Core State Standards Flip Book This document is intended to show the connections to the Standards of Mathematical Practices for the content standards and to get detailed information at

CORRELATED TO THE SOUTH CAROLINA COLLEGE AND CAREER-READY FOUNDATIONS IN ALGEBRA

We Can Early Learning Curriculum PreK Grades 8 12 INSIDE ALGEBRA, GRADES 8 12 CORRELATED TO THE SOUTH CAROLINA COLLEGE AND CAREER-READY FOUNDATIONS IN ALGEBRA April 2016 www.voyagersopris.com Mathematical

Indiana Academic Standards Mathematics: Algebra I

Indiana Academic Standards Mathematics: Algebra I 1 I. Introduction The college and career ready Indiana Academic Standards for Mathematics: Algebra I are the result of a process designed to identify,

Standard 1: Make sense of problems and persevere in solving them

Standards for Mathematical Practice: Standard 1: Make sense of problems and persevere in solving them The Standard: Mathematically proficient students start by explaining to themselves the meaning of a

TYPES OF NUMBERS. Example 2. Example 1. Problems. Answers

TYPES OF NUMBERS When two or more integers are multiplied together, each number is a factor of the product. Nonnegative integers that have exactly two factors, namely, one and itself, are called prime

High School Algebra Reasoning with Equations and Inequalities Solve systems of equations.

Performance Assessment Task Graphs (2006) Grade 9 This task challenges a student to use knowledge of graphs and their significant features to identify the linear equations for various lines. A student

Prentice Hall: Middle School Math, Course 1 2002 Correlated to: New York Mathematics Learning Standards (Intermediate)

New York Mathematics Learning Standards (Intermediate) Mathematical Reasoning Key Idea: Students use MATHEMATICAL REASONING to analyze mathematical situations, make conjectures, gather evidence, and construct

Grade 6 Mathematics Assessment. Eligible Texas Essential Knowledge and Skills

Grade 6 Mathematics Assessment Eligible Texas Essential Knowledge and Skills STAAR Grade 6 Mathematics Assessment Mathematical Process Standards These student expectations will not be listed under a separate

Mathematics Interim Assessment Blocks Blueprint V

6-7 Blueprint V.5.7.6 The Smarter Balanced Interim Assessment Blocks (IABs) are one of two distinct types of interim assessments being made available by the Consortium; the other type is the Interim Comprehensive

Georgia Standards of Excellence Mathematics

Georgia Standards of Excellence Mathematics Standards Kindergarten Fifth Grade K-12 Mathematics Introduction The Georgia Mathematics Curriculum focuses on actively engaging the students in the development

Overview. Essential Questions. Grade 8 Mathematics, Quarter 4, Unit 4.3 Finding Volume of Cones, Cylinders, and Spheres

Cylinders, and Spheres Number of instruction days: 6 8 Overview Content to Be Learned Evaluate the cube root of small perfect cubes. Simplify problems using the formulas for the volumes of cones, cylinders,

Performance Assessment Task Which Shape? Grade 3. Common Core State Standards Math - Content Standards

Performance Assessment Task Which Shape? Grade 3 This task challenges a student to use knowledge of geometrical attributes (such as angle size, number of angles, number of sides, and parallel sides) to

Common Core State Standards for Math Grades K - 7 2012

correlated to the Grades K - 7 The Common Core State Standards recommend more focused and coherent content that will provide the time for students to discuss, reason with, reflect upon, and practice more

Absolute Value of Reasoning

About Illustrations: Illustrations of the Standards for Mathematical Practice (SMP) consist of several pieces, including a mathematics task, student dialogue, mathematical overview, teacher reflection

High School Algebra Reasoning with Equations and Inequalities Solve equations and inequalities in one variable.

Performance Assessment Task Quadratic (2009) Grade 9 The task challenges a student to demonstrate an understanding of quadratic functions in various forms. A student must make sense of the meaning of relations

Common Core State Standards for Mathematics for California Public Schools Kindergarten Through Grade Twelve

Common Core State Standards for Mathematics for California Public Schools Kindergarten Through Grade Twelve Adopted by the California State Board of Education August 2010 Updated January 2013 Prepublication

1) Make Sense and Persevere in Solving Problems.

Standards for Mathematical Practice in Second Grade The Common Core State Standards for Mathematical Practice are practices expected to be integrated into every mathematics lesson for all students Grades

Content Emphases for Grade 7 Major Cluster 70% of time

Critical Area: Geometry Content Emphases for Grade 7 Major Cluster 70% of time Supporting Cluster 20% of Time Additional Cluster 10% of Time 7.RP.A.1,2,3 7.SP.A.1,2 7.G.A.1,2,3 7.NS.A.1,2,3 7.SP.C.5,6,7,8

Overview. Essential Questions. Grade 2 Mathematics, Quarter 4, Unit 4.4 Representing and Interpreting Data Using Picture and Bar Graphs

Grade 2 Mathematics, Quarter 4, Unit 4.4 Representing and Interpreting Data Using Picture and Bar Graphs Overview Number of instruction days: 7 9 (1 day = 90 minutes) Content to Be Learned Draw a picture

Math, Grades 1-3 TEKS and TAKS Alignment

111.13. Mathematics, Grade 1. 111.14. Mathematics, Grade 2. 111.15. Mathematics, Grade 3. (a) Introduction. (1) Within a well-balanced mathematics curriculum, the primary focal points are adding and subtracting

Glencoe. correlated to SOUTH CAROLINA MATH CURRICULUM STANDARDS GRADE 6 3-3, 5-8 8-4, 8-7 1-6, 4-9

Glencoe correlated to SOUTH CAROLINA MATH CURRICULUM STANDARDS GRADE 6 STANDARDS 6-8 Number and Operations (NO) Standard I. Understand numbers, ways of representing numbers, relationships among numbers,

K-12 Louisiana Student Standards for Mathematics: Table of Contents Introduction Development of K-12 Louisiana Student Standards for Mathematics... 2 The Role of Standards in Establishing Key Student Skills

MATH 0110 Developmental Math Skills Review, 1 Credit, 3 hours lab

MATH 0110 Developmental Math Skills Review, 1 Credit, 3 hours lab MATH 0110 is established to accommodate students desiring non-course based remediation in developmental mathematics. This structure will

Indiana Academic Standards Mathematics: Algebra II

Indiana Academic Standards Mathematics: Algebra II 1 I. Introduction The college and career ready Indiana Academic Standards for Mathematics: Algebra II are the result of a process designed to identify,

Rectangles with the Same Numerical Area and Perimeter

About Illustrations: Illustrations of the Standards for Mathematical Practice (SMP) consist of several pieces, including a mathematics task, student dialogue, mathematical overview, teacher reflection

Current Standard: Mathematical Concepts and Applications Shape, Space, and Measurement- Primary

Shape, Space, and Measurement- Primary A student shall apply concepts of shape, space, and measurement to solve problems involving two- and three-dimensional shapes by demonstrating an understanding of:

4 th Grade Mathematics Unpacked Content

4 th Grade Mathematics Unpacked Content This document is designed to help North Carolina educators teach the Common Core (Standard Course of Study). NCDPI staff are continually updating and improving these

Georgia Standards of Excellence Mathematics

Georgia Standards of Excellence Mathematics Standards GSE Algebra I K-12 Mathematics Introduction Georgia Mathematics focuses on actively engaging the student in the development of mathematical understanding

COMMON CORE. DECONSTRUCTED for. State Standards FIRST GRADE ARTS 1MATHEMATICS

COMMON CORE State Standards DECONSTRUCTED for Classroom Impact 1MATHEMATICS FIRST GRADE ARTS 855.809.7018 www.commoncoreinstitute.com MathEMATICS OVERVIEW Introduction The Common Core Institute is pleased

Chapter 111. Texas Essential Knowledge and Skills for Mathematics. Subchapter A. Elementary

Elementary 111.A. Chapter 111. Texas Essential Knowledge and Skills for Mathematics Subchapter A. Elementary Statutory Authority: The provisions of this Subchapter A issued under the Texas Education Code,

Overview. Essential Questions. Precalculus, Quarter 2, Unit 2.4 Interpret, Solve, and Graph Inverse Trigonometric Functions

Trigonometric Functions Overview Number of instruction days: 3 5 (1 day = 53 minutes) Content to Be Learned Use restricted domains in order to construct inverse Use inverse trigonometric functions to solve

Total Student Count: 3170. Grade 8 2005 pg. 2

Grade 8 2005 pg. 1 Total Student Count: 3170 Grade 8 2005 pg. 2 8 th grade Task 1 Pen Pal Student Task Core Idea 3 Algebra and Functions Core Idea 2 Mathematical Reasoning Convert cake baking temperatures

Prentice Hall Connected Mathematics 2, 7th Grade Units 2009

Prentice Hall Connected Mathematics 2, 7th Grade Units 2009 Grade 7 C O R R E L A T E D T O from March 2009 Grade 7 Problem Solving Build new mathematical knowledge through problem solving. Solve problems

Georgia Standards of Excellence 2015-2016 Mathematics

Georgia Standards of Excellence 2015-2016 Mathematics Standards GSE Coordinate Algebra K-12 Mathematics Introduction Georgia Mathematics focuses on actively engaging the student in the development of mathematical

Math Review. for the Quantitative Reasoning Measure of the GRE revised General Test

Math Review for the Quantitative Reasoning Measure of the GRE revised General Test www.ets.org Overview This Math Review will familiarize you with the mathematical skills and concepts that are important

Chapter 11 Number Theory

Chapter 11 Number Theory Number theory is one of the oldest branches of mathematics. For many years people who studied number theory delighted in its pure nature because there were few practical applications

Investigations. Investigations and the Common Core State Standards GRADE. in Number, Data, and Space. Infinity Prime Donna Casey

Infinity Prime Donna Casey GRADE K This fractal is a classic spiral, which is my favorite, and I m always amazed at the variations and the endlessly repeating patterns that can be created out of such a

South Carolina College- and Career-Ready (SCCCR) Algebra 1

South Carolina College- and Career-Ready (SCCCR) Algebra 1 South Carolina College- and Career-Ready Mathematical Process Standards The South Carolina College- and Career-Ready (SCCCR) Mathematical Process

Kindergarten Math Curriculum Course Description and Philosophy Text Reference:

Kindergarten Math Curriculum Course Description and Philosophy How do numbers and math affect our daily lives? What types of problems can be solved by understanding numbers and math concepts? Through inquiry,

Unit 3 Multiplication and Division

WEEK DATES TEK DESCRIPTION 9 Oct 19-23 3.4F, 3.4E, 3.4D Unit 3 Multiplication and Division Unit 3 Multiplication and Division 4 district bi-weekly scanned tests 10 Oct 26-30 3.4G 2x1 digit multiplication

Performance Level Descriptors Grade 6 Mathematics

Performance Level Descriptors Grade 6 Mathematics Multiplying and Dividing with Fractions 6.NS.1-2 Grade 6 Math : Sub-Claim A The student solves problems involving the Major Content for grade/course with

3rd Grade Texas Mathematics: Unpacked Content

3rd Grade Texas Mathematics: Unpacked Content What is the purpose of this document? To increase student achievement by ensuring educators understand specifically what the new standards mean a student must

Effective Mathematics Interventions

Effective Mathematics Interventions Diane P. Bryant, Ph.D. Brian R. Bryant, Ph.D. Kathleen Hughes Pfannenstiel, Ph.D. Meadows Center for Preventing Educational Risk: Mathematics Institute 1 Research to

Overview of Mathematics Task Arcs: Mathematics Task Arcs A task arc is a set of related lessons which consists of eight tasks and their associated lesson guides. The lessons are focused on a small number

Math Content by Strand 1

Math Content by Strand 1 Number and Operations: Whole Numbers Addition and Subtraction and the Number System Kindergarten Young students develop their understanding of the operations of addition and subtraction

Math Journal HMH Mega Math. itools Number

Lesson 1.1 Algebra Number Patterns CC.3.OA.9 Identify arithmetic patterns (including patterns in the addition table or multiplication table), and explain them using properties of operations. Identify and

Grade 6 Mathematics Performance Level Descriptors

Limited Grade 6 Mathematics Performance Level Descriptors A student performing at the Limited Level demonstrates a minimal command of Ohio s Learning Standards for Grade 6 Mathematics. A student at this